The present disclosure is directed to a flexible container with a dispensing pump and a standup flexible container with a dispensing pump in particular.
Flexible packaging is known to offer significant value and sustainability benefits to product manufacturers, retailers and consumers as compared to solid, molded plastic packaging containers. Flexible packaging provides many consumer conveniences and benefits, including extended shelf life, easy storage, microwave-ability, refill-ability, and reduced disposal (landfill) burden. Flexible packaging has proven to require less energy for creation and creates fewer emissions during disposal.
Flexible packaging includes flexible containers with a gusseted body section. These gusseted flexible containers are currently produced using flexible plastic films which are folded to form gussets and heat sealed in a perimeter shape. The gusseted body section opens to form a flexible container with a fillable interior volume. The gussets are terminated at the bottom of the container to form a substantially flat base, providing stability when the container is partially or wholly filled. The gussets can be terminated at the top of the container to form an open neck for receiving a rigid fitment and closure.
One shortcoming of the conventional flexible container is its inability to provide conveniently a metered dose of liquid (fluid content) therefrom. The art recognizes the need for a flexible container with the ability to conveniently, accurately, and quickly dispense a metered dose of the fluid content contained therein.
The present disclosure provides a flexible container. In an embodiment, the flexible container includes (A) four panels, each panel comprising a flexible multilayer film. Each flexible multilayer film is composed of a polymeric material. The four panels form (i) a body, (ii) a neck, and (iii) a handle. The handle has an upper handle portion and a pair of spaced-apart legs. The legs extend from the upper handle portion to the body on opposing sides of the neck. The flexible container includes (B) a fitment sealed to the neck. The flexible container includes (C) a dispensing pump attached to the fitment.
An advantage of the present disclosure is a flexible container with the ability to provide a metered dose from a dispensing pump.
An advantage of the present disclosure is a flexible container with a dispensing pump the dispensing pump dispensing a metered dose of fluid content; the dispensing pump also functioning as a handle to hand-carry the flexible container.
The present disclosure provides a flexible container. In an embodiment, the flexible container includes (A) four panels. Each panel includes a flexible multilayer film composed of a polymeric material. The four panels form (i) a body, (ii) a neck, and (iii) a handle. The handle has an upper handle portion and a pair of spaced-apart legs. The legs extend from the upper handle portion to the body on opposing sides of the neck. The flexible container further includes (B) a fitment sealed to the neck. The flexible container further includes (C) a dispensing pump attached to the fitment.
1. Flexible Container
The flexible container includes panels, each panel composed of a flexible multilayer film. The flexible container can be made from one, two, three, four, five, six, or more panels. In an embodiment, the flexible container 10 has a collapsed configuration (as shown in
In an embodiment, the flexible container 10 is made from four panels, as shown in
As shown in
When the flexible container 10 is in the collapsed configuration, the flexible container is in a flattened state, or in an otherwise evacuated state. The gusset panels 18, 20 fold inwardly (dotted gusset fold lines 60, 62 of
The four panels 18, 20, 22 and 24 can each be composed of a separate web of film material. The composition and structure for each web of film material can be the same or different. Alternatively, one web of film material may also be used to make all four panels and the top and bottom segments. In a further embodiment, two or more webs can be used to make each panel.
In an embodiment, four webs of film material are provided, one web of film for each respective panel 18, 20, 22, and 24. The process includes sealing edges of each film to the adjacent web of film to form peripheral seals 41 and peripheral tapered seals 40a-40d (40) (
To form the top segment 28 and the bottom segment 26, the four webs of film converge together at the respective end and are sealed together. For instance, the top segment 28 can be defined by extensions of the panels sealed together at the tapered transition section III, and the neck section IV. The top end 44 includes four top panels of film that define the top segment 28. The four top panels corresponding to respective front, rear, and first and second gusset panels. The bottom segment 26 can be defined by extensions of the panels sealed together at the bottom section I. The bottom segment 26 can also have four bottom panels 26a-26d of film sealed together and can also be defined by extensions of the panels at the opposite end 46, as shown in
The neck 30 is positioned at a midpoint of the top segment 28. The neck 30 may (or may not) be sized smaller than a width of the body section II, such that the neck 30 can have an area that is less than a total area of the top segment 28. The location of the neck 30 can be anywhere on the top segment 28 of the container 10.
In an embodiment, the neck 30 is formed from two or more panels. In a further embodiment, the neck 30 is formed from four panels.
In an embodiment, the neck 30 is sized to accommodate a dispensing pump.
The four panels of film that form the flexible container 10 extend from the body section II (forming body 47), to the tapered transition section III (forming tapered transition portion 48), to form a neck 30 (in the neck section IV). The four panels of film also extend from the body section II to the bottom section I (forming bottom portion 49). When the flexible container 10 is in the collapsed configuration (
As shown in
Each panel includes a respective bottom face.
The front panel bottom face 26a includes a first line A defined by the inner edge 29a of the first peripheral tapered seal 40a and a second line B defined by the inner edge 29b of the second peripheral tapered seal 40b. The first line A intersects the second line B at an apex point 35a in the bottom seal area 33. The front panel bottom face 26a has a bottom distalmost inner seal point 37a (“BDISP 37a ”). The BDISP 37a is located on the inner edge.
The apex point 35a is separated from the BDISP 37a by a distance S from 0 millimeter (mm) to less than 8.0 mm.
In an embodiment, the rear panel bottom face 26c includes an apex point 35c similar to the apex point 35c on the front panel bottom face 26a. The rear panel bottom face 26c includes a first line C defined by the inner edge of the 29c first peripheral tapered seal 40c and a second line D defined by the inner edge 29d of the second peripheral tapered seal 40d. The first line C intersects the second line D at an apex point 35c in the bottom seal area 33. The rear panel bottom face 26c has a bottom distalmost inner seal point 37c (“BDISP 37c ”). The BDISP 37c is located on the inner edge. The apex point 35c is separated from the BDISP 37c by a distance T from 0 millimeter (mm) to less than 8.0 mm.
It is understood the following description to the front panel bottom face 26a applies equally to the rear panel bottom face 26c, with reference numerals to the rear panel bottom face 26c shown in adjacent closed parentheses.
In an embodiment, the BDISP 37a (37c) is located where the inner edges 29a (29c) and 29b (29d) intersect. The distance S (distance T) between the BDISP 37a (37c) and the apex point 35a (35c) is 0 mm.
In an embodiment, the inner seal edge diverges from the inner edges 29a, 29b (29c, 29d), to form an inner seal arc 39a (front panel) and inner seal arc 39c (rear panel) as shown in
In an embodiment, apex point 35a (35c) is separated from the BDISP 37a (37c) by the distance S (distance T), which is from greater than 0 mm to less than 6.0 mm.
In an embodiment, the distance S (distance T) from the apex point 35a (35c) to the BDISP 37a (37c) is from greater than 0 mm, or 0.5 mm or 1.0 mm, or 2.0 mm to 4.0 mm, or 5.0 mm, or less than 5.5 mm.
In an embodiment, apex point 35a (apex point 35c) is separated from the BDISP 37a (BDISP 37c) by the distance S (distance T), which is from 3.0 mm, or 3.5 mm, or 3.9 mm to 4.0 mm, or 4.5 mm, or 5.0 mm, or 5.2 mm, or 5.3 mm, or 5.5 mm.
In an embodiment, the distal inner seal arc 39a (39c) has a radius of curvature from 0 mm, or greater than 0 mm, or 1.0 mm to 19.0 mm, or 20.0 mm.
In an embodiment, each peripheral tapered seal 40a-40d (outside edge) and an extended line from respective peripheral seal 41 (outside edge) form an angle Z, as shown in
The bottom segment 26 includes a pair of gussets 54 and 56 formed there at, which are essentially extensions of the bottom faces 26a-26d. The gussets 54 and 56 can facilitate the ability of the flexible container 10 to stand upright. These gussets 54 and 56 are formed from excess material from each bottom face 26a-26d that are joined together to form the gussets 54 and 56. The triangular portions of the gussets 54 and 56 comprise two adjacent bottom segment panels sealed together and extending into its respective gusset. For example, adjacent bottom faces 26a and 26d extend beyond the plane of their bottom surface along an intersecting edge and are sealed together to form one side of a first gusset 54. Similarly, adjacent bottom faces 26c and 26d extend beyond the plane of their bottom surface along an intersecting edge and are sealed together to form the other side of the first gusset 54. Likewise, a second gusset 56 is similarly formed from adjacent bottom faces 26a-26b and 26b-26c. The gussets 54 and 56 can contact a portion of the bottom segment 26, where the gussets 54 and 56 can contact bottom faces 26b and 26d covering them, while bottom segment panels 26a and 26c remain exposed at the bottom end 46.
As shown in
The top handle 12 and the bottom handle 14 can comprise up to four plies of film sealed together for a four panel container 10. When more than four panels are used to make the container, the handles 12, 14 can include the same number of panels used to produce the container. Any portion of the handles 12, 14 where all four plies are not completely sealed together by the heat-sealing method, can be adhered together in any appropriate manner, such as by a tack seal to form a fully-sealed multilayer handle. Alternatively, the top handle 12 can be made from as few as a single ply of film from one panel only or can be made from only two plies of film from two panels. The handles 12, 14 can have any suitable shape and generally will take the shape of the film end. For example, typically the web of film has a rectangular shape when unwound, such that its ends have a straight edge. Therefore, the handles 12, 14 would also have a rectangular shape.
Additionally, the bottom handle 14 can contain a handle opening 16 or cutout section therein sized to fit a user's hand, as can be seen in
Furthermore, a portion of the bottom handle 14 attached to the bottom segment 26 can contain a dead machine fold 42 or a score line that provides for the bottom handle 14 to consistently fold in the same direction, as illustrated in
Additionally, as the flexible container 10 is evacuated and less product remains, the bottom handle 14 can continue to provide support to help the flexible container 10 to remain standing upright unsupported and without tipping over. Because the bottom handle 14 is sealed generally along its entire length extending between the pair of gusset panels 18 and 20, it can help to keep the gussets 54 and 56 (
As seen in
A portion of the top handle 12 can extend above the neck 30 and above the top segment 28 when the top handle 12 is extended in a position perpendicular to the top segment 28 and, in particular, the entire upper handle portion 12a can be above the neck wall 50 and the top segment 28. The two pairs of legs 13 and 15 along with the upper handle portion 12a together make up the top handle 12 surrounding a handle opening that allows a user to place their hand therethrough and grasp the upper handle portion 12a of the handle 12.
As with the bottom handle 14, the top handle 12 also can have a dead machine fold 34a, 34b that permits folding in a first direction toward the front side panel 22 and restricts folding in a second direction toward the rear side panel 24, as shown in
When the container 10 is in a rest position, such as when it is standing upright on its bottom segment 26, as shown in
The material of construction of the flexible container 10 can comprise food-grade plastic. For instance, nylon, polypropylene, polyethylene such as high density polyethylene (HDPE) and/or low density polyethylene (LDPE) may be used, as discussed later. The film of the plastic container 10 can have a thickness and barrier properties that are adequate to maintain product and package integrity during manufacturing, distribution, product shelf life and customer usage. In an embodiment, the flexible multilayer film has a thickness from 100 micrometers (μm), or 200 μm, or 250 μm to 300 μm, or 350 μm, or 400 μm. In an embodiment, the film material can also be such that it provides the appropriate atmosphere within the flexible container 10 to maintain the product shelf life of at least about 180 days. Such films can comprise an oxygen barrier film, such as a film having a low oxygen transmission rate (OTR) from greater than 0 to 0.4 cc/m2/atm/24 hrs at 23° C. and 80% relative humidity (RH). Additionally, the flexible multilayer film can also comprise a water vapor barrier film, such as a film having a low water vapor transmission rate (WVTR) from greater than 0 to 15 g/m2/24 hrs at 38° C. and 90% RH. Moreover, it may be desirable to use materials of construction having oil and/or chemical resistance particularly in the seal layer, but not limited to just the seal layer. The flexible multilayer film can be either printable or compatible to receive a pressure sensitive label or other type of label for displaying of indicia on the flexible container 10. In an embodiment, the film can also be made of non-food grade resins for producing containers for materials other than food.
In an embodiment, each panel is made from a flexible multilayer film having at least one, or at least two, or at least three layers. The flexible multilayer film is resilient, flexible, deformable, and pliable. The structure and composition of the flexible multilayer film for each panel 18, 20, 22, 24 may be the same or different. For example, each of the four panels 18, 20, 22, 24 can be made from a separate web, each web having a unique structure and/or unique composition, finish, or print. Alternatively, each of the four panels 18, 20, 22, 24 can be the same structure and the same composition.
In an embodiment, each panel 18, 20, 22, 24 is a flexible multilayer film having the same structure and the same composition.
The flexible multilayer film may be (i) a coextruded multilayer structure or (ii) a laminate, or (iii) a combination of (i) and (ii). In an embodiment, the flexible multilayer film has at least three layers: a seal layer, an outer layer, and a tie layer between. The tie layer adjoins the seal layer to the outer layer. The flexible multilayer film may include one or more optional inner layers disposed between the seal layer and the outer layer.
In an embodiment, the flexible multilayer film is a coextruded film having at least two, or three, or four, or five, or six, or seven to eight, or nine, or ten, or eleven, or more layers. Some methods, for example, used to construct films are by cast co-extrusion or blown co-extrusion methods, adhesive lamination, extrusion lamination, thermal lamination, and coatings such as vapor deposition. Combinations of these methods are also possible. Film layers can comprise, in addition to the polymeric materials, additives such as stabilizers, slip additives, antiblocking additives, process aids, clarifiers, nucleators, pigments or colorants, fillers and reinforcing agents, and the like as commonly used in the packaging industry. It is particularly useful to choose additives and polymeric materials that have suitable organoleptic and/or optical properties.
In another embodiment, the flexible multilayer film can comprise a bladder, wherein two or more films that are adhered in such a manner as to allow some delamination of one or more plies to occur during a significant impact such that the inside film maintains integrity and continues to hold contents of the container.
The flexible multilayer film is composed of a polymeric material. Nonlimiting examples of suitable polymeric materials for the seal layer include olefin-based polymer (including any ethylene/C3-C10 α-olefin copolymers linear or branched), propylene-based polymer (including plastomer and elastomer, random propylene copolymer, propylene homopolymer, and propylene impact copolymer), ethylene-based polymer (including plastomer and elastomer, high density polyethylene (“HDPE”), low density polyethylene (“LDPE”), linear low density polyethylene (“LLDPE”), medium density polyethylene (“MDPE”)), ethylene-acrylic acid or ethylene-methacrylic acid and their ionomers with zinc, sodium, lithium, potassium, magnesium salts, ethylene vinyl acetate copolymers, and blends thereof.
Nonlimiting examples of suitable polymeric material for the outer layer include those used to make biaxially or monoaxially oriented films for lamination as well as coextruded films. Some nonlimiting polymeric material examples are biaxially oriented polyethylene terephthalate (OPET), monoaxially oriented nylon (MON), biaxially oriented nylon (BON), and biaxially oriented polypropylene (BOPP). Other polymeric materials useful in constructing film layers for structural benefit are polypropylenes (such as propylene homopolymer, random propylene copolymer, propylene impact copolymer, thermoplastic polypropylene (TPO) and the like), propylene-based plastomers (e.g., VERSIFY™ or VISTAMAX™)), polyamides (such as Nylon 6; Nylon 6,6; Nylon 6,66; Nylon 6,12; Nylon 12; etc.), polyethylene norbornene, cyclic olefin copolymers, polyacrylonitrile, polyesters, copolyesters (such as polyethylene terephthlate glycol-modified (PETG)), cellulose esters, polyethylene and copolymers of ethylene (e.g., LLDPE based on ethylene octene copolymer such as DOWLEX0™), blends thereof; and multilayer combinations thereof.
Nonlimiting examples of suitable polymeric materials for the tie layer include functionalized ethylene-based polymers such as ethylene-vinyl acetate (EVA) copolymer, polymers with maleic anhydride-grafted to polyolefins such as any polyethylene, ethylene-copolymers, or polypropylene, and ethylene acrylate copolymers such an ethylene methyl acrylate (EMA) copolymer, glycidyl containing ethylene copolymers, propylene and ethylene based olefin block copolymers (OBC) such as INTUNET™ (PP-OBC) and INFUSE™ (PE-OBC), both available from The Dow Chemical Company, and blends thereof.
The flexible multilayer film may include additional layers which may contribute to the structural integrity or provide specific properties. The additional layers may be added by direct means or by using appropriate tie layers to the adjacent polymer layers. Polymers which may provide additional mechanical performance such as stiffness or opacity, as well polymers which may offer gas barrier properties or chemical resistance can be added to the structure.
Nonlimiting examples of suitable material for the optional barrier layer include copolymers of vinylidene chloride and methyl acrylate, methyl methacrylate or vinyl chloride (e.g., SARAN resins available from The Dow Chemical Company); vinylethylene vinyl alcohol (EVOH) copolymer; and metal foil (such as aluminum foil). Alternatively, modified polymeric films such as vapor deposited aluminum or silicon oxide on such films as BON, OPET, or oriented polypropylene (OPP), can be used to obtain barrier properties when used in laminate multilayer film.
In an embodiment, the flexible multilayer film includes a seal layer selected from LLDPE (sold under the trade name DOWLEX™ (The Dow Chemical Company)); single-site LLDPE; substantially linear, or linear ethylene alpha-olefin copolymers, including polymers sold under the trade name AFFINITY™ or ELITE™ (The Dow Chemical Company) for example; propylene-based plastomers or elastomers such as VERSIFY™ (The Dow Chemical Company); and blends thereof. An optional tie layer is selected from either ethylene-based olefin block copolymer PE-OBC (sold as INFUSETM) or propylene-based olefin block copolymer PP-OBC (sold as INTUNET™). The outer layer includes greater than 50 wt % of resin(s) having a melting point, Tm, that is from 25° C., to 30° C., or 40° C. higher than the melting point of the polymer in the seal layer, wherein the outer layer polymer is selected from resins such as VERSIFY™ or VISTAMAX™, ELITE™, HDPE or a propylene-based polymer such as propylene homopolymer, propylene impact copolymer or TPO.
In an embodiment, the flexible multilayer film is co-extruded.
In an embodiment, flexible multilayer film includes a seal layer selected from LLDPE (sold under the trade name DOWLEX™ (The Dow Chemical Company)); single-site LLDPE; substantially linear, or linear, olefin polymers, including polymers sold under the trade name AFFINITY™ or ELITE™ (The Dow Chemical Company) for example; propylene-based plastomers or elastomers such as VERSIFY™ (The Dow Chemical Company); and blends thereof. The flexible multilayer film also includes an outer layer that is a polyamide.
In an embodiment, the flexible multilayer film is a coextruded film and includes:
(i) a seal layer composed of an olefin-based polymer having a first melt temperature less than 105° C., (Tm1); and
(ii) an outer layer composed of a polymeric material having a second melt temperature, (Tm2),
wherein Tm2-Tm1 >40° C.
The term “Tm2-Tm1” is the difference between the melt temperature of the polymer in the outer layer and the melt temperature of the polymer in the seal layer, and is also referred to as “ΔTm.” In an embodiment, the ΔTm is from 41° C., or 50° C., or 75° C., or 100° C. to 125° C., or 150° C., or 175° C., or 200° C.
In an embodiment, the flexible multilayer film is a coextruded film, the seal layer is composed of an ethylene-based polymer, such as a linear or a substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a Tm from 55° C. to 115° C. and a density from 0.865 to 0.925 g/cm3, or from 0.875 to 0.910 g/cm3, or from 0.888 to 0.900 g/cm3 and the outer layer is composed of a polyamide having a Tm from 170° C. to 270° C.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated film having at least five layers, the coextruded film having a seal layer composed of an ethylene-based polymer, such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene, the ethylene-based polymer having a Tm from 55° C. to 115° C. and a density from 0.865 to 0.925 g/cm3, or from 0.875 to 0.910 g/cm3, or from 0.888 to 0.900 g/cm3 and an outermost layer composed of a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, polyamide, and combinations thereof.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated film having at least seven layers. The seal layer is composed of an ethylene-based polymer, such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene, the ethylene-based polymer having a Tm from 55° C. to 115° C. and density from 0.865 to 0.925 g/cm3, or from 0.875 to 0.910 g/cm3, or from 0.888 to 0.900 g/cm3. The outer layer is composed of a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, polyamide, and combinations thereof.
In an embodiment, the flexible multilayer film is a coextruded (or laminated) five layer film, or a coextruded (or laminated) seven layer film having at least two layers containing an ethylene-based polymer. The ethylene-based polymer may be the same or different in each layer.
In an embodiment, the flexible multilayer film includes a seal layer composed of an ethylene-based polymer, or a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a heat seal initiation temperature (HSIT) from 65° C. to less than 125° C. Applicant discovered that the seal layer with an ethylene-based polymer with a HSIT from 65° C. to less than 125° C. advantageously enables the formation of secure seals and secure sealed edges around the complex perimeter of the flexible container. The ethylene-based polymer with HSIT from 65° C. to less than 125° C. is a robust sealant which also allows for better sealing to the rigid fitment which is prone to failure. The ethylene-based polymer with HSIT from 65° C. to 125° C. enables lower heat sealing pressure/temperature during container fabrication. Lower heat seal pressure/temperature results in lower stress at the fold points of the gusset, and lower stress at the union of the films in the top segment and in the bottom segment. This improves film integrity by reducing wrinkling during the container fabrication. Reducing stresses at the folds and seams improves the finished container mechanical performance. The low HSIT ethylene-based polymer seals at a temperature below what would cause the outer layer to be compromised.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated five layer, or a coextruded (or laminated) seven layer film having at least one layer containing a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, and polyamide.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated five layer, or a coextruded (or laminated) seven layer film having at least one layer containing OPET or OPP.
In an embodiment, the flexible multilayer film is a coextruded (or laminated) five layer, or a coextruded (or laminated) seven layer film having at least one layer containing polyamide.
In an embodiment, the flexible multilayer film is a seven-layer coextruded (or laminated) film with a seal layer composed of an ethylene-based polymer, or a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a Tm from 90° C. to 106° C. The outer layer is a polyamide having a Tm from 170° C. to 270° C. The film has a ΔTm from 40° C. to 200° C. The film has an inner layer (first inner layer) composed of a second ethylene-based polymer, different than the ethylene-based polymer in the seal layer. The film has an inner layer (second inner layer) composed of a polyamide the same or different to the polyamide in the outer layer. The seven layer film has a thickness from 100 micrometers to 250 micrometers.
In
Overseal 64 reduces, or eliminates, channel leakage in the bottom section of the flexible container.
In an embodiment, the apex point 35a is located above the overseal 64. The apex point 35a is separated from, and does not contact the overseal 64. The BDISP 37a is located above the overseal 64. The BDISP 37a is separated from and does not contact the overseal 64.
In an embodiment, the apex point 35a is located between the BDISP 37a and the overseal 64, wherein the overseal 64 does not contact the apex point 35a and the overseal 64 does not contact the BDISP 37a.
The distance between the apex point 35a to the top edge of the overseal 64 is defined as distance W, shown in
When more than four webs are used to produce the container, the portion 68 of the overseal 64 may be a 4-ply, or a 6-ply, or an 8-ply portion.
In an embodiment, the flexible container 10 has a vertical drop test pass rate from 90%, or 95% to 100%. The vertical drop test is conducted as follows. The container is filled with tap water to its nominal capacity, conditioned at 25° C. for at least 3 hours, held in upright position from its top handle 12 at 1.5 m height (from the base or side of the container to the ground), and released to a free fall drop onto a concrete slab floor. If any leak is detected immediately after the drop, the test is recorded as a failure. A minimum of twenty flexible containers are tested. A percentage for pass/fail containers is then calculated.
In an embodiment, the flexible container 10 has a side drop pass rate from 90%, or 95% to 100%. This side drop test is conducted as follows. The container is filled with tap water to its nominal capacity, conditioned at 25° C. for at least 3 hours, held in upright position from its top handle 12. The flexible container is released on its side from a 1.5 m height to a free fall drop onto a concrete slab floor. If any leak is detected immediately after the drop, the test is recorded as failure. A minimum of twenty flexible containers are tested. A percentage for pass/fail containers is then calculated.
In an embodiment, the flexible container 10 passes the stand-up test where the package is filled with water at ambient temperature and placed on a flat surface for seven days and it should remain in the same position, with unaltered shape or position.
In an embodiment, the flexible container 10 has a volume from 0.050 liters (L), or 0.1 L, or 0.15 L, or 0.2 L, or 0.25 L, or 0.5 L, or 0.75 L, or 1.0 L, or 1.5 L, or 2.5 L, or 3 L, or 3.5 L, or 4.0 L, or 4.5 L, or 5.0 L to 6.0 L, or 7.0 L, or 8.0 L, or 9.0 L, or 10.0 L, or 20 L, or 30 L.
The flexible container 10 can be used to store any number of flowable substances therein. In particular, a flowable food product can be stored within the flexible container 10. In one aspect, flowable food products such as salad dressings; sauces; dairy products; mayonnaise; mustard; ketchup; other condiments; syrup; beverages such as water, juice, milk, carbonated beverages, beer, or wine; animal feed; pet feed; and the like can be stored inside of the flexible container 10.
The flexible container 10 is suitable for storage of other flowable substances including, but not limited to, oil, paint, grease, chemicals, suspensions of solids in liquid, and solid particulate matter (powders, grains, granular solids).
The flexible container 10 is suitable for storage of flowable substances with higher viscosity and requiring application of a squeezing force to the container in order to discharge. Nonlimiting examples of such squeezable and flowable substances include grease, butter, margarine, soap, shampoo, animal feed, sauces, and baby food.
2. Fitment
The present flexible container includes a fitment 70 inserted into the neck 30 of the flexible container 10. The fitment 70 is composed of one or more polymeric materials. A top portion of the fitment 70 may include threads or other suitable structure for attachment to a closure. Nonlimiting examples of suitable fitments and closures, include, screw cap, flip-top cap, snap cap, liquid or beverage dispensing fitments (stop-cock or thumb plunger), Colder fitment connector, tamper evident pour spout, vertical twist cap, horizontal twist cap, aseptic cap, vitop press, press tap, push on tap, lever cap, conro fitment connector, and other types of removable (and optionally reclosable) closures. The closure and/or fitment 70 may or may not include a gasket. In an embodiment, the closure is watertight. In a further embodiment, the closure provides a hermetic seal to the container 10.
The fitment 70 is welded, or is otherwise heat sealed, to the multilayer film that forms the neck 30. In other words, the fitment 70 is welded to the neck 30. Heat sealing can be made by means of hot bar, impulse seal, ultrasonic or in some cases by high frequency (HF) sealing.
The fitment 70 is made from a polymeric material. Nonlimiting examples of suitable polymeric materials include propylene-based polymer, ethylene-based polymer, polyamides (such as Nylon 6; Nylon 6,6; Nylon 6,66; Nylon 6,12; Nylon 12; and the like), cyclic olefin copolymers (COC)(such as TOPAST™ or APEL™), polyesters (crystalline and amorphous), copolyester resin (such as PETG), cellulose esters (such as polylactic acid (PLA)), and combinations thereof.
3. Dispensing Pump
A dispensing pump 100 is attached to the fitment 70.
The actuator 110 and the closure 112 each may be made from a rigid polymeric material (such as polypropylene or HDPE) or a metal. The closure 112 provides attachment between the dispensing pump 100 and the fitment 70. The closure 112 may include structure for permanent attachment or releasable attachment to the fitment 70. In an embodiment, the closure 112 is releasably attachable to the fitment 70. The inner surface of the closure 112 includes threads which operatively mate, and interlock, with threads on the exterior surface of the fitment 70. The interlocking threads provide releasable attachment between the closure 112 and the fitment 70.
The exterior surface of the closure 112 may be textured for enhanced grip. The closure 112 includes a first wing 118 and a second wing 120. Wings 118, 120 are on opposing sides of the closure 112, the wings are arranged in a linear manner. In an embodiment, the closure 112 and the wings 118, 120 are an integral and unitary structure and molded of a single rigid polymeric material such as polypropylene or HDPE.
In an embodiment, one or both wings 118, 120 include a hinge. The hinge enables each wing to be retracted to reduce the length of each wing and extended to increase the length of each wing.
In an embodiment, each wing includes a finger hole.
In an embodiment, the dip tube 116 is composed of a polymeric material that is an elastomeric material. The dip tube 116 composed of elastomeric material is advantageous because it allows for the flexible container 10 to be more stackable. Elastomeric dip tube permits the dip tube to be bendable thereby reducing puncture potential.
The actuator 110 is rotatable between an open position and a closed position. In the open position, the actuator 110 is extended enabling operation of the dispensing pumping 110 (i.e., enabling the pumping motion of the actuator 110).
In the open position, when a person presses down on the actuator 110, the piston 124 moves to compress the spring 126 and the upward air pressure draws the ball 128 upwards, along with the fluid content inside, into the dip tube 116 and subsequently into the housing chamber. As the user releases the actuator 110, the spring 126 returns the piston 124 and actuator 110 into an extended position, and the ball 128 is returned to a rest position, sealing the housing chamber and preventing fluid content from flowing back down into the flexible container. This initial cycle is called “priming”. When the user presses down on the actuator 110 again, the fluid content that is already in the housing chamber will be drawn from the housing chamber, through the stem 122 and actuator 110, the fluid content dispensed out of the dispensing pump 100.
As shown in
(i) actuator 110 is in the closed position;
(ii) wing 118 is located between front leg portion and rear leg portion of leg 13 and wing 118 is in contact with tack point 130a; and
(iii) wing 120 is located between front leg portion and rear leg portion of leg 15 and wing 120 is in contact with tack point 130b.
In the transport configuration, a person (hand 200) grasps the underside of wings 118, 120 and lifts the flexible container 10 as shown in
The flexible container 10 has a dispensing configuration. In the dispensing configuration:
(i) actuator 110 is in the open position;
(ii) at least one wing is removed from between its respective front leg portion and rear leg portion; and
(iii) at least one wing is out of contact with its respective tack point.
In the dispensing configuration, bottom end 46 supports flexible container 10 on a support surface 214 as shown in
The present flexible container may comprise two or more embodiments disclosed herein.
The numerical ranges disclosed herein include all values from, and including, the lower value and the upper value. For ranges containing explicit values (e.g., 1, or 2, or 3 to 5, or 6, or 7) any subrange between any two explicit values is included (e.g., 1 to 2; 2 to 6; 5 to 7; 3 to 7; 5 to 6; etc.).
Unless stated to the contrary, implicit from the context, or customary in the art, all parts and percents are based on weight, and all test methods are current as of the filing date of this disclosure.
Clarity is measured in accordance with ASTM-D1746.
The term “composition,” as used herein, refers to a mixture of materials which comprise the composition, as well as reaction products and decomposition products formed from the materials of the composition.
The terms “comprising,” “including,” “having,” and their derivatives, are not intended to exclude the presence of any additional component, step or procedure, whether or not the same is specifically disclosed. In order to avoid any doubt, all compositions claimed through use of the term “comprising” may include any additional additive, adjuvant, or compound, whether polymeric or otherwise, unless stated to the contrary. In contrast, the term, “consisting essentially of” excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those that are not essential to operability. The term “consisting of” excludes any component, step or procedure not specifically delineated or listed.
Density is measured in accordance with ASTM D792.
An “ethylene-based polymer,” as used herein is a polymer that contains more than 50 mole percent polymerized ethylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain at least one comonomer.
Haze is measured in accordance with ASTM D1003 (method B) and noting the thickness of the part.
The term “heat seal initiation temperature,” is minimum sealing temperature required to form a seal of significant strength, in this case, 2 lb/in (8.8N/25.4 mm). The seal is performed in a Topwave HT tester with 0.5 seconds dwell time at 2.7 bar (40 psi) seal bar pressure. The sealed specimen is tested in an Instron Tensiomer at 10 in/min (4.2 mm/sec or 250 mm/min).
Melt flow rate (MFR) is measured I accordance with ASTM D1238, Condition 280° C./2.16 kg (g/10 minutes).
Melt index (MI) is measured in accordance with ASTM D1238, Condition 190° C./2.16 kg (g/10 minutes).
Tm or “melting point” as used herein (also referred to as a melting peak in reference to the shape of the plotted DSC curve) is typically measured by the DSC (Differential Scanning calorimetry) technique for measuring the melting points or peaks of polyolefins as described in U.S. Pat. No. 5,783,638. It should be noted that many blends comprising two or more polyolefins will have more than one melting point or peak, many individual polyolefins will comprise only one melting point or peak.
An “olefin-based polymer,” as used herein is a polymer that contains more than 50 mole percent polymerized olefin monomer (based on total amount of polymerizable monomers), and optionally, may contain at least one comonomer. Nonlimiting examples of olefin-based polymer include ethylene-based polymer and propylene-based polymer.
A “polymer” is a compound prepared by polymerizing monomers, whether of the same or a different type, that in polymerized form provide the multiple and/or repeating “units” or “mer units” that make up a polymer. The generic term polymer thus embraces the term homopolymer, usually employed to refer to polymers prepared from only one type of monomer, and the term copolymer, usually employed to refer to polymers prepared from at least two types of monomers. It also embraces all forms of copolymer, e.g., random, block, etc. The terms “ethylene/a-olefin polymer” and “propylene/a-olefin polymer” are indicative of copolymer as described above prepared from polymerizing ethylene or propylene respectively and one or more additional, polymerizable a-olefin monomer. It is noted that although a polymer is often referred to as being “made of” one or more specified monomers, “based on” a specified monomer or monomer type, “containing” a specified monomer content, or the like, in this context the term “monomer” is understood to be referring to the polymerized remnant of the specified monomer and not to the unpolymerized species. In general, polymers herein are referred to has being based on “units” that are the polymerized form of a corresponding monomer.
A “propylene-based polymer” is a polymer that contains more than 50 mole percent polymerized propylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain at least one comonomer.
It is specifically intended that the present disclosure not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/118395 | 11/30/2018 | WO | 00 |