Flexible coupling for electronic deadbolt systems

Information

  • Patent Grant
  • 11834866
  • Patent Number
    11,834,866
  • Date Filed
    Friday, October 25, 2019
    5 years ago
  • Date Issued
    Tuesday, December 5, 2023
    a year ago
  • Inventors
  • Original Assignees
    • Amesbury Group, Inc. (Edina, MN, US)
  • Examiners
    • Hare; David R
    • Brown; Emily G.
    Agents
    • Merchant & Gould P.C.
Abstract
An electronic deadbolt includes a housing, a deadbolt configured to extend or retract from the housing, and a drive system disposed at least partially within the housing. The drive system includes an electric motor and a leadscrew coupled between the electric motor and the deadbolt. The leadscrew is rotatable about a longitudinal axis so as to dive movement of the deadbolt. The drive system also includes a flexible coupling disposed between the electric motor and the leadscrew and is configured to absorb torsional loads generated by the movement of the deadbolt.
Description
INTRODUCTION

Deadbolts are typically operated by a user (e.g., with a key on an outside of the door or a thumbturn on the inside of the door) to secure a door or a window against unwanted intrusions. At least some known deadbolts are motorized, but it can often be difficult to install these systems within doors, as well as deliver reliable power. Additionally, during operation of at least some motorized deadbolts, the drive systems may undesirably experience increased loading at the end of the stroke length of the deadbolt.


SUMMARY

In an aspect, the technology relates to an electronic deadbolt including: a housing; a deadbolt configured to extend or retract from the housing; and a drive system disposed at least partially within the housing, wherein the drive system includes: an electric motor; a leadscrew coupled between the electric motor and the deadbolt, wherein the leadscrew is rotatable about a longitudinal axis so as to dive movement of the deadbolt; and a flexible coupling disposed between the electric motor and the leadscrew.


In an example, the flexible coupling includes: a drive hub including at least one drive lug; a driven hub including at least one driven lug; and a flexible collar disposed at least partially between the at least one drive lug and the at least one driven lug. In another example, the at least one drive lug and the at least one driven lug extend radially relative to the longitudinal axis. In still another example, the leadscrew has a first end and an opposite second end, and the first end is threadingly coupled to the deadbolt and the second end includes the driven hub. In yet another example, the driven hub is integral with the second end of the leadscrew. In an example, the driven hub includes a bore sized and shaped to at least partially receive the drive hub and the flexible collar.


In another example, the drive hub includes a pair of drive lugs of the at least one drive lug spaced approximately 180° apart and the driven hub includes a pair of driven lugs of the at least one driven lug spaced approximately 180° apart. In still another example, the flexible collar includes four legs, each disposed between a drive lug of the pair of drive lugs and a driven lug of the pair of driven lugs. In yet another example, the housing defines the longitudinal axis. In an example, the flexible coupling is configured to absorb torsional loads generated by the movement of the deadbolt.


In another aspect, the technology relates to a drive system for an electronic lock device including a locking element and a housing, wherein the drive system includes: an electric motor; a rotatable shaft coupled to the electric motor and rotatable about a longitudinal axis; a drive hub coupled to the rotatable shaft; a driven hub rotationally engaged with the drive hub; a leadscrew coupled to the driven hub, wherein upon rotation of the leadscrew the locking element extends or retracts from the housing; and a flexible collar disposed at least partially between the drive hub and the driven hub, wherein the flexible collar is configured to absorb torsional loads between the drive hub and the driven hub.


In an example, the electric motor includes at least one gear. In another example, the drive hub is at least partially received within the driven hub. In still another example, the driven hub is integral with the leadscrew. In yet another example, the drive hub includes a plurality of drive lugs and the driven hub includes a plurality of driven lugs, the flexible collar includes a plurality of legs and each leg is disposed between one drive lug of the plurality of drive lugs and one driven lug of the plurality of driven lugs. In an example, each leg is in direct contact with the drive lug and the driven lug.


In another example, the plurality of legs are connected to one another. In still another example, the electric motor, the rotatable shaft, and the leadscrew are axially aligned along the longitudinal axis.


In another aspect, the technology relates to an electronic lock device for a door or a window including: a housing; a locking element; and a drive system disposed at least partially within the housing and configured to extend or retract the locking element from the housing, wherein the drive system includes: an electric motor including one or more gears driving a rotatable shaft about a longitudinal axis; a leadscrew coupled between the electric motor and the locking element, wherein the leadscrew is rotatable about the longitudinal axis so as to drive movement of the locking element; and a flexible coupling disposed between the electric motor and the leadscrew, wherein the flexible coupling includes: a drive hub including a pair of drive lugs coupled to the rotatable shaft; a driven hub including a pair of driven lugs coupled to the leadscrew; and a flexible collar disposed at least partially between the drive hub and the driven hub.


In an example, the flexible coupling is axially aligned with the leadscrew and the electric motor along the longitudinal axis.





BRIEF DESCRIPTION OF THE DRAWINGS

There are shown in the drawings, examples that are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.



FIG. 1 depicts a schematic view of an electronic door lock system.



FIG. 2 is a perspective view of an exemplary electronic lock device.



FIG. 3 is a perspective view of an exemplary drive system.



FIG. 4 is an exploded perspective view of the drive system shown in FIG. 3.



FIG. 5 is an exploded side view of an exemplary flexible coupling.



FIG. 6 is a partial end view of the flexible coupling shown in FIG. 5.





DETAILED DESCRIPTION


FIG. 1 depicts a schematic view of one example of a multi-point electric door lock system 100. The system 100 includes two electronic deadbolts 102 installed in a door panel 104, for example, so as to extend into a portion of a frame 106 such as a head and/or a sill thereof. In other examples, the electronic deadbolts 102 may be installed within a locking edge of the door panel 104 so as to extend into a vertical portion of the frame 106 between the head and the sill. Alternatively, the electronic deadbolts 102 may be installed in the frame 106 so as to extend into the door 104. Additionally, the placement and number of electronic deadbolts 102 may be altered as required or desired for a particular application, for example, in pivoting doors, the electronic deadbolts may be disposed so as to extend from a head 108, a sill 110, or a locking edge 112 (e.g., vertical edge) of the door 104.


In the example, the door panel 104 is a pivoting door; however, the electronic deadbolts described herein can be utilized in entry doors, sliding doors, pivoting patio doors, and any other door as required or desired. In sliding patio doors, the electronic deadbolts 102 have linearly extending locking elements that may extend from the head 108 or the sill 110 of the sliding door. If utilized on the locking edge 112 of a sliding door, the electronic deadbolt 102 would require a hook-shaped locking element that would hook about a keeper so as to prevent retraction of the door. Additionally or alternatively, the electronic deadbolts may be used in windows or any other panel type structure that can be locked with an extendable and/or retractable locking element.


In the example, each electronic deadbolt 102 is positioned to as to extend into a keeper 114. The keepers 114 may be standard keepers or electronic keepers as described in U.S. patent application Ser. No. 15/239,714, filed Aug. 17, 2016, entitled “Locking System Having an Electronic Keeper,” and the disclosure of which is herein incorporated by reference in its entirety. The system 100 also includes an electronic keeper 116 configured to receive a standard (e.g., manually-actuated) deadbolt 118, as typically available on an entry or patio door.


In one example, once the deadbolt 118 is manually actuated into the locking position, the electronic keeper 116 detects a position of the deadbolt 118 therein. A signal may be sent to the remotely located electronic deadbolts 102, thus causing actuation thereof. At this point, the door 104 is now locked at multiple points. Unlocking of the manual deadbolt 118 is detected by the electronic keeper 116 (that is, the keeper 116 no longer detects the presence of the deadbolt 118 therein) and a signal is sent to the remote electronic deadbolts 102 causing retraction thereof, thus allowing the door 104 to be opened. Thus, the electronic deadbolts described herein may be utilized to create a robust multi-point locking system for a door and to improve the security thereof.


In another example, the system 100 may include a controller/monitoring system, which may be a remote panel 120, which may be used to extend or retract the electronic deadbolts 102, or which may be used for communication between the various electronic keepers 114 and deadbolts 102. Alternatively or additionally, an application on a remote computer or smartphone 122 may take the place of, or supplement, the remote panel 120. By utilizing a remote panel 120 and/or a smartphone 122, the electronic deadbolts 102 may be locked or unlocked remotely, thus providing multi-point locking ability without the requirement for manual actuation of the deadbolt 118. Additionally, any or all of the components (electronic deadbolt 102, keeper 116, panel 120, and smartphone 122) may communicate either directly or indirectly with a home monitoring or security system 124. The communication between components may be wireless, as depicted, or may be via wired systems.



FIG. 2 is a perspective view of an exemplary electronic lock device 200 that can be used with the multi-point electric door lock system 100 (shown in FIG. 1). The electronic lock device 200 is configured to be mounted on a door or door frame and provide a lock thereto. The electronic lock device 200 includes a housing 202 defining a longitudinal axis 204, and a locking element 206 configured to be extended and retracted from the housing 202. As illustrated in FIG. 2, the housing 202 is illustrated as transparent so as to show the components contained therein (e.g., depicted in dashed lines). In the example, the electronic lock device has a locking element that is a deadbolt 206 so that the device can be considered an electronic deadbolt 200. It is appreciated that while a deadbolt locking device is shown and described herein, the locking element can be of any other type, for example, a rhino hook, a shoot bolt, etc. as required or desired.


In the example, the deadbolt 206 is linearly moveable in relation to the housing 202 along the longitudinal axis 204. The housing 202 includes a first end 208 and an opposite second end 210 extending along the longitudinal axis 204. The deadbolt 206 is disposed at the first end 208 so that it may extend and retract along the longitudinal axis 204. A mounting plate 212 with apertures 214 may be coupled to the first end 208 to facilitate mounting the electronic deadbolt 200 to the door or door frame by one or more fasteners (not shown). Extending from the second end 210, an electrical connecting cable 216 is used to provide power and/or operational communication to the electronic deadbolt 200. In one example, the cable 216 may be coupled to a battery module (not shown) that is also mounted within the door and/or door frame. The battery module may couple to one or more lock devices 200 itself. In another example, the electrical cable 216 may be coupled to line power of the structure that the door and/or door frame is within. The housing 202 encloses a deadbolt drive system 218 that is disposed between the first end 208 and the second end 210 and coupled to the cable 216. As illustrated, the deadbolt 206 is a linearly extending locking member. In other examples, the deadbolt 206 may include hook-shaped locking members that rotate out of the housing 202 and enable sliding doors to be locked from the locking edge of the door.


The drive system 218 is disposed at least partially within the housing 202 and is configured to extend and retract the deadbolt 206 from the housing 202. The drive system 218 includes an electric motor 220 that is configured to rotatably drive a rotatable shaft 222 (shown in FIG. 4). The rotatable shaft 222 extends along the longitudinal axis 204 and rotates about the axis 204. The motor 220 may be an off-the-shelf DC unit that includes an integral gear set 224 surrounded by a chassis 226 and powered via the cable 216. The rotatable shaft of the motor 220 is coupled to a leadscrew 228 such that upon operation of the motor 220, the leadscrew 228 rotates about the longitudinal axis 204. The leadscrew 228 extends along the longitudinal axis 204 and is coupled to the deadbolt 206. In the example, the deadbolt 206 includes a nut 230 that threadably engages with the leadscrew 228, such that rotation of the leadscrew 228 translates into linear movement of the nut 230, and thereby, the deadbolt 206 along the longitudinal axis 204.


In the example, the deadbolt 206 or the nut 230 engages with one or more fixed guide channels 232 defined within the housing 202 and extending along the longitudinal axis 204 adjacent to the leadscrew 228. For example, the deadbolt 206 can have one or more projections 234 that are slidably received at least partially within a corresponding guide channel 232. The engagement between the projections 234 and the guide channels 232 prevent rotation of the nut 230, but allow longitudinal movement, so that upon rotation of the leadscrew 228, the deadbolt 206 can extend and retract from the housing 202. In one example, the electronic deadbolt 200 may be a portion of the electronic deadbolt systems that are described in U.S. patent application Ser. No. 15/954,940, filed Apr. 17, 2018, entitled “Modular Electronic Deadbolt Systems,” and the disclosure of which is herein incorporated by reference in its entirety.


The longitudinal length of the guide channels 232 within the housing 202 may define the extension distance of the deadbolt 206 from the housing 202. As such, the ends of the guide channels 232 form a hard stop for the deadbolt 206. In other examples, other components of the lock device 200 may define the hard stop for the deadbolt 206. For example, the first end 208 of the housing 202 may form a hard stop for the deadbolt 206. These hard stops define the stroke length of the deadbolt 206 (e.g., the extension/retraction length along the longitudinal axis 204). That is, when the motor 220 is extending the deadbolt 206 from the housing 202, the motor 220 rotates in a first direction until the hard stop proximate the first end 208 contacts the deadbolt 206, thus preventing any further extension therefrom. The motor 220, however, still operates and drives against the hard stop until the system stops the extension operation. Similarly, when the motor 220 is retracting the deadbolt 206 into the housing 202, the motor 220 rotates in an opposite second direction until the hard stop proximate the second end 210 contacts the deadbolt 206, preventing any further retraction therein. The shock loads that are introduced into the drive system 218 from the hard stops (e.g., the motor 220 driving the deadbolt 206 into the hard stop and the continued motor drive until the system stops the extension/retraction operation) can undesirably reduce the life cycle of the drive system 218. More specifically, undesirable wear is introduced into one or more components of the drive system 218 from the hard stops and motor drive. For example, the teeth of the gear set 224 may crack and/or break due to these loads.


Accordingly, to at least partially absorb the loads generated by the hard stops and the motor drive, a flexible coupling 236 may be disposed between the motor 220 and the leadscrew 228. The flexible coupling 236 is configured to absorb torsional loads generated by the movement of the deadbolt 206 and allows these loads to be absorbed before reaching the gear set 224 and the motor 220, thereby increasing the life span of the drive system 218. Additionally, unlike stroke limit switches or stepper motor type drives, when the deadbolt 206 is between the hard stops and becomes bound (e.g., unable to axially move relative to the housing 202), the flexible coupling 236 also absorbs these loads to reduce wear on the gear set 224 and the motor 220. In the example, the flexible coupling 236 is axially aligned with the leadscrew 228 and the motor 220 along the longitudinal axis 204.



FIG. 3 is a perspective view of the drive system 218. FIG. 4 is an exploded perspective view of the drive system 218. Referring concurrently to FIGS. 3 and 4, the drive system 218 includes the electric motor 220 (e.g., a DC motor) connected to the cable 216. The motor 220 includes the gear set 224 surrounded by the chassis 226, and has the rotatable shaft 222 extending therefrom. In the example, the shaft 222 may have a double D shape, although other shapes are also contemplated herein. To couple the leadscrew 228 to the shaft 222, the flexible coupling 236 is used. The flexible coupling 236 is configured to absorb loads induced into the drive system 218 (e.g., by the hard stops of the deadbolt), thereby, increasing the life cycle of the motor 220 and gear set 224.


In the example, the flexible coupling 236 includes a drive hub 238 that is coupled to the shaft 222 so that the motor 220 can drive rotation of the hub 238. A driven hub 240 is coupled to the leadscrew 228 and is configured to rotationally engage with the drive hub 238. The flexible coupling 236 also includes a flexible collar 242 disposed at least partially between the drive hub 238 and the driven hub 240. The drive hub 238 includes an opening 244 that is sized and shaped to receive the shaft 222 so that the drive hub 238 is coupled to the shaft 222 via a slide on connection. The drive hub 238 also includes at least one drive lug 246 radially extending in an outward direction from the longitudinal axis 204 (shown in FIG. 2). In the example, the drive hub 238 includes two drive lugs that are spaced approximately 180° apart from one another.


The driven hub 240 includes at least one driven lug 248 radially extending in an inward direction from the longitudinal axis. In the example, the driven hub 240 includes two driven lugs that are spaced approximately 180° apart from one another. The leadscrew 228 has a first end 250 that is configured to threadingly couple to the deadbolt and an opposite second end 252 that couples to the driven hub 240. In one example, the driven hub 240 can be integral with the second end 252 of the leadscrew 228.


The drive hub 238 is configured to couple to the driven hub 240 so that upon rotation of the shaft 222, the drive lugs 246 engage with the driven lugs 248, and rotation of the shaft 222 is transferred to the leadscrew 228. In the example, the lug pairs 246, 248 do not completely fill the circumferential space around the longitudinal axis and as such, rotation of the drive hub 238 does not necessary induce direct rotation of the driven hub 240. That is, until the lugs 246, 248 are engaged with one another. In other examples, the number of lugs on each hub may be more (e.g., 3, 4, 5, etc.) or less (e.g., 1) as required or desired. In the example, the lugs 246, 248 on each hub are symmetrically spaced about the longitudinal axis. In other examples, the lugs 246, 248 on each hub may have different circumferential spacing such that the rotational distance until the lugs are engaged is different for forward rotation operation than for backward rotation operation.


In the example, the drive hub 238 is at least partially received within the driven hub 240. The driven hub 240 has an outer diameter that is greater than an outer diameter of the leadscrew 228. As such, the driven hub 240 is enlarged relative to the leadscrew. The enlarged driven hub 240 defines an open bore that is sized and shaped to at least partially receive the drive hub 238 and the flexible collar 242. By inserting the drive hub 238 within the driven hub 240 the axial length of the flexible coupling 236 is reduced so as to conserve space within the electronic lock device. In other examples, the drive hub 238 may be enlarged so as to receive the driven hub 240 therein.


The flexible collar 242 of the flexible coupling 236 is disposed at least partially between the drive lugs 246 and the driven lugs 248 and is configured to absorb torsional loads from transferring between the drive hub 238 and the driven hub 240. In the example, the flexible collar 242 includes four legs 254 that are each disposed between one drive lug 246 and one driven lug 248. This configuration enables for the drive hub 238 to be insertable within the driven hub 240 and reduces the axial length of the flexible coupling 236 within the drive system 218. In some examples, one or more of the four legs 254 may be connected to one another (e.g., along an inner circumferential surface, an outer circumferential surface, or an axial surface). In other examples, one or more of the four legs 254 may be discrete from one another.


In the example, each leg 254 of the flexible collar 242 circumferentially extends within the entire space between the drive lug 246 and the driven lug 248. That is, each leg 254 is in direct contact with both the adjacent drive lug 246 and the adjacent driven lug 248. As such, the flexible collar 242 is always engaged upon rotation of the hubs 238, 240 relative to one another. In other examples, the legs 254 are only partially disposed within the space between the drive lug 246 and the driven lug 248 so that the hubs 238, 240 may rotate relative to one another before the flexible collar 242 is engaged.


The flexible collar 242 may be a silicone-based material (e.g., a Shore A20 hardness), a neoprene-based material (e.g., a Shore A30 hardness), or any other material that enables to flexible coupling 236 to function as described herein. These materials enable the shock and torsion loads from the deadbolt travel to be absorbed, for example, through compression of the flexible collar 242, so that the loads do not travel from the leadscrew 228, through the drive system 218, and into the motor 220 and the gear set 224. Additionally, the materials are tear and impact resistant so that they can withstand a large number of extension and retraction cycles of the locking member.


Additionally, the flexible coupling 236 also reduces wear on the motor 220 and gear set 224 if the drive system 218 binds up during operation and between the hard stops that define the stroke length of the deadbolt. For example, if the deadbolt is extended against a strike plate so that the deadbolt cannot fully extend, the flexible coupling 236 reduces or prevents the resulting load from being transferred back to the motor 220 and gear set 224. In contrast, other systems, such as end of stroke limit switches or stepper motor type drives that can limit the hard stop loads, cannot do this, as it is only the hard stop areas that are load resistant.



FIG. 5 is an exploded side view of the exemplary flexible coupling 236. In the example, the drive hub 238 has a first end 256 and an opposite second end 258 in an axial direction along the longitudinal axis 204. The first end 256 includes the opening 244 (shown in FIG. 5) that extends towards the second end 258 and so that the drive hub 238 can be coupled to the motor and rotatably driven thereby. The first end 256 also includes a radially extending flange 260 that extends outward from the opening 244. The flange 260 is positioned adjacent to the chassis 226 of the drive system 218 (both shown in FIG. 5) when assembled and provides support for the drive lugs 246. Additionally, the flange 260 provides an axial boundary for the flexible collar 242 so that the collar legs 254 are axially retained within the flexible coupling 236 and do not slide out of the flexible coupling when assembled. The drive lugs 246 extend from the second end 258 and towards the flange 260, and in a radially outward direction relative to the longitudinal axis 204.


The driven hub 240 also has a first end 262 and an opposite second end 264 in an axial direction. The driven hub 240 is substantially cylindrical in shape with an open bore at the first end 262 that is sized and shaped to receive the drive hub 238. The bore extends from the first end 262 in a direction towards the second end 264. The bore has an inner diameter that is greater than an outer diameter of the drive hub 238 so that the driven hub 240 can receive the drive hub 238 within. The first end 262 also includes a radially extending circumferential lip 266. The lip 266 is configured to be received within a corresponding circumferential channel with the housing 202 (shown in FIG. 2) so that the driven hub 240 is axially secured within the housing while still being enabled for rotational movement. The second end 264 of the driven hub 248 is enclosed so that the leadscrew 228 can extend therefrom. The driven lugs 248 (shown in FIG. 5) are positioned within the bore and extend from the first end 262 in a direction towards the second end 264 and in a radially inwardly direction.


The flexible collar 242 has legs 254 that extend in an axial direction and along the longitudinal axis 204. Each leg 254 is circumferentially spaced from one another so that the lugs 246, 248 can slide therebetween. In the example, one axial end of all of the legs 254 are coupled together by a connector 268. By connecting all of the legs 254 together, assembly of the flexible coupling 236 is more efficient. Additionally in the example, the connector 268 is positioned adjacent the second end 264 of the driven hub 240 when the flexible coupling 236 is assembled. As such, the connector 268 can be used to absorb axial loads between the two hubs 238, 240 so that the flexible coupling 236 can absorb both torsional and axial loads within the drive system. Opposite of the connector 268, the free ends of the legs 254 are positioned adjacent the flange 260 of the drive hub 238 when the flexible coupling 236 is assembled.


To accommodate the small size of many electronic deadbolts, the flexible coupling 236 has the drive hub 238 and the flexible collar 242 received entirely within the driven hub 240. This reduces the overall axial length of the flexible coupling 236 and can reduce the size of the electronic lock device. Additionally, the outer surface of the driven hub 240 can be used as a bearing surface within the housing so that the leadscrew 228 is supported within the housing. For example, with the lip 266. Additionally or alternatively, an O-ring 270 (shown in FIG. 2) may be located around the second end 264 of the driven hub 240 so as to form a seal within the housing and reduce dirt and debris from accumulating around the motor and/or gears. Another O-ring 270 may also be located at the second end of the housing as required or desired.


In other examples, the flexible coupling 236 may have the drive hub 238 and the driven hub 240 only axially aligned and one is not received within another. As such, the lugs 246, 248 can extend in an axial direction and the collar 242 is axially positioned between the hubs 238, 240. In this configuration, however, the axial length of the flexible coupling 236 is increased, compared to the example as illustrated in FIGS. 3-5.



FIG. 6 is a partial end view of the flexible coupling 236. The drive hub 238 is not illustrated in FIG. 6 for clarity. Looking at the first end 262 of the driven hub 240, the driven lugs 248 are directly opposite one another and extend in an inward direction. In the example, the lugs 248 have a tip 272 that is smaller than a base 274 so that in cross-section, the lugs 248 are substantially tooth shaped. So that the flexible collar 242 can be circumferentially fit between the lugs 248, each leg 254 is spaced apart from another and this space 276 has a shape that corresponds to the shape of the lugs 248. As illustrated in FIG. 6, the void within the flexible collar 242 receives the drive hub 238. With the drive hub 238, the lugs 246 have a tip that is larger than a base so that the lugs can fit within the space 276 defined by the flexible collar 242. In an aspect, the size proportion between the lug tip and base is based on its radial position relative to the longitudinal axis. In other examples, the lugs can have any other shape that enables the flexible coupling 236 to function as described herein. For example, the lugs may be partially rounded or have a square or rectangle shape in cross-section.


When the flexible coupling 236 is assembled, each leg 254 of the flexible collar 242 is directly adjacent to the lugs. In one example, the compressive strength of the collar 242 may be such that any rotation of the drive hub 238 enables rotation of the driven hub 240. However, once a predetermined torque load is reached, the compressive strength of the collar 242 is overcome to absorb the excess loads and increase the life-cycle of the drive system. In another example, the compressive strength of the collar 242 may be such that the collar 242 can absorbs some rotational movement between the hubs. However, once the legs 254 are compressed to a predetermined value then rotational movement can be transferred between the hubs, and any further over-compression is used to absorb the excess loads. In either example, to define the absorption capacity of the collar 242, the compressive strength of the material can be specified as required or desired. For example, a lower compressive strength can allow more independent rotational movement between the hubs when compared to a higher compressive strength material. In some examples, the legs 254 may not be positioned directly against the lugs so that there is a gap between the leg and the lug to allow for more independent rotational movement between the hubs.


In the example, each leg 254 may circumferentially extend about 60° about the longitudinal axis. Additionally, each lug 246, 248 may circumferentially extend about 30° about the longitudinal axis. As such, the ratio between lugs and collar within the flexible coupling is about 1:2 and the legs are circumferentially larger than the lugs. In other examples, each leg 254 may circumferentially extend between about 20° and about 80°. In an aspect, each leg 254 may circumferentially extend between about 45° and about 75°. In yet another example, each lug 246, 248 may circumferentially extend between about 10° and 70°. In an aspect, each lug 246, 248 may circumferentially extend between about 15° and 45°. In examples, the legs may be circumferentially smaller than the lugs, or circumferentially equal to the lugs (e.g., a 1:1 ratio), as required or desired.


The materials utilized in the manufacture of the lock and drive components described herein may be those typically utilized for lock manufacture, e.g., zinc, steel, aluminum, brass, stainless steel, etc. Molded plastics, such as PVC, polyethylene, etc., may be utilized for the various components. Material selection for most of the components may be based on the proposed use of the locking system. Appropriate materials may be selected for mounting systems used on particularly heavy panels, as well as on hinges subject to certain environmental conditions (e.g., moisture, corrosive atmospheres, etc.).


As used herein, the terms “axial” and “longitudinal” refer to directions and orientations, which extend substantially parallel to the longitudinal axis of the housing. Moreover, the terms “radial” and “radially” refer to directions and orientations, which extend substantially perpendicular to the longitudinal axis. In addition, as used herein, the terms “circumferential” and “circumferentially” refer to directions and orientations, which extend arcuately about longitudinal axis.


While there have been described herein what are to be considered exemplary and preferred examples of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.

Claims
  • 1. An electronic deadbolt comprising: a housing;a deadbolt configured to extend or retract from the housing; anda drive system disposed at least partially within the housing, wherein the drive system comprises: an electric motor;a leadscrew coupled between the electric motor and the deadbolt, wherein the leadscrew is rotatable about a longitudinal axis so as to drive movement of the deadbolt; anda flexible coupling disposed between the electric motor and the leadscrew, the flexible coupling comprising: a drive hub comprising at least one drive lug;a driven hub comprising at least one driven lug; anda flexible collar disposed at least partially between the at least one drive lug and the at least one driven lug, wherein the flexible collar is positioned circumferentially between the at least one drive lug and the at least one driven lug relative to the longitudinal axis, and wherein the driven hub comprises a bore sized and shaped to at least partially receive the drive hub and the flexible collar.
  • 2. The electronic deadbolt of claim 1, wherein the at least one drive lug and the at least one driven lug extend radially relative to the longitudinal axis.
  • 3. The electronic deadbolt of claim 1, wherein the leadscrew has a first end and an opposite second end, and wherein the first end is threadingly coupled to the deadbolt and the second end comprises the driven hub.
  • 4. The electronic deadbolt of claim 3, wherein the driven hub is integral with the second end of the leadscrew.
  • 5. The electronic deadbolt of claim 1, wherein the drive hub comprises a pair of drive lugs of the at least one drive lug spaced approximately 180° apart and the driven hub comprises a pair of driven lugs of the at least one driven lug spaced approximately 180° apart.
  • 6. The electronic deadbolt of claim 5, wherein the flexible collar comprises four legs, each disposed between a drive lug of the pair of drive lugs and a driven lug of the pair of driven lugs.
  • 7. The electronic deadbolt of claim 1, wherein the housing defines the longitudinal axis.
  • 8. The electronic deadbolt of claim 1, wherein the flexible coupling is configured to absorb torsional loads generated by the movement of the deadbolt.
  • 9. A drive system for an electronic lock device comprising a locking element and a housing, wherein the drive system comprises: an electric motor;a rotatable shaft coupled to the electric motor and rotatable about a longitudinal axis;a drive hub coupled to the rotatable shaft;a driven hub rotationally engaged with the drive hub, wherein the drive hub is at least partially received within the driven hub;a leadscrew coupled to the driven hub, wherein upon rotation of the leadscrew the locking element extends or retracts from the housing; anda flexible collar disposed at least partially between the drive hub and the driven hub, wherein the flexible collar is configured to absorb torsional loads between the drive hub and the driven hub.
  • 10. The drive system of claim 9, wherein the electric motor comprises at least one gear.
  • 11. The drive system of claim 9, wherein the driven hub is integral with the leadscrew.
  • 12. The drive system of claim 9, wherein the drive hub comprises a plurality of drive lugs and the driven hub comprises a plurality of driven lugs, wherein the flexible collar includes a plurality of legs and each leg is disposed between one drive lug of the plurality of drive lugs and one driven lug of the plurality of driven lugs.
  • 13. The drive system of claim 12, wherein each leg is in direct contact with the drive lug and the driven lug.
  • 14. The drive system of claim 12, wherein the plurality of legs are connected to one another.
  • 15. The drive system of claim 9, wherein the electric motor, the rotatable shaft, and the leadscrew are axially aligned along the longitudinal axis.
  • 16. An electronic lock device for a door or a window comprising: a housing;a locking element; anda drive system disposed at least partially within the housing and configured to extend or retract the locking element from the housing, wherein the drive system comprises: an electric motor comprising one or more gears driving a rotatable shaft about a longitudinal axis;a leadscrew coupled between the electric motor and the locking element, wherein the leadscrew is rotatable about the longitudinal axis so as to drive movement of the locking element; anda flexible coupling disposed between the electric motor and the leadscrew, wherein the flexible coupling comprises: a drive hub comprising a pair of drive lugs coupled to the rotatable shaft;a driven hub comprising a pair of driven lugs coupled to the leadscrew; anda flexible collar disposed at least partially between the drive hub and the driven hub.
  • 17. The electronic lock device of claim 16, wherein the flexible coupling is axially aligned with the leadscrew and the electric motor along the longitudinal axis.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/756,356, filed Nov. 6, 2018, the disclosure of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (400)
Number Name Date Kind
333093 Wright Dec 1885 A
419384 Towne Jan 1890 A
651947 Johnson Jun 1900 A
738280 Bell et al. Sep 1903 A
932330 Rotchford Aug 1909 A
958880 Lawson May 1910 A
966208 Hoes Aug 1910 A
972769 Lark Oct 1910 A
980131 Shean Dec 1910 A
998642 Shean Jul 1911 A
1075914 Hoes Oct 1913 A
1094143 Hagstrom Apr 1914 A
1142463 Shepherd Jun 1915 A
1174652 Banks Mar 1916 A
1247052 Wilson Nov 1917 A
1251467 Blixt et al. Jan 1918 A
1277174 Bakst Aug 1918 A
1359347 Fleisher Nov 1920 A
1366909 Frommer Feb 1921 A
1368141 Hagstrom Feb 1921 A
1529085 Preble Mar 1925 A
1574023 Crompton et al. Feb 1926 A
1596992 Ognowicz Aug 1926 A
1646674 Angelillo Oct 1927 A
1666654 Hiering Apr 1928 A
1716113 Carlson Jun 1929 A
1974253 Sandor Sep 1934 A
2535947 Newell Dec 1950 A
2729089 Pelcin Jan 1956 A
2739002 Johnson Mar 1956 A
2862750 Minke Dec 1958 A
2887336 Meyer May 1959 A
2905493 Tocchetto Sep 1959 A
3064462 Ng et al. Nov 1962 A
3083560 Scott Apr 1963 A
3124378 Jackson Mar 1964 A
3157042 Wolz Nov 1964 A
3162472 Rust Dec 1964 A
3214947 Wikkerink Nov 1965 A
3250100 Cornaro May 1966 A
3332182 Mark Jul 1967 A
3378290 Sekulich Apr 1968 A
3413025 Sperry Nov 1968 A
3437364 Walters Apr 1969 A
RE26677 Russell et al. Oct 1969 E
3498657 Giampiero Mar 1970 A
3578368 Dupuis May 1971 A
3586360 Perrotta Jun 1971 A
3617080 Miller Nov 1971 A
3670537 Horgan, Jr. Jun 1972 A
3792884 Tutikawa Feb 1974 A
3806171 Fernandez Apr 1974 A
3899201 Paioletti Aug 1975 A
3904229 Waldo Sep 1975 A
3919808 Simmons Nov 1975 A
3933382 Counts Jan 1976 A
3940886 Ellingson, Jr. Mar 1976 A
3953061 Hansen et al. Apr 1976 A
4076289 Fellows et al. Feb 1978 A
4116479 Poe Sep 1978 A
4130306 Brkic Dec 1978 A
4132438 Guymer Jan 1979 A
4135377 Kleefeldt Jan 1979 A
4146994 Williams Apr 1979 A
4236396 Surko et al. Dec 1980 A
4273368 Tanaka Jun 1981 A
4283882 Hubbard Aug 1981 A
4288944 Donovan Sep 1981 A
4362328 Tacheny Dec 1982 A
4365490 Manzoni Dec 1982 A
4372594 Gater Feb 1983 A
4476700 King Oct 1984 A
4500122 Douglas Feb 1985 A
4547006 Castanier Oct 1985 A
4548432 Bengtsson Oct 1985 A
4593542 Rotondi et al. Jun 1986 A
4595220 Hatchett, Jr. Jun 1986 A
4602490 Glass Jul 1986 A
4602812 Bourner Jul 1986 A
4607510 Shanaan et al. Aug 1986 A
4633688 Beudat Jan 1987 A
4639025 Fann Jan 1987 A
4643005 Logas Feb 1987 A
4691543 Watts Sep 1987 A
4704880 Schlindwein Nov 1987 A
4706512 McKernon et al. Nov 1987 A
4717909 Davis Jan 1988 A
4754624 Fleming et al. Jul 1988 A
4768817 Fann Sep 1988 A
4799719 Wood Jan 1989 A
4893849 Schlack Jan 1990 A
4913475 Bushnell et al. Apr 1990 A
4949563 Gerard et al. Aug 1990 A
4961602 Pettersson Oct 1990 A
4962653 Kaup Oct 1990 A
4962800 Owiriwo Oct 1990 A
4964660 Prevot et al. Oct 1990 A
4973091 Paulson Nov 1990 A
5077992 Su Jan 1992 A
5092144 Fleming et al. Mar 1992 A
5114192 Toledo May 1992 A
5118151 Nicholas, Jr. et al. Jun 1992 A
5125703 Clancy et al. Jun 1992 A
5148691 Wallden Sep 1992 A
5171050 Mascotte Dec 1992 A
5172944 Munich et al. Dec 1992 A
5184852 O'Brien Feb 1993 A
5193861 Juga Mar 1993 A
5197771 Kaup et al. Mar 1993 A
5257841 Geringer Nov 1993 A
5265452 Dawson et al. Nov 1993 A
5290077 Fleming Mar 1994 A
5364138 Dietrich Nov 1994 A
5373716 MacNeil et al. Dec 1994 A
5382060 O'Toole et al. Jan 1995 A
5388875 Fleming Feb 1995 A
5394718 Hotzi Mar 1995 A
5404737 Hotzl Apr 1995 A
5441315 Kleefeldt Aug 1995 A
5456503 Russell et al. Oct 1995 A
5482334 Hotzl Jan 1996 A
5495731 Riznik Mar 1996 A
5496082 Zuckerman Mar 1996 A
5498038 Simon Mar 1996 A
5513505 Danes May 1996 A
5516160 Kajuch May 1996 A
5524941 Fleming Jun 1996 A
5524942 Fleming Jun 1996 A
5531086 Bryant Jul 1996 A
5544924 Paster Aug 1996 A
5546777 Liu Aug 1996 A
5603534 Fuller Feb 1997 A
5609372 Ponelle Mar 1997 A
5620216 Fuller Apr 1997 A
5628216 Qureshi May 1997 A
5707090 Sedley Jan 1998 A
5716154 Miller et al. Feb 1998 A
5722704 Chaput et al. Mar 1998 A
5728108 Griffiths et al. Mar 1998 A
5735559 Frolov Apr 1998 A
5757269 Roth May 1998 A
5782114 Zeus et al. Jul 1998 A
5791179 Brask Aug 1998 A
5791700 Biro Aug 1998 A
5820170 Clancy Oct 1998 A
5820173 Fuller Oct 1998 A
5825288 Wojdan Oct 1998 A
5865479 Viney Feb 1999 A
5878606 Chaput et al. Mar 1999 A
5890753 Fuller Apr 1999 A
5896763 Dinkelborg et al. Apr 1999 A
5901989 Becken et al. May 1999 A
5906403 Bestler et al. May 1999 A
5911460 Hawkins Jun 1999 A
5911763 Quesada Jun 1999 A
5915764 MacDonald Jun 1999 A
5918916 Kajuch Jul 1999 A
5931430 Palmer Aug 1999 A
5946956 Hotzl Sep 1999 A
5951068 Strong et al. Sep 1999 A
5979199 Elpern Nov 1999 A
6050115 Schroter et al. Apr 2000 A
6079585 Lentini Jun 2000 A
6089058 Elpern Jul 2000 A
6094869 Magoon et al. Aug 2000 A
6094952 Clark Aug 2000 A
6098433 Manaici Aug 2000 A
6112563 Ramos Sep 2000 A
6116067 Myers Sep 2000 A
6119538 Chang Sep 2000 A
6120071 Picard Sep 2000 A
D433916 Frey Nov 2000 S
6145353 Doucet Nov 2000 A
6147622 Fonea Nov 2000 A
6148650 Kibble Nov 2000 A
6174004 Picard et al. Jan 2001 B1
6196599 D'Hooge Mar 2001 B1
6209931 Von Stoutenborough et al. Apr 2001 B1
6217087 Fuller Apr 2001 B1
6250842 Kruger Jun 2001 B1
6257030 Davis, III et al. Jul 2001 B1
6264252 Clancy Jul 2001 B1
6266981 von Resch et al. Jul 2001 B1
6282929 Eller et al. Sep 2001 B1
6283516 Viney Sep 2001 B1
6293598 Rusiana Sep 2001 B1
6318769 Kang Nov 2001 B1
6327881 Grundler et al. Dec 2001 B1
6389855 Renz et al. May 2002 B2
6441735 Marko Aug 2002 B1
6443506 Su Sep 2002 B1
6453616 Wright Sep 2002 B1
6454322 Su Sep 2002 B1
6457751 Hartman Oct 2002 B1
6490895 Weinerman Dec 2002 B1
6502435 Watts et al. Jan 2003 B2
6516641 Segawa Feb 2003 B1
6517127 Lu et al. Feb 2003 B1
6540268 Pauser Apr 2003 B2
6564596 Huang May 2003 B2
6568726 Caspi May 2003 B1
6580355 Milo Jun 2003 B1
6619085 Hsieh Sep 2003 B1
6637784 Hauber Oct 2003 B1
6672632 Speed et al. Jan 2004 B1
6688656 Becken Feb 2004 B1
6725693 Yu et al. Apr 2004 B2
6733051 Cowper May 2004 B1
6776441 Liu Aug 2004 B2
6810699 Nagy Nov 2004 B2
6813916 Chang Nov 2004 B2
6871451 Harger et al. Mar 2005 B2
6905152 Hudson Jun 2005 B1
6929293 Tonges Aug 2005 B2
6935662 Hauber et al. Aug 2005 B1
6945572 Hauber Sep 2005 B1
6962377 Tonges Nov 2005 B2
6971686 Becken Dec 2005 B2
6994383 Morris Feb 2006 B2
7000959 Sanders Feb 2006 B2
7010945 Yu Mar 2006 B2
7010947 Milo Mar 2006 B2
7025394 Hunt Apr 2006 B1
7032418 Martin Apr 2006 B2
7052054 Luker May 2006 B2
7083206 Johnson Aug 2006 B1
7128350 Eckerdt Oct 2006 B2
7152441 Friar Dec 2006 B2
7155946 Lee et al. Jan 2007 B2
7203445 Uchida Apr 2007 B2
7207199 Smith et al. Apr 2007 B2
7249791 Johnson Jul 2007 B2
7261330 Hauber Aug 2007 B1
7353637 Harger et al. Apr 2008 B2
7404306 Walls et al. Jul 2008 B2
7410194 Chen Aug 2008 B2
7418845 Timothy Sep 2008 B2
7513540 Hagemeyer et al. Apr 2009 B2
7526933 Meekma May 2009 B2
7634928 Hunt Dec 2009 B2
7637540 Chiang Dec 2009 B2
7677067 Riznik et al. Mar 2010 B2
7686207 Jeffs Mar 2010 B1
7707862 Walls et al. May 2010 B2
7726705 Kim Jun 2010 B2
7735882 Abdollahzadeh et al. Jun 2010 B2
7748759 Chen Jul 2010 B2
7856856 Shvartz Dec 2010 B2
7878034 Alber et al. Feb 2011 B2
7946080 Ellerton May 2011 B2
7963573 Blomqvist Jun 2011 B2
8079240 Brown et al. Dec 2011 B2
8161780 Huml Apr 2012 B1
8182002 Fleming May 2012 B2
8325039 Picard Dec 2012 B2
8348308 Hagemeyer et al. Jan 2013 B2
8376414 Nakanishi et al. Feb 2013 B2
8376415 Uyeda Feb 2013 B2
8382166 Hagemeyer et al. Feb 2013 B2
8382168 Carabalona Feb 2013 B2
8398126 Nakanishi et al. Mar 2013 B2
8403376 Greiner Mar 2013 B2
8494680 Sparenberg et al. Jul 2013 B2
8550506 Nakanishi Oct 2013 B2
8567631 Brunner Oct 2013 B2
8628126 Hagemeyer et al. Jan 2014 B2
8646816 Dziurdzia Feb 2014 B2
8839562 Madrid Sep 2014 B2
8840153 Juha Sep 2014 B2
8850744 Bauman et al. Oct 2014 B2
8851532 Gerninger Oct 2014 B2
8876172 Denison Nov 2014 B2
8899635 Nakanishi Dec 2014 B2
8922370 Picard Dec 2014 B2
8939474 Hagemeyer et al. Jan 2015 B2
9428937 Tagtow et al. Aug 2016 B2
9482035 Wolf Nov 2016 B2
9512654 Armari et al. Dec 2016 B2
9605444 Rickenbaugh Mar 2017 B2
9637957 Hagemeyer et al. May 2017 B2
9758997 Hagemeyer et al. Sep 2017 B2
9765550 Hemmingsen et al. Sep 2017 B2
9790716 Hagemeyer et al. Oct 2017 B2
9822552 Eller et al. Nov 2017 B2
10087656 Cannella Oct 2018 B1
10174522 Denison Jan 2019 B2
10240366 Sotes Delgado Mar 2019 B2
10246914 Sieglaar Apr 2019 B2
10273718 Cannella Apr 2019 B2
10400477 Moon Sep 2019 B2
10487544 Ainley Nov 2019 B2
10662675 Tagtow May 2020 B2
10738506 Holmes Aug 2020 B2
10808424 Criddle Oct 2020 B2
10822836 Nakasone Nov 2020 B2
10968661 Tagtow Apr 2021 B2
11021892 Tagtow Jun 2021 B2
11441333 Tagtow Sep 2022 B2
20020104339 Saner Aug 2002 A1
20030024288 Gokcebay et al. Feb 2003 A1
20030159478 Nagy Aug 2003 A1
20040003633 Alexander Jan 2004 A1
20040004360 Huang Jan 2004 A1
20040011094 Hsieh Jan 2004 A1
20040066046 Becken Apr 2004 A1
20040089037 Chang May 2004 A1
20040107746 Chang Jun 2004 A1
20040107747 Chang Jun 2004 A1
20040112100 Martin Jun 2004 A1
20040145189 Liu Jul 2004 A1
20040227349 Denys Nov 2004 A1
20040239121 Morris Dec 2004 A1
20050029345 Waterhouse Feb 2005 A1
20050044908 Min Mar 2005 A1
20050050928 Frolov Mar 2005 A1
20050103066 Botha et al. May 2005 A1
20050144848 Harger et al. Jul 2005 A1
20050166647 Walls Aug 2005 A1
20050180562 Chiang Aug 2005 A1
20050229657 Johansson et al. Oct 2005 A1
20060043742 Huang Mar 2006 A1
20060071478 Denys Apr 2006 A1
20060076783 Tsai Apr 2006 A1
20060150516 Hagemeyer Jul 2006 A1
20060208509 Bodily Sep 2006 A1
20070068205 Timothy Mar 2007 A1
20070080541 Fleming Apr 2007 A1
20070113603 Polster May 2007 A1
20070170725 Speyer et al. Jul 2007 A1
20070259551 Rebel Nov 2007 A1
20080000276 Huang Jan 2008 A1
20080001413 Lake Jan 2008 A1
20080087052 Abdollahzadeh et al. Apr 2008 A1
20080092606 Meekma Apr 2008 A1
20080093110 Bagung Apr 2008 A1
20080141740 Shvartz Jun 2008 A1
20080150300 Harger et al. Jun 2008 A1
20080156048 Topfer Jul 2008 A1
20080156049 Topfer Jul 2008 A1
20080157544 Phipps Jul 2008 A1
20080178530 Ellerton et al. Jul 2008 A1
20080179893 Johnson Jul 2008 A1
20080184749 Alber et al. Aug 2008 A1
20080191499 Stein Aug 2008 A1
20090064737 Fan Mar 2009 A1
20090078011 Avni Mar 2009 A1
20090218832 Mackle Sep 2009 A1
20090314042 Fan Dec 2009 A1
20090315669 Lang Dec 2009 A1
20100107707 Viviano May 2010 A1
20100154490 Hagemeyer et al. Jun 2010 A1
20100213724 Uyeda Aug 2010 A1
20100236302 Uyeda Sep 2010 A1
20100313612 Eichenstein Dec 2010 A1
20100327610 Nakanishi et al. Dec 2010 A1
20110056254 Tsai Mar 2011 A1
20110198867 Hagemeyer et al. Aug 2011 A1
20110289987 Chiou et al. Dec 2011 A1
20110314877 Fang Dec 2011 A1
20120001443 Mitchell Jan 2012 A1
20120146346 Hagemeyer et al. Jun 2012 A1
20120235428 Blacklaws et al. Sep 2012 A1
20120306220 Hagemeyer et al. Dec 2012 A1
20130019643 Tagtow et al. Jan 2013 A1
20130081251 Hultberg Apr 2013 A1
20130140833 Hagemeyer et al. Jun 2013 A1
20130152647 Terei et al. Jun 2013 A1
20130167671 Huang Jul 2013 A1
20130176107 Dumas et al. Jul 2013 A1
20130200636 Hagemeyer et al. Aug 2013 A1
20130234449 Dery et al. Sep 2013 A1
20130276488 Haber Oct 2013 A1
20140060127 Hemmingsen et al. Mar 2014 A1
20140125068 Hagemeyer et al. May 2014 A1
20140159387 Hagemeyer et al. Jun 2014 A1
20140182343 Talpe Jul 2014 A1
20140367978 Geringer Dec 2014 A1
20150075233 Pluta Mar 2015 A1
20150089804 Picard Apr 2015 A1
20150114176 Bisang Apr 2015 A1
20150170449 Chandler, Jr. Jun 2015 A1
20150176311 Picard Jun 2015 A1
20150252595 Hagemeyer et al. Sep 2015 A1
20160083976 Rickenbaugh Mar 2016 A1
20160094103 Lien Mar 2016 A1
20160108650 Hagemeyer et al. Apr 2016 A1
20160369525 Tagtow et al. Dec 2016 A1
20180023320 McKibben Jan 2018 A1
20180051478 Tagtow Feb 2018 A1
20180051480 Tagtow Feb 2018 A1
20180119462 Hagemeyer May 2018 A1
20180155962 Mitchell et al. Jun 2018 A1
20180298642 Tagtow Oct 2018 A1
20180313116 Criddle Nov 2018 A1
20190024437 Tagtow Jan 2019 A1
20190032368 Welbig et al. Jan 2019 A1
20190277062 Tagtow Sep 2019 A1
20200149327 Lammers May 2020 A1
20200354990 Tagtow Nov 2020 A1
20200370338 Holmes Nov 2020 A1
Foreign Referenced Citations (98)
Number Date Country
84928 Dec 2020 AU
2631521 Nov 2009 CA
1243908 Feb 2000 CN
2554288 Jun 2003 CN
2595957 Dec 2003 CN
2660061 Dec 2004 CN
201031548 Mar 2008 CN
202047652 Nov 2011 CN
108193950 Jun 2018 CN
1002656 Dec 1957 DE
1584112 Sep 1969 DE
2639065 Mar 1977 DE
3032086 Mar 1982 DE
3836693 May 1990 DE
9011216 Oct 1990 DE
4224909 Feb 1993 DE
29807860 Aug 1998 DE
20115378 Nov 2001 DE
10253240 May 2004 DE
202012002743 Apr 2012 DE
202013000920 Apr 2013 DE
202013000921 Apr 2013 DE
202013001328 May 2013 DE
0007397 Feb 1980 EP
0231042 Aug 1987 EP
0268750 Jun 1988 EP
341173 Nov 1989 EP
359284 Mar 1990 EP
661409 Jul 1995 EP
792987 Sep 1997 EP
1106761 Jun 2001 EP
1283318 Feb 2003 EP
1449994 Aug 2004 EP
1574642 Sep 2005 EP
1867817 Dec 2007 EP
2128362 Dec 2009 EP
2273046 Jan 2011 EP
2339099 Jun 2011 EP
2450509 May 2012 EP
2581531 Apr 2013 EP
2584123 Apr 2013 EP
2584124 Apr 2013 EP
2998483 Mar 2016 EP
3091152 Nov 2016 EP
363424 Jul 1906 FR
370890 Feb 1907 FR
21883 Apr 1921 FR
1142316 Mar 1957 FR
1162406 Sep 1958 FR
1201087 Dec 1959 FR
2339723 Sep 1977 FR
2342390 Sep 1977 FR
2344695 Oct 1977 FR
2502673 Oct 1982 FR
2848593 Feb 2005 FR
3017641 Aug 2015 FR
226170 Apr 1925 GB
264373 Jan 1927 GB
583655 Dec 1946 GB
612094 Nov 1948 GB
179849 Jan 1978 GB
1498849 Jan 1978 GB
2051214 Jan 1981 GB
2076879 Dec 1981 GB
2115055 Sep 1983 GB
2122244 Jan 1984 GB
2126644 Mar 1984 GB
2134170 Aug 1984 GB
2136045 Sep 1984 GB
2168747 Jun 1986 GB
2196375 Apr 1988 GB
2212849 Aug 1989 GB
2225052 May 1990 GB
2230294 Oct 1990 GB
2242702 Oct 1991 GB
2244512 Dec 1991 GB
2265935 Oct 1993 GB
2270343 Mar 1994 GB
2280474 Feb 1995 GB
2318382 Apr 1998 GB
2364545 Jan 2002 GB
2496911 May 2013 GB
614960 Jan 1961 IT
64-083777 Mar 1989 JP
2003343141 Dec 2003 JP
2006112042 Apr 2006 JP
2008002203 Jan 2008 JP
2011094706 Aug 2011 KR
8105627 Jul 1983 NL
309372 Mar 1969 SE
9625576 Aug 1996 WO
9741323 Nov 1997 WO
0233202 Apr 2002 WO
2007104499 Sep 2007 WO
2009059112 May 2009 WO
2010071886 Jun 2010 WO
2015079290 Jun 2015 WO
2020023652 Jan 2020 WO
Non-Patent Literature Citations (10)
Entry
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123_96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs.
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco_multipoint_lock_2_cams_2_shootbolt_attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs.
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc_Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs.
“UPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs.
Doorking.com—Electric Locks—Strikes and Deadbolts; printed from https://www.doorking.com/access-control/electricocks-strikes-deadbolts, 2 pages, Feb. 2016.
Magneticlocks.net—Electric Strikes and Deadbolts; printed from https://www.magneticlocks.net/electric-strikes-and-deadbolts/electric-strikes.html, 8 pages, Feb. 2016.
sdcsecurity.com—Latch and Deadbolt Monitoring Strikes; printed from http://www.sdcsecurity.com/monitor-strike-kits2.htm, 2 pages, Feb. 2016.
Lovejoy product catalog cutout, obtained on Oct. 4, 2018, “Jaw”, 1 page.
Related Publications (1)
Number Date Country
20200141155 A1 May 2020 US
Provisional Applications (1)
Number Date Country
62756356 Nov 2018 US