The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
A goal of many modern long haul optical transport systems is to provide for the efficient transmission of large volumes of voice traffic and data traffic over trans-continental distances at low costs. Various methods of achieving these goals include time division multiplexing (TDM) and wavelength division multiplexing (WDM). In time division multiplexed systems, data streams comprised of short pulses of light are interleaved in the time domain to achieve high spectral efficiency, high data rate transport. In wavelength division multiplexed systems, data streams comprised of short pulses of light of different carrier frequencies, or equivalently wavelength, are co-propagate in the same fiber to achieve high spectral efficiency, high data rate transport.
The transmission medium of these systems is typically optical fiber. In addition there is a transmitter and a receiver. The transmitter typically includes a semiconductor diode laser, and supporting electronics. The laser may be directly modulated with a data train with an advantage of low cost, and a disadvantage of low reach and capacity performance. After binary modulation, a high bit may be transmitted as an optical signal level with more power than the optical signal level in a low bit. Often, the optical signal level in a low bit is engineered to be equal to, or approximately equal to zero. In addition to binary modulation, the data can be transmitted with multiple levels, although in current optical transport systems, a two level binary modulation scheme is predominantly employed.
Typical long haul optical transport dense wavelength division multiplexed (DWDM) systems transmit 40 to 80 10 Gbps (gigabit per second) channels across distances of 1000 to 6000 km in a single 30 nm spectral band. A duplex optical transport system is one in which traffic is both transmitted and received between parties at opposite end of the link. In current DWDM long haul transport systems transmitters different channels operating at distinct carrier frequencies are multiplexed using a multiplexer. Such multiplexers may be implemented using array waveguide (AWG) technology or thin film technology, or a variety of other technologies. After multiplexing, the optical signals are coupled into the transport fiber for transmission to the receiving end of the link.
At the receiving end of the link, the optical channels are de-multiplexed using a de-multiplexer. Such de-multiplexers may be implemented using array waveguide (AWG) technology or thin film technology, or a variety of other technologies. Each channel is then optically coupled to separate optical receivers. The optical receiver is typically comprised of a semiconductor photodetector and accompanying electronics.
The total link distance may in today's optical transport systems be two different cities separated by continental distances, from 1000 km to 6000 km, for example. To successfully bridge these distances with sufficient optical signal power relative to noise, the total fiber distance is separated into fiber spans, and the optical signal is periodically amplified using an in-line optical amplifier after each fiber span. Typical fiber span distances between optical amplifiers are 50-100 km. Thus, for example, 30 100 km spans would be used to transmit optical signals between points 3000 km apart. Examples of in-line optical amplifers include erbium doped fiber amplifers (EDFAs) and semiconductor optical amplifiers (SOAs).
The architecture of current optical transport systems comprise a high degree of specialization. For example, the receiver line card is often separated from the transmitter line card so that the two cards are required at each terminal to achieve one channel of duplex operation. This configuration is inefficient in its use of space, power and logistical operation, and there is a need for an integrated line card with high density.
A further limitation in the current art is the inflexibility of current transceiver cards. For example, in the current art, a transceiver card that supports the SONET standard, cannot support the Ethernet standard. Further, in the current art, a transceiver card that supports 4 OC48 SONET signals cannot support an OC192 SONET signals despite the fact that both of these signals have the same aggregate data rate of approximately 10 Gbps. There is, consequently, a need for a transceiver line card that is flexible to operate at different standards.
A further limitation in the current art is the inflexibility of current transceiver cards to support different Forward Error Correction (FEC) standards. For example, in the current art, a transceiver card that supports a G.709 FEC with 7% overhead cannot support an extended FEC with 25% overhead. There is, consequently, a need for a transceiver line card that is flexible to support different FEC standards.
Another limitation in the current art is the inflexibility of current transceiver cards to support different optical performances and capabilities. For example, a transceiver card that could be upgraded from the field to incorporate a tunable laser and be re-used in another location is not currently possible in the art. Furthermore, the mixing and matching of different optical reach performances (and associated costs) in the same systems is desirable by the industry but not available in the art of DWDM long haul transport systems. From a competitive perspective, the technology of the line optics portion of transceiver cards is often a critical driver to an optical transport system's competitive advantage through the incorporation of either higher performance components or lower cost components. There is consequently a need for a transceiver line card that is flexible to support tunable lasers, enhanced system performance, or cost reduction means through easy incorporation of state of the art line optics components.
There are other limitations in the current art related to manufacturability and reliability of transceivers in optical systems. Transceivers of the prior art comprise a single large complex card with thousands of components. They must be manufactured and assembled in many stages before functional testing can be accomplished. The recognition of component failure during the late functional testing requires a complex and expensive rework process or scrapping the entire assembly. Since reliability of an entity decreases as the number of components increase, it is desirable to reduce the number of components per testable entity in the manufacturing process and in the final product. It is also desirable to make groups of these components field replaceable. There is consequently a need for a transceiver line card architecture that is functionally decomposed into a few integrated parts for manufacturability, testability, reliability, and for inventory reduction through the mix and match of the tested parts.
In the prior art, a single microcontroller and power supply is required per optical channel. The invention architecture maximizes the number of optical channels per line card to reduce cost, power, and space; and to increase channel density. For example, only a single controller and power supply are required for up to four channels.
In the present invention, improvements to transceiver cards in optical transport systems in order to provide for high density, flexibility and interchangeability of functionality. The invention solves the above stated problems.
In one aspect of the invention, a high density transceiver card is taught. The high density transceiver card can support up to four duplex channels in a single unit.
In another aspect of the invention, a high density transceiver card that is flexible in the transmission standards that it supports is taught.
In another aspect of the invention, a high density transceiver card is taught that is flexible in the FEC standards that it supports is taught.
In another aspect of the invention, a transceiver line card architecture that is separated into functional modules is taught. In this aspect, the number of parts on each module is reduced from that of the prior art transceiver card in order to increase reliability. In this aspect, separation of the line optics card functions from the tributary module and tributary optics functions allows for interchangeability and flexibility to utilize different equipment and optical standards for different applications.
In another aspect of the invention, a system for and method of assembling a customized modular transceiver card is taught.
In yet another aspect of the invention, a “hot swappable” modular system is taught for a transceiver card.
In yet another aspect of the invention, a method of testing and calibrating a modular transceiver card is taught.
In yet another aspect of the invention, a method of performance monitoring system is taught for a modular transceiver card.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments described herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.
Among the cards in each terminal is a high density transceiver card.
In
High density is accomplished by maximizing the line card area, the number of channels per card, and using a single microcontroller per card. The line card is housed in a terminal which is 19 inches (width) by 23 inches (depth) by about 24 inches (height). After allocation of space for backplanes, fiber management, and fans, a 16 inch by 17.5 inch area is allocated (and height of 1.3 inches) is allocated for components. In the preferred embodiment, two optical channels are placed in this area, thus increasing density. As component sizes decrease, the number of channels may be expanded with similar designs of tributary modules and line optics modules.
The transceiver card 200 is comprised of tributary optics modules 220 and 230, tributary modules 225 and 235, line optics modules 210 and 240, and motherboard 250. Transceiver card 200 is shown in relation to the optical backplane 280 and electrical backplane 170. Optical backplane 280 provides optical transport signals 115, 116, 117 and 118 between the various line cards at a terminal, as well as to the long haul transport fiber span (not shown). Electrical backplane 170 provides DC power 101 and control signal 102 between the various line cards. Transceiver card 200 is mechanically coupled to backplane 280 and 170 in order to support interchangeability of different transceiver cards via optical connector socket 260 and electrical connector 270. Tributary optical interface 201-204 functionally connects tributary optics modules 220 and 230 of the transceiver card with a data source (not shown) such as a router or a switch. In a preferred embodiment, tributary optical interface 201-204 is accomplished using a fiber optics connection, which may be either serial or parallel.
Also shown in
Tributary modules 225 and 235 are functionally connected to the motherboard 250 through microwave interface 226-227 and 236-237 and electrical control interface 228 and 238. In a preferred embodiment microwave interface 226-227 and 236-237 comprise three microwave connectors that carry 10-14 Gbps serial data. The tributary module outputs 226 and 236 comprise transmitted data and transmitted clock to the motherboard 250. The tributary module inputs 227 and 237 comprises received data from the motherboard 250. A useful example of a microwave connector in this preferred embodiment is an SMP blind mating coaxial connector that allows insertion and mating of said interface from front panel without threading. Microwave interfaces 226-227 and 236-237 are mechanically connected to motherboard RF connector block 251 and 253 to support interchangeability of different tributary modules.
Partition of the line optics modules 210 and 240 from the tributary modules 225 and 235 allows changing line optics modules dependent on wavelength, output power and modulation type. In the preferred embodiment, tributary module 225 and tributary optics module 220 form a single mechanical unit that is inserted from the front side of the line card 200. Similarly, tributary module 235 and tributary optics module 220 form a single mechanical unit. Furthermore, the cards may be inserted or removed under power; i.e., they are hot swappable as will be described further. Tributary module electrical interfaces 228 and 238 are mechanically connected to the motherboard with high density electrical connectors 254 and 252. High density electrical connectors 254 and 252 are placed adjacent RF connector blocks 251 and 253, respectively. In a preferred embodiment, tributary module electrical interfaces 228 and 238 comprise microcontroller communications busses, serial communications busses, discrete control, and power (not shown). High density connectors 254 and 252 are VHDM which allows blind mating.
Tributary card insertion to the motherboard at the RF interface allows multiple client data types to be sent over a common transceiver card platform. The insertion into motherboard 250 at the interface 226, 227 and 228 allows multiple client data formats to be sent over a common platform. It also provides a design methodology for adding new interfaces. The architecture accommodates formats such as SONET where both data and timing transparency are desired. It accommodates Ethernet and other packet based formats where only data transparency is required. Also, in the case of fixed tuned DFB lasers, transceiver cards are wavelength specific. The invention accommodates the various specific wavelength by allowing transceiver card interchangeability. MSA tributary optics modules can be changed as a function of cost and distance supported (thus, also supporting interchangeability).
Motherboard microwave interfaces 251 and 253 further comprise mechanical connectivity between line optics module 210 and 240 and motherboard 250 to support interchangeability of different line optics modules. The functional connection consists of transmit-receive pairs 214-215 and 244-245. Line optics modules 210 and 240 are functionally connected to optical backplane 280 through line optical interface 260. In a preferred embodiment, line optical interface 260 consists of the transmit-receive pairs 211-212 and 241-242 for the line optics modules 210 and 240. An individual ribbon connector plug containing 211 and 212 mechanically attaches to a single position of a four-position fiber optic ribbon connector 260 to accomplish connection of the transmit-receive pairs. A useful example of this type of connector is the HBMT which has four sockets that mate with four individual 8 or 12 fiber ribbons and each ribbon can easily accommodate the transmit-receive pairs. Line optical interface 260 further comprises mechanical connectivity for signals 115-118 between motherboard 250 and optical backplane 280 to support interchangeability of different transceiver cards 200 and different optical backplanes. Electrical interfaces 255 and 256 provide serial communication and discrete control between motherboard 250 and line optics modules 210 and 240 via signals 213 and 243.
In
Table 1 shows why the Line Card 200 is optimally partitioned at the output of the line side SERDES. The input formats may require different MSA standard modules ranging from 300 pin MSA transponders, SFP, XFP, or parallel optics. Depending on selection of the optical module, a client side SERDES may or may not be required. Depending on the number of input signals and their data rates, a mapping device to the 16 bit SFI-4 FEC interface may or may not be required. The SERDES 320 is required when either MSA module 220 does not have built-in SERDES 320 or client data rate is above 650 mbps. The PM/mapping device 330 is required when either performance monitoring is not provided in the FEC or SERDES; or when the client interface (Table 1, column 4) and FEC interface (Table 1, column 5) are different (e.g., 4×GBE); or timing transparency is required as in the 4×OC-48 Type B tributary module. The FEC 16-bit, SFI-4 interface can operate at clock rates of up to 650 MHz. The input and output clock rates have to be selected to match the data format as shown in Table 1. Therefore, everything from the MSA module to the line-side SERDES module is subject to change depending on the client interface requirements. Therefore, a partition at the line-side SERDES (350 and 360) is optimal and allows change of client interfaces without affecting the rest of the system.
There are three types of tributary interfaces for transparent transport of client data. The type A tributary module has a client interface of about 10 Gbps and therefore no aggregation takes place. These interfaces are shown in the first two rows of the table as OC192, and 10GBE. The type B module is for transparent SONET aggregation with data rates of less than 2.5 Gbps aggregated onto the 10 Gbps optical transport path. An example of a 4×OC-48 module is shown that provides both data and timing transparency for plesiochronous aggregation. The type C cards are for aggregation of packet-based data communications standards on to the 10 Gbps channel. These cards use data communications standards such as Ethernet and Fiber Channel. Idle characters are inserted in the absence of packets. They only require data transparency but not timing transparency since idle characters can be added or removed to achieve packet transparency. The partition at the line-side SERDES allows tributary card designs that accommodate all three data types.
Returning to
Given that the interface between the line optics modules 210 and 240 and the tributary modules 225 and 235 electrically occur at the line side SERDES 350/360, and physically occur at connector blocks 251 and 253 where the signal frequencies of the signals 214, 215, 226, 227, 236, 237, 244, 245 correspond to Table 1, column 7, the broadband capability (as will be further described) of the line optics modules 210 and 240 enable a wide variety of tributary modules and client interfaces on the same transceiver line card 200 which is a significant advantage over the current art.
Received signals 227, which also may perform the clock and data recovering function from the motherboard 250 are converted from serial to parallel at the deserializer 360. The parallel signal is input to the FEC 340 via signal 361. FEC 340 detects and corrects errors in the transmission. The FEC output signal 332 is sent to the MSA 220 by way of signal 332, PM/mapping device 330 (if required), signal 322, and SERDES 320 (if required). SERDES 320 serializes the transmission and sends it to tributary optics module 220 via signal 312. Tributary optics module 220 translates the signal back to the optical domain at 202.
The FEC FPGA 335 enables control of the card from the motherboard 250 which houses the microcontroller 650 and software. FEC FPGA 335 is connected to motherboard 350 via VHDM 252. Signals 354, 382 and 383 are contained in signal 228 (as shown on
In one embodiment, the timing subsystem 380 tracks the input signal 332 and generates an error signal 376 to generate recovered clock 375. The recovered clock(s) 375 are used as a reference to provide timing for output signal 322. In a second embodiment, the timing subsystem 380 generates a fixed reference 375 for output signal 322.
FEC 340 has a built in pseudo random bit sequence (PRBS) generator and checker for test purposes. This feature is used in the system to verify the quality of the communications link prior to sending traffic. Prior to allowing traffic, the bit error rate for each channel is measured. If the BER is more than what the FEC can correct, then the channel is not provisioned. This method of measuring PRBS to verify the quality of the communications link allows channel verification without external test equipment.
The tributary module can support neighbor discovery protocols used to determine network topology. The PM device(s) 330 can be used to implement packet over SONET neighbor discovery. The FEC device 340 can be used to support JO/DCC neighbor discovery for OC192. In another embodiment, the SERDES device can be used for JO/DCC neighbor discovery.
In
Line optics module 210 further comprises data driver 420 and clock driver 422. In a preferred embodiment data driver 420 is realized by RF power electronics in a stripline package. In a preferred embodiment, clock driver 422 is realized by RF power electronics in a stripline package. Data driver 420 and clock driver 422 are connected to RF connector block 251. They receive data signals 433 and clock signal 435 from the motherboard (shown combined as signal 215 on
Line optics module 210 further comprises laser 410, RZ modulator section 412, NRZ modulator section 414 and optical splitter 416. Laser 410 is realized by an ITU grid compliant semiconductor laser. RZ modulator section 412 and NRZ modulator 414 are realized using lithium niobate modulators. In another embodiment RZ modulator section 412 and NRZ modulator 414 are realized electro-absorptive semiconductor modulators. Optical splitter 416 is realized using a 2% optical decoupler and is used to generate feedback control signals for the RZ and NRZ demodulators 442 and 444.
Laser 410 provides a carrier signal modulated by RZ modulator section 412 and NRZ modulator section 414 and exits through optical splitter 416 as signal 211. The bandwidth of the output signal 211 is a function of RZ modulator 412, NRZ modulator 414, clock driver 422, and data driver 420. In the preferred embodiment, the RZ modulator 412 and NRZ modulator 414 are broadband enabling transmission of signals 215 with bandwidth up to 13.5 Gbps. One skilled in the art can adjust bandwidths of 412, 414, 420 and 422 to accommodate other bandwidths broader or narrower.
Signal 211 enters optical connector 260. In particular, NRZ modulator section 414 encodes the data traffic onto the carrier. RZ modulator section 412, provides enhanced OSNR performance for ultra long haul transport application.
Laser 410 current and temperature are set via bus 490 at a specified wavelength and power. Typically, monitor photodiodes in the laser assembly 410 provide multiple outputs to monitor power and wavelength. For example, a laser with integrated wavelength locker may output two voltages: the sum of the output voltages may provide an indication of power and the ratio of output voltages may indicate wavelength error for one laser type. For another laser type, one voltage may indicate power alone and one or more separate voltages may be used to indicate and/or control wavelength. There are several different types of lasers with different external interfaces corresponding to different methods and different accuracies in wavelength control. Thus, the preferred embodiment has the capability of implementing laser control in software via signals 490, control block 440 and microcontroller 650 allowing for change of laser type and control algorithm on the line optics module with just software changes.
Control block 440 orchestrates the functions of line optics module 210 according to instructions from microcontroller 650 via signal bus 213 and signal bus 490. Control block 440 comprises analog to digital converters, switches, digital to analog converters, and an EEPROM. The EEPROM is used to store the card configuration and calibration values that are determined during the initial testing of the card. The EEPROM in 440 also stores the clock driver 422 phase for every tributary module 225 and is a function of the line rate (Table 1, column 7). Software reads the card type from the EEPROM 385 and configures clock driver phase 427 from the control block 440. The digital to analog converters configure the laser 410 and the clock and data drivers, 420 and 422, and receive amplifier 432. The analog to digital converter monitors the laser 410 operational parameters and clock and data driver (420 and 422) output voltages, and the various bias voltages in the bias circuitry 442 and 444.
Control block 440 configures receive amplifier 432 to generate a constant output voltage at 214. The clock driver 422 and data driver 420 drive levels 423 and 421, which are optimally set to the RF Vπ voltage of the modulator stages 412 and 414. The clock signal 423 phase is adjusted such that 421 and 423 are in phase. This results in a high fidelity RZ signal at 211 provided modulators 412 and 414 are biased at quadrature.
The bias circuitry 442 and 444 biases modulators 412 and 414, respectively, at quadrature. Bias circuit 444 generates a low frequency AM dither signal 445 (typically 10 kHz) that modulates on data amplifier 420. The modulation appears on signal 413 which is input to NRZ modulator 414. Modulator 414 combines the signal from the RZ modulator and the low frequency modulated data signal 421 into a RZ signal 415. Splitter 416 couples optical signal 415 into photodector and bandpass filter 446 where the dither signal is detected and filtered. Detected signal 447 is sent to a synchronous demodulator circuit 444 that adjusts bias 413 until dither signal 445 and detected signal 447 are in phase; when the phase error is zero, the modulator is biased at quadrature. Similarly, the RZ stage 412 bias voltage 411 is set at quadrature with dither signal 443 (typically 20 kHz) via detection and filter signal 448 and demodulator 442. Control block 440 monitors bias signals 411 and 413 via bias devices 442 and 444 and communicates this to microcontroller 650 via signals 213.
The motherboard 250 is shown in
DC power 671 from the electrical backplane is provided with a −48 VDC connection from the HDM connector 270. This is converted to the required voltages via DC-DC converters located in the power section 630 and distributed to the tributary cards 225 and 235 via lines 633 and 634, and line optics modules 210 and 240 via lines 631 and 632. The card is designed to provide and thermally accommodate 250 W of power consumption for future expansion.
Power section 630 also provides power to microcontroller 650 via 635.
The HDM interface also provides communications with the ICM management card for the transport system. The communications interface 672 comprises an Ethernet bus, all_good signal, card presence indicator, and reset signal. The card presence is detected and is initialized from the ICM at start-up. The card provides an all_good signal to the ICM so that in the event of a communications failure, the ICM does not RESET the card and affect traffic if the failure is not traffic affecting. In the event of traffic affecting failures, the card is RESET to see if it recovers from the failure.
Microcontroller island 650 controls tributary card 225 and 230 via signal bus 652 and isolation switch 640. Signal bus 652 comprises cpu_bus (microprocessor bus) and serial busses which are passed through the isolation switch 640 to signal busses 641-644. Signal 641 and 643 are the cpu_bus subsets from 652 to tributary card 225 via signal bus 228 and 238. Signals 642 and 644 comprise the serial bus subsets from 652 to tributary card 225 and 235 via signals 228 and 238. In the preferred embodiment, serial busses comprise SPI, I2C, and FPGA program bus. The serial bus provides communications with temperature sensors 395, MSA tributary optics 220 via FEC FPGA 335, and provides remote programming of FPGAs 335 and 330 from software. Microcontroller island 650 controls line optics modules 210 and 240 via signals 651 which passes through FPGA 620 to signal 621 and signal 622. Signals 213 comprise control signal bus 621 and power 631 for line optics 210. Similarly, 243 comprises control signal bus 622 and power 632.
A structured performance monitoring process continually monitors the status of tributary modules 225 and 235, and line optics modules 210 and 240 from microcontroller 650. Tributary optics modules 220 and 230, optical receive power, optical transmit power, laser current and temperature are monitored via 383 and 313. Client data is monitored via PM device 330 (10 GPE), FEC 340 (OC192) or SERDES 320 (OC48) in this embodiment. The PM statistics are collected per SONET and Ethernet standards that are widely known. The line optics modules 210 and 240 are monitored via 213 to ensure the signal 415 is at the correct wavelength and power; verify modulator bias 411 and 413 at quadrature; and verify modulator drive levels 421 and 423 are set optimally. It also verifies that the optical signal 212 is received with specified input power and generates specified output voltage at 214.
A combination of staged VHDM connectors 252 and 254 and isolation switches 640 allow tributary modules 225 and 235 insertion and removal under power. The VHDM connector 252 and 254 presence pin is shorter than power and signal pins. Thus, during engagement, presence is sensed only after power and signals have engaged with tributary module 225 and 235. Similarly, upon removal, absence is detected prior to removal of tributary module 225 and 230. The isolation switches 640 isolate signals 652 and 641-642 when tributary module 225 is removed. Similarly, 652 and 643-644 are isolated when tributary module 235 is removed. In this way, the tributary modules are independently hot-swappable.
In
At step 920, each of the individual modules is tested for functionality. At 930, each of the individual modules is calibrated and operational data is stored in onboard memory. In the preferred embodiment, each of the modules has a separate EEPROM memory in which the operational data is contained, step 940. At step 950, the modular transceiver modules are assembled into a single transceiver card for insertion in a terminal of a transport system 125.
While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.
This application claims priority to Provisional Application Ser. No. 60/385,946, entitled “Line Card Architecture”, by Sheth, et al. filed Jun. 4, 2002.
Number | Name | Date | Kind |
---|---|---|---|
4229831 | Lacher | Oct 1980 | A |
4535459 | Hogge, Jr. | Aug 1985 | A |
4636859 | Vernhet et al. | Jan 1987 | A |
4710022 | Soeda et al. | Dec 1987 | A |
5224183 | Dugan | Jun 1993 | A |
5225922 | Chraplyvy et al. | Jul 1993 | A |
5267071 | Little et al. | Nov 1993 | A |
5299048 | Suyama | Mar 1994 | A |
5321541 | Cohen | Jun 1994 | A |
5455703 | Duncan et al. | Oct 1995 | A |
5559625 | Smith et al. | Sep 1996 | A |
5613210 | Van Driel et al. | Mar 1997 | A |
5726784 | Alexander et al. | Mar 1998 | A |
5737118 | Sugaya et al. | Apr 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5790285 | Mock | Aug 1998 | A |
5812290 | Maeno et al. | Sep 1998 | A |
5825949 | Choy et al. | Oct 1998 | A |
5877881 | Miyauchi et al. | Mar 1999 | A |
5903613 | Ishida | May 1999 | A |
5914794 | Fee et al. | Jun 1999 | A |
5914799 | Tan | Jun 1999 | A |
5936753 | Ishikaawa | Aug 1999 | A |
5940209 | Nguyen | Aug 1999 | A |
5963350 | Hill | Oct 1999 | A |
5995694 | Akasaka et al. | Nov 1999 | A |
6005702 | Suzuki et al. | Dec 1999 | A |
6021245 | Berger et al. | Feb 2000 | A |
6038062 | Kosaka | Mar 2000 | A |
6075634 | Casper et al. | Jun 2000 | A |
6078414 | Iwano | Jun 2000 | A |
6081360 | Ishikawa et al. | Jun 2000 | A |
6084694 | Milton et al. | Jul 2000 | A |
6088152 | Berger et al. | Jul 2000 | A |
6108074 | Bloom | Aug 2000 | A |
6122095 | Fatehi | Sep 2000 | A |
6151334 | Kim et al. | Nov 2000 | A |
6157477 | Robinson | Dec 2000 | A |
6160614 | Unno | Dec 2000 | A |
6163392 | Condict et al. | Dec 2000 | A |
6163636 | Stentz et al. | Dec 2000 | A |
6173094 | Bowerman et al. | Jan 2001 | B1 |
6177985 | Bloom | Jan 2001 | B1 |
6198559 | Gehlot | Mar 2001 | B1 |
6226296 | Lindsey et al. | May 2001 | B1 |
6229599 | Galtarossa | May 2001 | B1 |
6236481 | Laor | May 2001 | B1 |
6236499 | Berg et al. | May 2001 | B1 |
6246510 | BuAbbud et al. | Jun 2001 | B1 |
6259553 | Kinoshita | Jul 2001 | B1 |
6259554 | Shigematsu et al. | Jul 2001 | B1 |
6259693 | Ganmukhi et al. | Jul 2001 | B1 |
6259845 | Sardesai | Jul 2001 | B1 |
6272185 | Brown | Aug 2001 | B1 |
6275315 | Park et al. | Aug 2001 | B1 |
6288811 | Jiang et al. | Sep 2001 | B1 |
6288813 | Kirkpatrick et al. | Sep 2001 | B1 |
6295281 | Itkowsky et al. | Sep 2001 | B1 |
6301340 | Sansom et al. | Oct 2001 | B1 |
6307656 | Terahara | Oct 2001 | B2 |
6317231 | Al-Salameh et al. | Nov 2001 | B1 |
6317255 | Fatehi et al. | Nov 2001 | B1 |
6323950 | Kim et al. | Nov 2001 | B1 |
6327060 | Otani et al. | Dec 2001 | B1 |
6356384 | Islam | Mar 2002 | B1 |
6359729 | Amoruso | Mar 2002 | B1 |
6388801 | Sugaya et al. | May 2002 | B1 |
6396853 | Humphrey et al. | May 2002 | B1 |
6430201 | Azizoglu et al. | Aug 2002 | B1 |
6519082 | Ghera et al. | Feb 2003 | B2 |
6567413 | Denton et al. | May 2003 | B1 |
6587236 | Butler et al. | Jul 2003 | B1 |
6618176 | Alexander et al. | Sep 2003 | B2 |
6654383 | Haymes et al. | Nov 2003 | B2 |
6678527 | Rasanen | Jan 2004 | B1 |
6775799 | Giorgetta et al. | Aug 2004 | B1 |
6782009 | Giorgetta et al. | Aug 2004 | B1 |
6788681 | Hurren et al. | Sep 2004 | B1 |
6832052 | Marmur | Dec 2004 | B1 |
6895190 | Neumann et al. | May 2005 | B1 |
6904237 | Rasztovits-Wiech et al. | Jun 2005 | B2 |
6915036 | Bhalla et al. | Jul 2005 | B2 |
6952534 | Sikora | Oct 2005 | B1 |
6975642 | Levinson et al. | Dec 2005 | B2 |
6996123 | Jiang et al. | Feb 2006 | B1 |
7039067 | Feinberg et al. | May 2006 | B2 |
7099584 | Narvaez et al. | Aug 2006 | B1 |
7099592 | Snawerdt | Aug 2006 | B2 |
7155130 | Baeyens et al. | Dec 2006 | B2 |
7164692 | Cox et al. | Jan 2007 | B2 |
7167648 | Heinz et al. | Jan 2007 | B2 |
7209667 | Lindblad | Apr 2007 | B2 |
7245633 | Mueller | Jul 2007 | B1 |
7295783 | Singh et al. | Nov 2007 | B2 |
20010005271 | Leclerc et al. | Jun 2001 | A1 |
20010007605 | Inagaki et al. | Jul 2001 | A1 |
20010009468 | Fee | Jul 2001 | A1 |
20010014104 | Bottorff et al. | Aug 2001 | A1 |
20020009060 | Gross | Jan 2002 | A1 |
20020012152 | Agazzi et al. | Jan 2002 | A1 |
20020015220 | Papernyl et al. | Feb 2002 | A1 |
20020034197 | Tornetta et al. | Mar 2002 | A1 |
20020044317 | Gentner et al. | Apr 2002 | A1 |
20020044324 | Hoshida et al. | Apr 2002 | A1 |
20020048287 | Silvers | Apr 2002 | A1 |
20020051468 | Ofek et al. | May 2002 | A1 |
20020063948 | Islam et al. | May 2002 | A1 |
20020064181 | Ofek et al. | May 2002 | A1 |
20020075903 | Hind | Jun 2002 | A1 |
20020080809 | Nicholson et al. | Jun 2002 | A1 |
20020114047 | McBrien et al. | Aug 2002 | A1 |
20020131115 | Kasahara | Sep 2002 | A1 |
20020141013 | Patel et al. | Oct 2002 | A1 |
20030002118 | Givehchi | Jan 2003 | A1 |
20030043432 | Marmur et al. | Mar 2003 | A1 |
20030067655 | Pedersen et al. | Apr 2003 | A1 |
20030161351 | Beverly et al. | Aug 2003 | A1 |
20040109465 | Kim et al. | Jun 2004 | A1 |
20060002419 | Cox et al. | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
1 191 756 | Mar 2002 | EP |
01115230 | May 1989 | JP |
02238736 | Sep 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20040033079 A1 | Feb 2004 | US |
Number | Date | Country | |
---|---|---|---|
60385946 | Jun 2002 | US |