This application is the National Stage of PCT/CN2019/072210 filed on Jan. 17, 2019, which claims priority under 35 U.S.C. § 119 of Chinese Application No. 201820517159.4 filed on Apr. 12, 2018, the disclosure of which is incorporated by reference.
Embodiments of the present disclosure relate to a flexible display panel and a flexible display device.
A flexible screen has developed rapidly in recent years. As compared with a traditional screen, the flexible screen has significant advantages, for example, being thinner and lighter and lower in power consumption. Due to its characteristics of flexibility and bendability, the flexible screen has been widely applied in different fields.
Due to its flexibility, the flexible screen can be easily bent and wound; however, when it needs to be unrolled for use, it cannot be flattened properly, resulting in a certain limitation in using the flexible screen.
According embodiments of the disclosure, a flexible display panel is provided. The flexible display panel is rollable with respect to a rolling axis and comprises a flexible screen layer and an elastic support layer; in a first direction perpendicular to a direction of the rolling axis, the flexible screen layer and the elastic support layer are stacked; the elastic support layer includes a support mechanism and an elastic mechanism, the support mechanism is configured to support the flexible screen layer and is rollable with respect to the rolling axis, and the elastic mechanism is configured to generate an anti-rolling elastic force to maintain flatness of the flexible screen layer if the flexible screen layer is unrolled.
For example, the support mechanism includes a plurality of supporter units that are sequentially arranged in a second direction perpendicular to the direction of the rolling axis, two adjacent supporter units are flexibly connected with each other, and the second direction is perpendicular to the first direction.
For example, the elastic mechanism is a spring leaf, and the spring leaf is connected between the two adjacent supporter units, so as to generate the anti-rolling elastic force to maintain flatness of the flexible screen layer if the flexible screen layer is unrolled.
For example, each supporter unit includes a through slot passing through the supporter unit in the second direction, and the spring leaf extends in the second direction to pass through the through slot of each supporter unit.
For example, each supporter unit includes one through slot; the elastic mechanism includes a plurality of spring leafs, and the plurality of spring leafs extend in the second direction to pass through the one through slot of each supporter unit.
For example, each supporter unit includes a plurality of through slots; the elastic mechanism includes a plurality of spring leafs, each spring leaf extends in the second direction, and the plurality of spring leafs respectively pass through the plurality of through slots of each supporter unit.
For example, a total support reaction force of a spring leaf group constituted by the plurality of spring leafs satisfies: F∝ckR/phγ, where, k is a correlation coefficient of each spring leaf, a cross section, which is perpendicular to the second direction, of the spring leaf is an arc and R is a curvature radius of the arc, γ is a radian of a cross section, which is perpendicular to the direction of the rolling axis, of the spring leaf, h is a thickness of each spring leaf, and p is a total number of spring leafs.
For example, a cross section, which is perpendicular to the direction of the rolling axis, of each supporter unit is trapezoidal; in a state that the flexible screen layer is unrolled, a short edge and a long edge of the trapezoidal cross section of each supporter unit are respectively parallel to the flexible screen layer, an included angle β is between two side edges, close to each other, of the trapezoidal cross-sections of the two adjacent supporter units, and β satisfies: β>4π/2mmin=2π/mmin, where, m is a number of the supporter units of one winding circle in the case that the flexible display panel is in a wound state, and mmin is a number of the supporter units of an innermost winding circle in the case that the flexible display panel is in the wound state.
For example, in the second direction perpendicular to the direction of the rolling axis, a total number of the plurality of supporter units satisfies: n=(L−ΔL)/l, where, L is a length of the flexible display panel, ΔL is a loss length of the flexible display panel, and l is a length of the long edge of the trapezoidal cross-section of the supporter unit.
For example, in the first direction, the flexible screen layer is located on a side of the elastic support layer that is away from the rolling axis.
For example, the flexible display panel further comprises a protective layer provided on a side of the elastic support layer that is away from the flexible screen layer.
For example, the flexible screen layer and the elastic support layer are bonded together by a first soft adhesive layer.
For example, the elastic support layer and the protective layer are bonded together by a second soft adhesive layer.
According to the embodiments of the disclosure, a flexible display device is provided. The display device comprises a casing, a rotating shaft and the flexible display panel as described above. The casing is provided with an opening, the rotating shaft is provided within the casing, the rotating shaft is parallel to the rolling axis, and the flexible display panel is rollable with respect to the rotating shaft, and is stretched out of or retracted into the casing through the opening.
For example, the rotating shaft rotates clockwise or counterclockwise; an edge of the flexible display panel that is parallel to the direction of the rolling axis is fixedly connected with the rotating shaft, so as to implement unrolling or rolling of the flexible display panel when the rotating shaft rotates clockwise or counterclockwise.
For example, the flexible display device further comprises a ratchet mechanism, the ratchet mechanism is provided in the casing and provided on the rotating shaft, and is configured to fix the rotating shaft in the case that the rotating shaft does not need to rotate.
For example, the ratchet mechanism includes a ratchet wheel, a ratchet pawl and a coil spring; the ratchet wheel is fixed to the rotating shaft by the coil spring, the coil spring is configured for providing a reverse rotary force to the ratchet wheel, the ratchet pawl is fixed to the casing, and a ratchet tooth on the ratchet wheel is engaged with the ratchet pawl under an action of the reverse rotary force.
For example, the casing is provided thereon with a button, the button is connected with the ratchet pawl through a linkage structure; and if the button is pressed down, the linkage structure pushes the ratchet pawl to separate the ratchet pawl from the ratchet tooth on the ratchet wheel.
For example, the ratchet mechanism is provided at an end portion of the rotating shaft, and the flexible display panel is wound around a portion of the rotating shaft except for the end portion provided with the ratchet mechanism.
For example, in addition to the edge of the flexible display panel that is fixedly connected with the rotating shaft, the flexible display panel further comprises three non-fixed edges that are not fixed to the rotating shaft, an outer side of the three non-fixed edges are respectively provided with a barrier wall, and one edge of the three non-fixed edges that is away from the rotating shaft is provided with a stop structure.
In order to clearly illustrate the technical solution of the embodiments of the disclosure, the drawings of the embodiments will be briefly described in the following; it is obvious that the described drawings are only related to some embodiments of the disclosure and thus are not limitative of the disclosure.
In order to make objects, technical details and advantages of the embodiments of the disclosure apparent, the technical solutions of the embodiments will be described in a clearly and fully understandable way in connection with the drawings related to the embodiments of the disclosure. It is obvious that the described embodiments are just a part but not all of the embodiments of the disclosure. Based on the described embodiments herein, those skilled in the art can obtain other embodiment(s), without any inventive work, which should be within the scope of the disclosure.
Unless otherwise defined, the technical terms or scientific terms here should be of general meaning as understood by those ordinarily skilled in the art. In the descriptions and claims of the present disclosure, expressions such as “first”, “second” and the like do not denote any order, quantity, or importance, but rather are used for distinguishing different components. Expressions such as “include” or “comprise” and the like denote that elements or objects appearing before the words of “include” or “comprise” cover the elements or the objects enumerated after the words of “include” or “comprise” or equivalents thereof, not exclusive of other elements or objects. Expressions such as “up”, “down”, “left”, “right” and the like are only used for expressing relative positional relationship, the relative positional relationship may be correspondingly changed in the case that the absolute position of a described object is changed.
Embodiments of the present disclosure provide a flexible display panel, which is capable of being better unrolled to achieve a flat state.
As shown in
It should be noted that, in the embodiments of the present disclosure, there is a certain difference between “rolling” and “winding”. For example, “winding” refers to that the flexible display panel 10 is curved to form one circle or a plurality of concentric circles, while “rolling” refers to that the flexible display panel 10 forms a curved portion, not necessarily forms a circle. Therefore, “winding” is an example of “rolling”, and accordingly, a “winding axis” is an example of the “rolling axis”.
For example, as shown in
In the flexible display panel provided by the embodiments of the present disclosure, by providing the elastic support layer, an unrolled portion of the flexible screen layer is straight, flat and stable. The elastic support layer is provided, so that a rolling performance of the flexible display panel is guaranteed on the one hand, and stable support and surface flatness are maintained in the case that the flexible display panel is unrolled on the other hand.
For example, as shown in
For example, each supporter unit 121 is made of a hard material having certain strength, for example, metal, hard plastic, other composite material, and the like.
For example, as shown in
For example, as shown in
For example, in the first direction perpendicular to the direction of the rolling axis A-A′, the flexible screen layer 11 is provided on the side of the elastic support layer 12 that is close to the rolling axis A-A′; in this case, the short edge of the trapezoidal cross section of each supporter unit 121 is provided on the side close to the flexible screen layer 11, and the long edge of the trapezoidal cross section of each supporter unit 121 is provided on the side away from the flexible screen layer 11, to ensure that the plurality of supporter units 121 do not interfere with one another in the wound state.
For example, with reference to
β>4π/2mmin=2π/mmin
Where, in combination with
For example, as shown in
n=(L−ΔL)/l
Where, L is a length of the flexible display panel 10, ΔL is a loss length of the flexible display panel 10 (for example, a length of a portion, fixed on a protective rubber frame, of the flexible display panel 10, etc.), and l is a length of the long edge of each supporter unit 121.
For example, a cross section of each supporter unit 121 that is perpendicular to the direction of the rolling axis A-A′ is an isosceles trapezoid, to further improve uniformity and stability of the support mechanism.
For example, with reference to
For example, each supporter unit 121 includes a through slot 1210 passing through the supporter unit 121 in the second direction, and the spring leaf 122 passes through the through slot 1210 so as to be connected between two adjacent supporter units 121 in the second direction.
For example, the spring leaf 122 extends in the second direction to pass through the through slot 1210 of each supporter unit 121 so that the spring leaf 122 and the plurality of supporter units 121 are combined to form the elastic support layer 12, and the flexible screen layer 11 is provided on the elastic support layer 12. On the one hand, because the spring leaf 122 is provided within the supporter unit 121, a thickness of the elastic support layer 12 is reduced, so as to reduce an overall thickness of the flexible display panel 10; on the other hand, because the spring leaf 122 is provided in a manner of passing through the plurality of supporter units 121, the spring leaf 122 links together to a certain extent the plurality of supporter units 121 that are originally independent of one another, so that the plurality of supporter units 121 are not easily separated from one another, and structure stability of the elastic support layer 12 is enhanced. For example,
It should be noted that, an example that the spring leaf 122 passes through the supporter unit 121 is provided in the embodiments of the present disclosure; however, the embodiments of the present disclosure are not limited thereto, and the elastic mechanism may be formed separately and independent of the support mechanism, which also achieves the same purpose.
For example, each supporter unit 121 includes only one through slot 1210, the elastic mechanism includes a plurality of spring leafs 122, and the plurality of spring leafs 122 all extend in the second direction to pass through the only one through slot 1210 of each supporter unit 121.
For example, as shown in
For example, as shown in
F∝kR/phγ
Where, k is a correlation coefficient of each spring leaf 122, which is determined by a material of the spring leaf 122 itself, R is the curvature radius of the arc-shaped cross section, which is perpendicular to the second direction, of the spring leaf 122, γ is a radian of the cross section, which is perpendicular to the direction of the rolling axis, of the spring leaf 122, h is a thickness of each spring leaf 122, and p is the number of spring leafs 122.
Thus, in the case that the flexible display panel 10 is unrolled from the rolled state, the spring leaf group relies on the support reaction force of its own spring leafs to maintain the straight, flat and stable state of the flexible display panel 10. Meanwhile, according to the above-described calculation formula, the spring leaf 122 and the number of spring leafs 122 used may be selected according to actual needs.
For example, as shown in
For example, as shown in
For example, as shown in
For example, as shown in
For example, as shown in
For example, the flexible display panel is an Organic Light-Emitting Diode (OLED) display panel.
Embodiments of the present disclosure further proposes a flexible display device, which comprises the flexible display panel and better implements unrolling of the flexible display panel to achieve the flat state.
As shown in
With reference to
In the flexible display device provided by the embodiments of the present disclosure, by providing the casing, the rotating shaft and the flexible display panel, the flexible display panel is wound on the rotating shaft and accommodated in the casing, which, thus, facilitates use of the display device and has a better portable performance. Meanwhile, by providing the elastic support layer in the flexible display panel, an unrolled portion of the flexible screen layer is straight, flat and stable; in this way, on the one hand, a curling performance of the flexible display panel is ensured, and on the other hand, stable support and surface flatness are maintained in the case that the flexible display panel is unrolled.
It should be noted that, the display device according to the embodiments of the present disclosure may be: an E-paper, a mobile phone, a tablet personal computer, a television, a laptop, a digital photo frame, a navigator, and any other product or component having a display function.
For example, with reference to
For example, as shown in
For example, with reference to
For example, as shown in
For example, as shown in
For example, as shown in
For example, various components (for example, a motherboard, a radio frequency, etc.) as well as a battery may be integrated inside the rotating shaft 30, so that the flexible display device is easily carried and used.
For example, in addition to the above-described ratchet mechanism 40, a mode for stretching or retracting the flexible display panel 10 may be that: a micro motor rotates to drive the rotating shaft to rotate, so as to implement an automatic stretching or retracting function of the flexible display panel 10; during operation, the flexible display panel 10 may be stretched or retracted around the shaft by pressing a specific button or performing a gesture operation directly on a screen.
For example, the ratchet mechanism 40 is provided at an end portion of the rotating shaft 30, and the flexible display panel 10 is wound around a portion of the rotating shaft 30 except for the end portion provided with the ratchet mechanism 40. In this way, the ratchet mechanism 40 is prevented from damaging the flexible display panel 10.
For example, with reference to
For example, each supporter unit 121 is made of the hard material having certain strength, for example, metal, hard plastic, other composite material, and the like.
For example, as shown in
For example, in the case that the flexible screen layer 11 is unrolled, the included angle β is between two side edges, close to each other, of the trapezoidal cross-sections of two adjacent supporter units 121, and β satisfies:
β>4π/2mmin=2π/mmin
Where, in combination with
For example, as shown in
n=(L−ΔL)/l
Where, L is the length of the flexible display panel 10, ΔL is the loss length of the flexible display panel 10 (for example, a length of a portion, fixed on a protective rubber frame, of the flexible display panel 10, etc.), and 1 is the length of the long edge of each supporter unit 121.
For example, with reference to
For example, each supporter unit 121 includes the through slot 1210 passing through the supporter unit 121 in the second direction, and the spring leaf 122 passes through the through slot 1210 so as to be connected between two adjacent supporter units 121 in the second direction.
For example, the spring leaf 122 extends in the second direction to pass through the through slot 1210 of each supporter unit 121 so that the spring leaf 122 and the plurality of supporter units 121 are combined to form the elastic support layer 12, and the flexible screen layer 11 is provided on the elastic support layer 12. On the one hand, because the spring leaf 122 is provided within the supporter unit 121, the thickness of the elastic support layer 12 is reduced, so as to reduce the overall thickness of the flexible display panel 10; on the other hand, because the spring leaf 122 is provided in the manner of passing through the plurality of supporter units 121, the spring leaf 122 links together to a certain extent the plurality of supporter units 121 that are originally independent of one another, so that the plurality of supporter units 121 are not easily separated from one another, and structural stability of the elastic support layer 12 is enhanced.
It should be noted that, an example that the spring leaf 122 passes through the supporter unit 121 is provided in the embodiments of the present disclosure; however, the embodiments of the present disclosure are not limited thereto, and the elastic mechanism may be formed separately and independent of the support mechanism, which may achieve the same purpose.
For example, each supporter unit 121 includes only one through slot 1210, the elastic mechanism includes the plurality of spring leafs 122, and the plurality of spring leafs 122 all extend in the second direction to pass through the only one through slot 1210 of each supporter unit 121.
For example, as shown in
For example, as shown in
F∝kR/phγ
Where, k is the correlation coefficient of each spring leaf 122, which is determined by the material of the spring leaf 122 itself, R is the curvature radius of the arc-shaped cross section, that is perpendicular to the second direction, of the spring leaf 122, γ is the radian of the cross section, that is perpendicular to the direction of the rolling axis, of the spring leaf 122, h is the thickness of each spring leaf 122, and p is the number of spring leafs 122.
Thus, in the case that the flexible display panel 10 is unrolled from the rolled state, the spring leaf group relies on the support reaction force of its own spring leafs to maintain the straight, flat and stable state of the flexible display panel 10. Meanwhile, according to the above-described calculation formula, the spring leaf 122 and the number of spring leafs 122 used may be selected according to actual needs.
For example, as shown in
For example, as shown in
For example, as shown in
For example, the flexible display panel is the Organic Light-Emitting Diode (OLED) display panel.
The foregoing embodiments merely are exemplary embodiments of the present disclosure, and not intended to define the scope of the present disclosure, and the scope of the present disclosure is determined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201820517159.4 | Apr 2018 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/072210 | 1/17/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/196532 | 10/17/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20130044215 | Rothkopf et al. | Feb 2013 | A1 |
20170332497 | Zhang | Nov 2017 | A1 |
20190182947 | Xiang et al. | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
205621366 | Oct 2016 | CN |
106297568 | Jan 2017 | CN |
206134143 | Apr 2017 | CN |
107067981 | Aug 2017 | CN |
208014279 | Oct 2018 | CN |
Entry |
---|
International Search Report of PCT/CN2019/072210 in Chinese, dated Mar. 27, 2019, with English translation. |
Notice of Transmittal of the International Search Report of PCT/CN2019/072210 in Chinese, dated Mar. 27, 2019. |
Written Opinion of the International Searching Authority of PCT/CN2019/072210 in Chinese, dated Mar. 27, 2019 with English translation. |
Number | Date | Country | |
---|---|---|---|
20210359251 A1 | Nov 2021 | US |