The present invention relates to agricultural harvesting machines, such as combines, and, more particularly to agricultural harvesting machines including a cutting platform with a belt conveyor.
An agricultural harvesting machine such as a combine includes a head and a feeder housing which remove the crop material from the field, gather the crop material and transport the crop material to a separator. In the case of thinner stemmed crops such as soybeans, wheat, etc. which may be cut with a sickle bar carrying a plurality of knives, the head may also be known as a cutting platform. The separator removes the grain crop material from the non-grain crop material. The grain is cleaned and deposited in a grain tank. When the grain tank becomes full, an unloading auger which is positioned alongside the combine during harvesting is moved to the unloading position in which the auger extends approximately perpendicular to the longitudinal axis of the combine. The combine drives alongside a vehicle into which the grain is to be unloaded, such as a semi-trailer, and the unloading auger is actuated to discharge the grain into the vehicle.
A cutting platform may generally be of two types. One type typically has a sheet metal floor with a dual feed auger near the rear of the cutting platform for feeding the crop material longitudinally to the feeder housing. A cutting platform of this type with auger feed is more common.
Another type of cutting platform, also known as a draper platform, utilizes a flat, wide belt, referred to as a draper or draper belt to convey crop material. The arrangement and number of belts vary among platforms. One style of draper platform has two side belts that convey crop material longitudinally, to the center of the platform, where a center feed belt moves the crop material laterally into the feeder housing. Each belt is wrapped around a pair of rollers, one being a drive roller and the other being an idler roller. An example of this type draper arrangement is disclosed in U.S. Pat. No. 6,202,397, which is assigned to the assignee of the present invention.
An advantage of a draper platform is that larger amounts of crop material can be transported without plugging, etc. For example, with wide platforms approaching 40 feet or even larger, the amount of crop material transported to the feeder housing can be substantial. With an auger feed platform, the crop material may bind between the auger and the back wall of the platform. In contrast, with a draper platform, the crop material is carried on top of the belt with less chance for plugging.
Draper platforms currently in use have a rigid framework not allowing the framework to flex to any appreciable extent during use. The draper platform can be placed in a “float” position such that the cutterbar at the leading edge does not dig into the ground, but the leading edge of the platform itself cannot flex across the width of the platform as a result of uneven ground terrain. This results in some crop material being missed in ground depressions, etc., while also possibly causing a part of the cutterbar to dig into localized ground elevations (e.g., small mounds, etc.). Of course, missed crop material directly translates into missed revenue, and localized gouging of soil can cause additional repair expenses resulting from broken knives, knife guards, etc.
What is needed in the art is a draper platform which better follows the ground contour during operation.
The invention in one form is directed to an agricultural harvesting machine, including a feeder housing and a cutting platform attached to the feeder housing. The cutting platform includes at least one platform section having a frame, a plurality of float arms movably coupled with the frame, an endless belt carried by the plurality of float arms, and a cutterbar assembly carried by the plurality of float arms and movable in a localized manner across the cutting platform in upwards and downwards directions.
The invention in another form is directed to a cutting platform for use with an agricultural harvesting machine. The cutting platform includes at least one platform section having a frame, a plurality of float arms movably coupled with the frame, an endless belt carried by the plurality of float arms, a cutterbar assembly carried by the plurality of float arms, and a plurality of crop ramps extending from the cutterbar assembly. The plurality of crop ramps are movable relative to each other and overly a leading edge of the endless belt. The endless belt and the cutterbar assembly are movable in a localized manner across the cutting platform in upwards and downwards directions.
Referring now to the drawings, and, more particularly to
Cutting platform 12 generally includes a plurality of platform sections 16, 18 and 20, a cutterbar assembly 22 and a reel assembly 24. In the embodiment shown, platform section 16 is a center platform section, platform section 18 is a first wing platform section, and platform section 20 is a second wing platform section. Although shown with three platform sections, cutting platform 12 may be configured with more or less platform sections, depending upon the particular application.
Each platform section 16, 18 and 20 generally includes a frame 26, a plurality of float arms 28 coupled with a respective frame 26, a cutterbar 30 carried by the outboard ends of respective float arms 28, an endless belt 32, and a plurality of belt guides 34. The frame 26 of first wing platform section 18 and second wing platform section 20 are each pivotally coupled with center platform section 16, such that the outboard ends of first wing platform section 18 and second wing platform section 20 can move up and down independent from center platform section 16. To that end, a lift cylinder 36 coupled between the frame of combine 10 and feeder housing 14 lifts the entire cutting platform 12, a first tilt cylinder 38 coupled between the respective frame 26 of first wing platform section 18 and center platform section 16 pivotally moves first wing platform section 18 relative to center platform section 16, and a second tilt cylinder 40 coupled between the respective frame 26 of second wing platform section 20 and center platform section 16 pivotally moves second wing platform section 20 relative to center platform section 16.
Cutterbar assembly 22 includes two cutterbars 30 carried at the outboard ends of float arms 28 (i.e., at the leading edge of a platform section 16, 18 or 20). Each cutterbar 30 includes a plurality of knives 42 carried by a bar (not specifically shown). The particular type of knife can vary, such as a double blade knife (as shown) or a single blade knife. The bar is formed from a metal which is flexible to an extent allowing a desired degree of flexure across the width of cutting platform 12. In the embodiment shown, a majority of each cutterbar 30 is carried by a respective first wing platform section 18 or second wing platform section 20, with a lesser extent at the adjacent inboard ends of each cutterbar 30 being carried by center platform section 16. Cutterbars 30 are simultaneously driven by a single knife drive 44, providing reciprocating movement in concurrent opposite directions between cutterbars 30. It is also possible to reciprocally drive cutterbars 30 with multiple knife drives, which can be positioned at the adjacent, inboard ends or the outboard ends of cutterbars 30.
A plurality of knife guards 46 are positioned in opposition to knives 42 for providing opposing surfaces for cutting the crop material with knives 42. A plurality of keepers 48 spaced along cutterbars 30 have a distal end above cutterbars 30 for maintaining cutterbars 30 in place during reciprocating movement.
Float arms 28 may be pivoted at their connection locations with a respective frame 26. A float cylinder 50 coupled between a respective frame 26 and float arm 28 may be used for raising or lowering the outboard end of float arm(s) 28 at the leading edge of cutting platform 12. Each float cylinder 50 may also be placed in a “float” position allowing the connected float arm 28 to generally follow the ground contour during operation. More particularly, each float cylinder 50 is fluidly connected with an accumulator 52 carried by a platform section 16, 18 or 20. Accumulator 52 allows fluid to flow to and from attached float cylinders 50 such that no pressure build-up occurs. In this manner, the rams associated with each float cylinder 50 are free to move back and forth longitudinally, thereby allowing float arms 28 to follow the ground contour. When not in a float mode, float cylinders 50 can be actuated to move float arms 28 in an upward or downward direction. In the embodiment shown, each float cylinder 50 is a hydraulic cylinder, but could possibly be configured as a gas cylinder for a particular application.
Each float arm 28 is also associated with a respective roller 54. The plurality of rollers 54 for each platform section 16, 18 and 20 carry and are positioned within a loop of a respective endless belt 32. At the inboard end of first wing platform section 18 and second wing platform section 20 is a driven roller, and at the outboard end of first wing platform section 18 and second wing platform section 20 is an idler roller. The rollers positioned between the inboard drive roller and outboard idler roller at each float arm 28 also function as idler rollers. It will be appreciated that the number of float arms 28, and thus the number of rollers 54, may vary depending upon the overall width of cutting head 12 transverse to the travel direction.
Reel assembly 24 includes two reels 56, center reel support arm 58 and a pair of outer reel support arms 60. Outer reel support arms 60 are pivotally coupled at one end thereof with an outboard end of a respective first wing platform section 18 or second wing platform section 20. Outer reel support arms 60 rotationally carry a respective reel 56 at an opposite end thereof. Each outer reel support arm 60 may be selectively moved up and down using a hydraulic cylinder, and the pair of hydraulic cylinders are typically coupled in parallel so that they move together upon actuation.
Center reel support arm 58 is pivotally coupled at one end thereof with center platform section 16 above the opening leading to feeder housing 14. Center reel support arm 58 rotationally carries an inboard end of each reel 56 at an opposite end thereof. A hydraulic motor 62 or other suitable mechanical drive rotationally drives each reel 56. More particularly, hydraulic motor 62 drives a common drive shaft 64 through a chain and sprocket or other suitable arrangement (not shown). The rotational speed of reels 56 can be adjusted by an operator by adjusting the rotational speed of hydraulic motor 62.
Center reel support arm 58 may be selectively moved up and down using a hydraulic cylinder 66. Center reel support arm 58 is movable independently from outer reel support arms 60. To accommodate this independent movement, drive shaft 64 driven by hydraulic motor 62 is coupled at each end thereof via a universal joint 68 with a respective reel 56. This independent movement of center reel support arm 58 can be accomplished manually using a separate actuating switch or lever in operator's cab 70, or automatically using an electronic controller 72 located within cab 70 or other suitable location.
According to an aspect of the present invention, each platform section 16, 18 and 20 has a leading edge which is configured to allow cutterbar assembly 22 to flex an appreciable extent in a localized manner across the width of cutting platform 12.
Referring to
The distal end of each float arm 28 is fastened to a knife guard 46, flexible substrate 74, crop ramp 76 and hold down 48. Cutterbar 30, including blades 44 carried by bar 78, is reciprocally carried by knife guards 46. Hold downs 48 which are spaced across the width of cutterbar 30 retain bar 78 within the corresponding grooves formed in knife guards 46.
Crop ramps 76 are overlapped but not rigidly attached to each other, thereby allowing flexure during harvesting operation. Each crop ramp 76 forms an upper ledge positioned above endless belt 32 which assists in maintaining the crop material on endless belt 32 as it is transported toward feeder housing 14. In the embodiment shown in
A bushing housing 80 also mounted to flexible substrate 74 carries a bushing (not shown) which in turn carries a mount 82 for rotatably supporting roller 54.
As best seen in
Each belt guide 84 is positioned adjacent to but is not connected with a corresponding crop ramp 76. The number and width of belt guides 84 substantially corresponds to the number and width of crop ramps 76. Each belt guide 84 has a generally L-shaped cross-sectional configuration with leading and trailing edges (relative to the direction of travel of endless belt 32) which are overlapped relative to each other. In
As described above with regard to crop ramp 76, belt guides 84 also may move relative to each other during flexure of cutting platform 12. To accommodate such movement, adjacent belt guides 84 are underlapped in a manner providing a clearance distance 96 therebetween. In the embodiment shown in
Upper run carriers 86 and lower run carriers 88 each have down turned leading and trailing edges to prevent catching with endless belt 32. As may be observed in FIG. 6, each upper run carrier 86 and generally vertically aligned lower run carrier 88 are positioned in correspondence with and generally below a belt guide 84 and crop ramp 76. Endless belt 32 is for the most part in fact carried by the upper surfaces of upper run carriers 86 during operation. Conversely, endless belt 32 typically does not ride along the upper surfaces of lower run carriers 88, which assist in guiding endless belt 32 in the event of belt sagging, etc.
Configured as shown in
During harvesting operation, float arms 28 are placed in a float state allowing free upward and downward movement as combine 10 traverses over the ground surface. Cutterbar assembly 22 moves up and down with float arms 28 on a localized basis, and crop ramps 76 and belt guides 84 move relative to each other to allow the flexibility at the leading edge of each platform section 16, 18 and 20. Belt guides 84 also cause each belt 32 to follow the cutterbar assembly by holding down on the upper surface of the belt as cutterbar assembly 22 locally dips downward. This prevents crop material from entering beneath belt 32. The present invention therefore provides a cutting platform which flexes to a high degree, efficiently moves crop material to the feeder housing, and maximizes harvest yield by better following the ground contour.
Referring now to
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
This is a continuation of U.S. patent application Ser. No. 12/803,686, entitled “FLEXIBLE CUTTING PLATFORM TO FOLLOW GROUND CONTOUR IN AN AGRICULTURAL HARVESTING MACHINE”, filed Jul. 2, 2010, which is a continuation of U.S. patent application Ser. No. 12/329,157, entitled “FLEXIBLE CUTTING PLATFORM TO FOLLOW GROUND CONTOUR IN AN AGRICULTURAL HARVESTING MACHINE”, filed Dec. 5, 2008, which is a continuation of U.S. patent application Ser. No. 11/366,035, entitled “FLEXIBLE CUTTING PLATFORM TO FOLLOW GROUND CONTOUR IN AN AGRICULTURAL HARVESTING MACHINE”, filed Mar. 2, 2006, now U.S. Pat. No. 7,478,521, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12803686 | Jul 2010 | US |
Child | 13017589 | US | |
Parent | 12329157 | Dec 2008 | US |
Child | 12803686 | US | |
Parent | 11366035 | Mar 2006 | US |
Child | 12329157 | US |