The present invention relates to a flexible ducting system and, more particularly, to a flexible ducting system including an articulable sealed joint.
Sealed ducting systems carry fluids such as high-pressure gas within many conventional assemblies. Sometimes, such ducting systems must be flexible. For example, some ducting systems must be flexible to accommodate movements of parts of the assembly. Some ducting systems require flexibility in a joint thereof. Designing a flexible sealed joint is challenging. The challenge is increased when the ducting system transports high-pressure and high-temperature fluids. For example, limited types of material can be used in ductwork of systems transporting fluids having a temperature above a few hundred degrees centigrade and/or that must be maintained at a pressure above about 20 psi. A robust flexible ducting system including an articulable sealed joint is needed for use in assemblies, especially those transporting high-pressure and high-temperature fluids.
The present invention relates to aircraft including an airframe having a fuselage extending longitudinally between a forward end and an aft end opposite the forward end and a set of fixed wings extending laterally from the fuselage. The aircraft further includes a power plant mounted on the airframe producing exhaust during operation of the aircraft for powering the aircraft. The aircraft also includes a rotor/wing assembly rotatably mounted on the airframe for selective rotation with respect to the airframe. The rotor/wing assembly has a plurality of blades and each blade extends outward from a root adjacent the airframe to a tip opposite the root. Each blade has an internal conduit extending through the blade between an inlet adjacent the root of the blade and an outlet downstream from the inlet. In addition, the aircraft includes a plurality of intermediate ducts. Each intermediate duct has an upstream end including a flange and a downstream end downstream from the upstream end slidably and pivotally connected to the inlet of a corresponding blade of the plurality of blades of the rotor/wing assembly. Moreover, the aircraft includes a manifold having an upstream end in fluid communication with the power plant and a plurality of downstream ends. Each downstream end includes a flange connected to an upstream end of a corresponding intermediate duct of the plurality of intermediate ducts for directing exhaust received by the manifold to the intermediate duct. The aircraft further includes a plurality of covers. Each cover is connected to one of the manifold flanges and covers a corresponding one of the intermediate duct flanges. The aircraft also includes a plurality of absorbers. Each absorber is positioned between one of the intermediate duct flanges and a corresponding one of the manifold flanges and extends between the intermediate duct flange and the cover covering the intermediate duct flange to allow limited movement of the intermediate duct flange with respect to the manifold flange and the cover.
In another aspect, the present invention relates to an assembly including an articulable sealed joint connecting a first duct and a second duct. The first duct has a first flange extending outward adjacent an edge thereof and the second duct has a second flange extending outward therefrom. The assembly includes a cover connected to the first flange of the first duct and covering the second flange of the second duct. The assembly further includes an absorber positioned between the first flange and the second flange and between the second flange and the cover allowing limited movement of the second flange with respect to the first flange and the cover. The assembly also includes a gasket positioned between the first flange and the absorber and between the first flange and the second flange.
Other aspects of the present invention will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring to the figures, and more particularly to
The aircraft 10 also includes an engine or power plant 36 mounted on the airframe 12. The power plant 36 produces high-pressure fluid, such as high-pressure gas, for powering the aircraft 10. Although the power plant 36 may produce other amounts of power without departing from the scope of the present invention, in one embodiment the power plant produces between about 700 pounds of thrust and about 900 pounds of thrust. Although the aircraft 10 may include other power plants 36 without departing from the scope of the present invention, in one embodiment the power plant is an F112 power plant, available from Williams International, of Walled Lake, Mich.
In addition, the aircraft 10 includes a rotor/wing assembly 38 rotatably mounted on the airframe 12 about a rotating axis “AR” for selective rotation with respect to the airframe. The rotor/wing assembly 38 includes a plurality of blades 40. Each blade 40 extends outward from a root 42 adjacent the airframe 12 to a tip 44 opposite the root. Each blade root 42 is connected to a central hub 46. Although each blade 40 may have other lengths measured between its root 42 and tip 44 without departing from the scope of the present invention, in one embodiment each blade has a length of between about 5 feet and about 7 feet. Each blade 40 includes an internal conduit 48 extending through the blade between an inlet 50 adjacent its root 42 and an outlet 52 downstream from the inlet. Although each blade 40 may have other maximum thicknesses ΔB without departing from the scope of the present invention, in one embodiment each blade has a thickness of between about 2 inches and about 6 inches.
The aircraft 10 further includes a ducting system 54 connecting the power plant 36 to an aft nozzle 56 of the aircraft for producing rearward thrust and to the blade inlets 50. During operation of the aircraft 10, exhaust delivered to the blade inlets 50 by the ducting system 54 is channeled through the internal conduits 48 to the blade outlets 52. Each blade outlet 52 is positioned in a trailing side 58 of the corresponding blade 40 so the high-pressure exhaust directed from the outlets propels the rotor/wing assembly 38 thereby producing thrust. Because the rotor/wing assembly 38 rotates in response to the exhaust being directed from its outlets 52, these aircraft 10 are often referred to as reaction-drive aircraft. When the rotor/wing assembly 38 is producing thrust, the fixed wings 20, 22 may be rotated to their vertical flight position V to minimally interfere with downwash from the rotor/wing assembly.
As shown in
The downstream end 66 of the intermediate duct 60 is slidably and pivotally connected to the inlet 50 of a corresponding blade 40 of the rotor/wing assembly 38. For example, as shown in
Although the intermediate duct 60 and blade inlet 50 may include other materials without departing from the scope of the present invention, in one embodiment the intermediate duct includes carbon and the blade inlet includes metal. In another embodiment, the intermediate duct 60 includes metal and the blade inlet 50 includes carbon. To reduce galling between the intermediate duct 60 and the blade inlet 50, the outer surface 74 of the downstream end 66 of the intermediate duct 60 and/or the inner surface 72 of the blade inlet may have a generally gall resistant coating (not shown in detail). For example, in one embodiment, the intermediate duct 60 and the blade inlet 50 are made of metal and at least one of the outer surface 74 of the downstream end 66 and the inner surface 72 of the blade inlet 50 are coated to reduce galling between them. In a particular embodiment, the intermediate duct 60 and the blade inlet 50 are made of metal, the outer surface 74 of the downstream end 66 of the intermediate duct is coated with carbon, and the inner surface 72 of the blade inlet is uncoated. In another particular embodiment, the intermediate ducts 60 and the blade inlet 50 are made of metal, the inner surface 72 of the blade inlet is coated with carbon, and the outer surface 74 of the downstream end 66 of the intermediate duct is uncoated.
The aircraft 10 further includes a manifold 76 having an upstream end 78 in fluid communication with the power plant 36 and a plurality of downstream ends 80. Each downstream end 80 of the manifold 76 is connected to the upstream end 62 of a corresponding intermediate duct 60 by a sealed articulable joint 82. The manifold 76 and intermediate duct 60 are rotatable about the rotation axis AR with the rotor/wing assembly 38 so the manifold, intermediate duct, and rotor/wing assembly rotate together during operation of the rotor/wing assembly. Each downstream end 80 of the manifold 76 includes a flange 84 extending outward adjacent an edge 86 thereof connected to the upstream end 62 of the corresponding intermediate duct 60 for directing exhaust received by the manifold to the intermediate duct. Each of the intermediate ducts 60 is slidable and pivotable with respect to the manifold 76 during operation of the aircraft 10. Although the manifold 76 may include other materials without departing from the scope of the present invention, in one embodiment the manifold includes metal. Although the manifold 76 may have other minimum inner diameters ΦMU adjacent its upstream end 78 without departing from the scope of the present invention, in one embodiment the manifold has a minimum inner diameter adjacent its upstream end of between about 6 inches and about 8 inches. Although the manifold 76 may have other minimum inner diameters ΦMD adjacent its downstream ends 80 without departing from the scope of the present invention, in one embodiment the manifold has a minimum inner diameter adjacent each downstream end of between about 4 inches and about 8 inches.
The articulable sealed joint 82 includes a plurality of gaskets 88. Each gasket 88 is positioned between one of the manifold flanges 84 and a corresponding intermediate duct flange 64. Each gasket 88 may include an extension 90 extending outward. The gasket 88 has a lateral surface 92 and the intermediate duct 60 has an inner surface 94 opposite the lateral surface. The gasket 88 and intermediate duct 60 may be sized and shaped to improve a seal between them thereby reducing a potential for exhaust (not shown) to pass between the gasket and the intermediate duct during operation of the aircraft 10. For example, in one embodiment, shown in
As shown in
Each articulable sealed joint 82 also includes an absorber 104, shown in
Each articulable sealed joint 82 further includes a connector 110 connecting the corresponding cover 102 to the corresponding manifold flange 84. Although the aircraft 10 may include other types of connectors 110 without departing from the scope of the present invention, in one embodiment each connector is a clamp. In a particular embodiment, the connector 110 is a v-band clamp.
The rotor/wing assembly 38 is rotatable about a teetering axis AT (shown perpendicular to view in
When the rotor/wing assembly 38 is moved between its default and fully teetered positions, the blade inlet 50 slides and pivots with respect to the downstream end 66 of the intermediate duct 60 as can be seen by comparing
When the rotor/wing assembly 38 is in its default position, the intermediate duct 60 and articulable sealed joint 82 are in their respective default positions, as shown in
As described earlier, each absorber 104 allows the corresponding intermediate duct flange 64 to move with respect to each corresponding manifold flange 84 and the corresponding cover 102. The absorber 104 cushions the movement between the intermediate duct flange 64 and each corresponding manifold flange 84 and cover 102 and ensures the intermediate duct 60 returns to its default position when the rotor/wing assembly 38 is in its default position. When the intermediate duct flange 64 moves toward the manifold flange 84 on one side 112, 114 of the articulable sealed joint as shown in
Although the articulable sealed joint 82 and the slidable and pivotable connection between the intermediate duct 60 and the blade inlet 50 are described as part of aircraft 10, the joint and/or the slidable and pivotable connection may be used in other assemblies (not shown) requiring relative motion between adjacent fluid transporting ducts without departing from the scope of the present invention. Exemplary assemblies include helicopters, automobiles, boats, and manufacturing equipment.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This is a divisional of U.S. application Ser. No. 11/434,676 filed May 16, 2006 now U.S. Pat. No. 7,600,711.
This invention was made with government support under an agreement with the U.S. Defense Advanced Research Projects Agency (agreement number MDA972-98-9-0009). The U.S. government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
1133660 | Papin et al. | Mar 1915 | A |
1180817 | Ballard | Apr 1916 | A |
2454040 | Dalton | Nov 1948 | A |
2586144 | Benoit | Feb 1952 | A |
2688501 | Macleod | Sep 1954 | A |
2941749 | Sullivan et al. | Jun 1960 | A |
3159360 | Ryan et al. | Dec 1964 | A |
3296361 | Markland et al. | Jan 1967 | A |
3327969 | Head | Jun 1967 | A |
3505816 | Wilde | Apr 1970 | A |
3592221 | Worley et al. | Jul 1971 | A |
3628096 | Drew et al. | Dec 1971 | A |
3792827 | Girard | Feb 1974 | A |
3794273 | Girard | Feb 1974 | A |
3830588 | Nagler | Aug 1974 | A |
3843282 | Nagler | Oct 1974 | A |
3986686 | Girard | Oct 1976 | A |
4054306 | Sadoff et al. | Oct 1977 | A |
4371314 | Dauel et al. | Feb 1983 | A |
4448449 | Halling et al. | May 1984 | A |
4473335 | Henry | Sep 1984 | A |
4553775 | Halling | Nov 1985 | A |
4779901 | Halling | Oct 1988 | A |
4893656 | Willhoft | Jan 1990 | A |
5149014 | Faller | Sep 1992 | A |
5232252 | Bartholomew | Aug 1993 | A |
5454530 | Rutherford et al. | Oct 1995 | A |
5505498 | Halling et al. | Apr 1996 | A |
5765373 | Bittle et al. | Jun 1998 | A |
5765776 | Rogers et al. | Jun 1998 | A |
5984635 | Keller | Nov 1999 | A |
6131849 | Nyhus | Oct 2000 | A |
6386790 | Thiel et al. | May 2002 | B1 |
6471158 | Davis | Oct 2002 | B1 |
6705483 | Hagano et al. | Mar 2004 | B2 |
6709023 | French | Mar 2004 | B2 |
6789764 | Bass et al. | Sep 2004 | B2 |
7163206 | Cross et al. | Jan 2007 | B2 |
7275711 | Flanigan | Oct 2007 | B1 |
7390030 | Lamm | Jun 2008 | B2 |
7412825 | Muylaert | Aug 2008 | B2 |
20010007324 | Hagano et al. | Jul 2001 | A1 |
20050218651 | Lamm | Oct 2005 | A1 |
20080135677 | Oleshchuk et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
3603498 | Aug 1987 | DE |
846326 | Jul 1981 | SU |
Number | Date | Country | |
---|---|---|---|
20090309354 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11434676 | May 2006 | US |
Child | 12546781 | US |