Flexible edge seal for vacuum insulating glazing units

Information

  • Patent Grant
  • 8329267
  • Patent Number
    8,329,267
  • Date Filed
    Friday, January 15, 2010
    15 years ago
  • Date Issued
    Tuesday, December 11, 2012
    12 years ago
Abstract
A flexible edge seal is provided for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.
Description
TECHNICAL FIELD

The following disclosure relates to insulating windows and glazing products. More particularly, it relates to vacuum insulating glazing units with multiple transparent panes having an evacuated space therebetween.


BACKGROUND

Using vacuum to increase the insulating performance of window glazing components is not a new concept, and in fact many innovative approaches have been taught in the literature over the last 75 years. It is, however, readily observed by skilled practitioners of the art that the majority of the prior work relates to low- to medium-vacuum levels, i.e., vacuum levels within the range from about 760 torr to about 10−3 torr. Note, for purposes of this application, a “higher” level of vacuum is understood to correspond to a lower absolute pressure, e.g., a vacuum level of 10−4 torr is a higher vacuum than 10−3 torr. In a few cases the literature makes reference to the measured vacuum levels in glazing components, but in many cases the maintainable vacuum level must be interpreted from careful evaluation of the materials exposed to the vacuum enclosure, the methods used to create the vacuum seal and the methods used to produce the vacuum condition in the enclosed space.


While the literature describing vacuum insulating window glazing components may not rigorously define the vacuum levels, literature from other industries, such as the electronics industry, defines different vacuum levels and the types of materials and processing methods required to achieved and maintain those specified vacuum levels. The common distinction between medium- and high-vacuum devices is a vacuum level of 10−3 torr. In other words, the range of high-vacuum levels begins at about 10−3 torr and goes higher, i.e., in the direction toward and/or past 10−4 torr. In the case of vacuum insulating window glazing components, where it is desirable for the components to retain a prescribed minimum vacuum level for an extended operating lifetime (e.g., 25 years), a vacuum containment system capable of initially maintaining a higher level of vacuum (e.g., 10−5 torr), may be necessary. For the purposes of this application, vacuum insulating glazing units capable of maintaining vacuum levels of 10−3 torr or higher are termed high-vacuum insulating glazing units (HVIGU).


One purpose of HVIGUs is to provide lower levels (i.e., compared to units with low- or medium-vacuum levels) of conductive heat losses between temperature-controlled spaces and non-temperature-controlled spaces separated by the glazing unit. In such cases providing this desired lower level of conductive heat loss over a long period of time is desirable. Since the ambient conditions in the uncontrolled space, most commonly the external atmospheric environment, produce a variety of stresses, including thermal, pressure and mechanical vibration and since, to a lesser extent, this also happens also in the conditioned space, various embodiments of the HVIGU will be more or less capable of surviving the applied stresses while maintaining the desired minimum vacuum level. Thus, the design lifetime, i.e., the period of time that the HVIGU will maintain its level of performance, is one of the performance features of the HVIGU.


Generally speaking, HVIGUs are typically constructed using at least two spaced-apart panes of glass of some prescribed thickness. These panes are then sealed, typically along the edges, using some arrangement of sealing elements which are intended to isolate the evacuated volume from the surrounding atmospheric pressure. Since the primary objective of the HVIGU is to provide a low thermally-conductive barrier between environmental spaces, each of which may have a higher or lower temperature with respect to the other, it is obvious to skilled practitioners of the art that the two panes of glass may reach temperature levels which vary distinctly from each other. In fact, for a given space-to-space temperature differential, the pane-to-pane temperature differential will typically increase as a function of reduced thermal conductivity of the HVIGU. As a result of the temperature differential between the panes of glass, the panes may expand and contract differentially. This may introduce substantial strain at the edges of the HVIGU where the seal is attached. If the seal at the HVIGU edge is made to be rigid, pane-to-pane temperature differentials may produce significant stresses in the HVIGU, along with a number of expected deleterious effects, for example, large-scale deflections, bowing and other physical or optical changes of panes and/or shortened seal life for the HVIGU.


A need exists, therefore, for a flexible edge seal for a HVIGU or other insulated glazing unit that can accommodate the strains associated with the expanding and contracting glass panes. A need further exists, for a flexible edge seal that can withstand the mechanical forces imposed by atmospheric pressure on the seal. A need still further exists, for a flexible edge seal that can retain the prescribed vacuum levels within the evacuated space.


SUMMARY

In one aspect, the invention comprises a flexible edge seal for a vacuum insulating glazing unit having a first glass pane and a second glass pane spaced-apart from the first. The edge seal comprises a seal member formed of a hermetically bondable material and having a first end, a second end and a center section disposed therebetween. The first end is hermetically bondable to a first glass pane. The second end is hermetically bondable to a second glass pane. The center section comprises a plurality of convolutes.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding, reference is now made to the following description taken in conjunction with the accompanying Drawings in which:



FIG. 1 illustrates a flexible edge seal having a one-piece seal member in accordance with one embodiment;



FIG. 2 illustrates a flexible edge seal having a two-piece seal member in accordance with another embodiment;



FIG. 2A illustrates a partial view of joining a flexible edge seal having a two-piece seal member in accordance with another embodiment;



FIG. 3 illustrates a VIGU assembly including a flexible edge seal and an end cap in accordance with another embodiment;



FIG. 4 illustrates a flexible edge seal having a support element and a foil element in accordance with another embodiment;



FIG. 5 illustrates a flexible edge seal having a support element and a foil element in accordance with another embodiment;



FIG. 6 illustrates a flexible edge seal including a stand-off assembly in accordance with another embodiment;



FIG. 7 illustrates a flexible edge seal similar to that in FIG. 2 showing typical dimensions; and



FIGS. 8A-8C illustrate a method of making a flexible edge seal similar to that in FIG. 2, FIG. 8A showing step 1, FIG. 8B showing step 2, and FIG. 8C showing step 3.





DETAILED DESCRIPTION

Referring now to the drawings, wherein like reference numbers are used herein to designate like elements throughout, the various views and embodiments of flexible edge seals for vacuum insulating glazing units are illustrated and described, and other possible embodiments are described. The figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes only. One of ordinary skill in the art will appreciate the many possible applications and variations based on the following examples of possible embodiments.


The invention describes a flexible edge seal which at the same time provides the required stress mitigation, atmospheric pressure resistance and vacuum containment functions, while allowing for high-volume manufacturing methods.


Referring now to FIG. 1, there is illustrated a single-sided flexible edge seal in accordance with one embodiment. The flexible edge seal 100 is formed as a single seal member 102 from thin metal material and is bonded to a first glass pane 104 and a second glass pane 106, both bonds being from the same side. For example, in the example shown, the seal member 102 is bonded at one end 107 to the outer surface 108 of first pane 104, and at the other end 109 to the inner surface 110 of the second pane 106. The panes 104 and 106 are spaced-apart, defining a gap 112 therebetween. The gap 112 represents the space that will be evacuated to provide a thermal barrier between the panes 104, 106. It will be appreciated that the space 113 between the seal member 102 and the glass panes 104, 106 will also be evacuated. Bonding the metal seal member 102 to the glass panes 104, 106 may provide the final vacuum seal, in lieu of a separate evacuation septum, if the two bonds (or at least the final bond) are performed in a vacuum environment of the desired level of vacuum. The glass-to-metal bond areas between the metal seal member 102 and the panes 104, 106 are denoted with reference numbers 114, 116, respectively. The metal materials of the seal member 102 may include, but are not limited to, the following: titanium, stainless steel, controlled-expansion metal alloys, aluminum, copper, carbon steel, inconel and/or, nickel. The term controlled-expansion metal alloys refers to high-nickel alloys, nickel-iron alloys and other metal alloys having thermal expansion characteristics similar to any of the Permalloy brand(s) of alloy(s) available from ATI of Pittsburgh, Pa., or to any of Invar 36 brand, Low Expansion 39 brand, Low Expansion 42 brand, Thermostat 42 Alloy brand, Low Expansion 45 brand, Low Expansion 49 brand, Glass Sealing 52 brand, Alloy 42 brand, Alloy 49 brand or Kovar brand alloys available from Carpenter Technology Corporation (CARTECH) of Reading, Pa. In one embodiment, the thickness of the metal material is within the range from about 0.004 inches to about 0.040 inches. In a preferred embodiment, the metal material is a controlled-expansion metal alloy having a thickness within the range from about 0.015 inches to about 0.020 inches.


In one preferred embodiment, the single-sided flexible edge seal 100 is appropriately die-formed from a flat “picture frame,” produced by welding metal strips of appropriate lengths together. In an alternate embodiment, the flat “picture frame” is formed by cutting from a single sheet of material. Another embodiment involves shaping lineal and corner section pieces separately and then welding the corner pieces to the lineal pieces in a subsequent operation, to form the final single-sided flexible edge seal configuration.


Referring still to FIG. 1, the seal member 102 may be formed into the shape of convolutes 118 which allow elastic deformation as the heated or cooled panes of glass 104, 106 expand and contract. In preferred embodiments, the convolute 118 is represented by 180 degrees of a theoretical sine wave, and may vary in overall height (i.e., top peak to bottom peak height) from about 0.20 inches to about 0.75 inches. The curved portions 120 of the convolutes may be connected by straight sections 122 which may be oriented perpendicular or non-perpendicular with respect to the largest surface of the adjacent glass pane. In one embodiment, the straight sections are oriented at an angle (denoted A in FIG. 1) within a range of plus-or-minus 30 degrees from a line perpendicular to the surface of the adjacent pane 106. It is not necessary, however, that all of the straight sections 122 have the identical orientation. The radius (denoted R in FIG. 1) of the convolute bends 120 may vary from 0.050 inches to 0.400 inches. In a preferred embodiment, the overall (peak-to-peak) height of the convolutes 118 is about 0.500 inches with a 0.125 inches bend radius R. The need to accommodate larger deflections which result from the use of larger pieces of glass is satisfied by a combination of increasing the out-of-plane height of the convolutes 118 and/or adding convolutes, thus extending the overall thickness, length and width of the HVIGU containing the flexible edge seal 100.


In some embodiments, the lower peaks of the convolute portions 118 of the seal member 102 may touch the surface 110 of the adjacent glass pane 106, normal to the glass-to-metal bonding plane 116 when vacuum is applied. This facilitates resisting collapse of the flexible edge seal 100 under atmospheric pressure with material of minimum thickness, while at the same time allowing for flexing of the convolutes 118 to allow for inner and outer pane movements, caused by temperature differentials.


The portion of the single-sided flexible edge seal material that is bonded to the glass may be tapered in thickness, ranging in some embodiments from about 2 degrees to about 10 degrees to aid in achieving minimal stress in the glass-to-metal joint. The thinnest portion of the seal material on the smaller area glass pane is oriented toward the middle of the glass pane, increasing in thickness further towards the outside edge of the assembly. The thinnest portion of the seal material on the larger glass pane is oriented toward the outside of the glass pane, decreasing in thickness further towards the outside edge of the assembly.


Referring now to FIG. 2, there is illustrated a single-sided flexible edge seal in accordance with another embodiment. In this embodiment the flexible edge seal 200 consists of two separately-formed pieces, namely, a first seal member 202 and a second seal member 204, which are formed of metal substantially as described above. The first seal member 202 is bonded at a first end 206 to surface 108 of pane 104, and the second seal member 204 is bonded at a first end 208 to surface 110 of pane 106. The two seal members 202, 204 are then closely fitted together at their respective other ends 207, 209 and hermetically sealed with a joint 210, e.g., a weld, to form a vacuum containing seal. The described single-sided flexible edge seal 200 arrangement includes provisions for weld joint alignment, placement of the weld and subsequent handling protection for the finished component.


Referring now to FIG. 2A, a partial view of the edge seal 200 of FIG. 2 is shown, illustrating that a compressive force may be applied to hold the two metal seal portions 207, 209 together during the welding operation to assist in achieving an optimal weld. In one embodiment, rollers 212 and 214 of an electrical resistance seam welder provide the compressive force (denoted by arrows 216 and 218) during the electrical resistance welding operation. Interference angles at the welded joint (in the area denoted 220) may be provided to facilitate the alignment of the ends 207, 209 to be subsequently welded. If resistance welding is used, the weld joint 210a may be formed in the region between the rollers 212, 214, rather than at the end of the members as was illustrated in FIG. 1.


The weld joint 210 or 210a may be oriented so that it is easily made capable of containing a high vacuum, using for example, but not limited to, one of the following methods: Laser welding; electron beam welding; seam welding (e.g., electrical resistance seam welding); solder joining; resistance welding; and/or TIG welding.


In one embodiment, the portion of the single-sided flexible edge seal that is to be welded may be located in a plane that is normal to the glass-to-metal joint. As such, it is configured in such a manner that risk of handling damage to the joint and to the single-sided flexible edge seal itself is minimized. In addition, this may facilitate “nesting” the two seal portions together.


The two panes of glass 104, 106 may be aligned and held in position prior to bonding or welding operations through the use of bent features on the single-sided flexible edge seal. This serves to simplify or eliminate complicated tooling which otherwise may be required to provide the same alignment and positioning functions.


Glass and/or metal surface pretreatments may be applied either before and/or after the forming of one or both metal seal portions, and may be applied before and/or after one or both metal seal portions is/are bonded to the associated glass pane(s). For example, to facilitate an excellent highly hermetic (i.e., vacuum-tight) weld, the metal seal material may be plated with one or more metals that improve or allow the weld process to occur. For example, nickel may be plated onto the base metal when electrical resistance seam welding is performed. The electrodes (of the seam welder) then melt the nickel and this nickel may become the welded material. In some cases, a very thin layer (sometimes referred to as a “strike”) of gold (e.g., having a thickness within the range from about 50 micro-inches to about 100 micro-inches) is plated onto the nickel soon after the nickel is plated onto the base material, metal or metal alloy. The gold may serve as an oxidation/corrosion barrier on the base metal until welding occurs.


In preferred embodiments, the flexible edge seal may have one or more layers of a material applied to its surface for one of the following purposes: a) to enhance or enable welding; b) to improve resistance to environmental-borne corrosives such as acids, salt water, humidity, sulfur compounds and/or galvanic activity; and/or c) to enhance or enable forming the glass-to-metal bond between the panes and the seal material.


Appropriate vacuum seal integrity testing can be performed on the shaped flexible edge seal, prior to subsequent assembly.


Glass, because it is brittle, requires careful handling during manufacturing and assembly operations. The addition of a fragile edge seal element, potentially protruding beyond the edges of the glass panes, may further complicate the handling issues. The single-sided flexible edge seal is configured so that the fabricated VIGU can be handled and stored vertically, by resting the assembly on the protruding pane of glass. This method of handling and storage is in common use today, so the implementation and changeover costs associated with the single-sided flexible edge seal may be mitigated through this feature.


The single-sided flexible edge seal corners are rounded as shown in FIGS. 1 and 2 to minimize the stress. The inside corner radius may vary from about 0.15 inches to about 0.50 inches. The corners are to be formed from the same materials and in the same thicknesses as previously described for the straight portions of the seals.


Referring now to FIG. 3, there is illustrated a VIGU assembly 300 with flexible edge seal in accordance with another embodiment. In this embodiment, a protective “end cap” or enclosure 302 is provided surrounding the flexible edge seal 200 of the aforementioned embodiment. A profiled shape may be provided for the interior of the end cap 302, designed to be fastened in place over the edge of a VIGU assembly (including, in this example, spaced-apart panes 104, 106 and bonded seal members 202 and 204) to comprehensively protect the integrity of the single-sided flexible edge seal throughout manufacturing, shipping, installation and handling activities. The protective end cap 302 may be produced in lineal sections by an appropriate manufacturing process and is cut to fit tightly around the final VIGU assembly. The glass edges and single-sided flexible edge seal 200 are protected against damage from impacts, abrasions and other stresses associated with applied manufacturing methods.


The edge cap 302 may be configured to provide cushioned support for the edge of the glass panes 104, 106 in such a manner that the stresses imposed on the edges of the protruding piece of glass are distributed, mitigating damage to the glass. Appropriate cushioning sealant material 304 may be employed including, but not limited to: silicone, urethane, polysulfide, hot-melts and others.


The edge cap may be further provided with surface seals 306 to facilitate sealing the gap between the edge cap and the glass surface. Liquids and other debris may thereby be excluded from the enclosed volume, providing further protection against the damage of the glass and single-sided flexible edge seal. Seals 306 may be formed from materials including, but are not limited to: silicone, urethane, rubber, polysulfide, hot-melts and others. In some embodiments, the edge cap assembly 302 may include “weep” holes (i.e., drainage holes) 308 on the designated lower edge or downward-facing side of the assembly.


Referring now to FIGS. 4 and 5, there is illustrated additional embodiments of the flexible edge seal. In these embodiments, the flexible edge seal includes a structural supporting element that is separate from the hermetic sealing element. Both are applied together to provide a long-term durable vacuum seal for VIGU, especially those maintaining high-level vacuums.


Referring to FIG. 4, flexible edge seal 400 includes structural support element 402 and supported foil 404. The support element 402 may be formed as a single piece from thin metal material (similar to the seal members previously described), and may be positioned around the outside periphery of the smaller piece of glass as shown. Unlike the seal member is previous embodiments, however, the support element 402 need not be bonded to either of the panes 104, 106. The materials of the support element 402 may consist of, but are not limited to the following: titanium, stainless steel, controlled expansion metal alloys, aluminum, copper, carbon steel, inconel, nickel or composite. Since it need not be bonded, non-metal materials may also be used. The thickness of the metal material is in the range of 0.004 inches to 0.030 inches. The preferred embodiment is carbon steel material, 0.020 inches thick.


Referring still to FIG. 4, the support element 402 of the flexible edge seal 400 may be formed with variable prescribed numbers of convolutes of variable prescribed dimensions and prescribed material thickness. The metal material may be formed into the shape of convolutes which allow elastic deformation as the heated or cooled panes of glass expand or contract. The convolute, represented by 180 degrees of a theoretical sine wave, may vary in peak-to-peak height from about 0.20 inches to about 0.75 inches. The curved portions of the convolutes may be connected by straight sections which may be oriented perpendicular or non-perpendicular with respect to the largest surface of the adjacent glass pane. In one embodiment, the straight sections are oriented within a range of plus-or-minus 30 degrees from perpendicular with respect to the largest surface of the adjacent pane. It is not necessary, however, that all of the straight sections have the identical orientation. The radius of the convolute bends may vary from 0.050 inches to 0.400 inches. A preferred embodiment is peak-to-peak height of about 0.500 inches with about 0.125 inches bend radius. The need to accommodate larger deflections which result from the use of larger pieces of glass is satisfied by a combination of increasing the out-of-plane height of the convolutes and adding convolutes, thus extending the overall thickness, length and width of the VIGU.


Furthermore, the support element 402 is stabilized against atmospheric pressure and movement arising from glass expansion and contraction by its bearing against the smaller pane of glass 106. In the illustrated embodiment, it is further stabilized against atmospheric pressure and movement arising from glass expansion and contraction by its bearing on the vertical sides of a small groove 406 formed in the glass pane 106.


The hermetic, vacuum seal for the flexible edge seal 404 is provided through the use of a thin metal foil 404, which fits over the aforementioned structural support element 402 and is bonded to both panes of glass 104, 106 in bond areas 408, 410, respectively. In a preferred embodiment, the foil 404 may be bonded to the glass in a narrow band in the plane of the largest “X-Y” dimension in a prescribed fashion, around the periphery edge of each the inner and outer panes of glass. The width of the bonded areas 408, 410 may be in the range of about 0.1 inches to about 0.4 inches. The preferred embodiment for the bonded areas 408, 410 is about 0.150 inches wide. The foil 404 may be produced from materials including, but not limited to titanium, stainless steel, controlled expansion metal alloy, aluminum, copper, carbon steel, inconel, nickel. The preferred embodiment is stainless steel. The thickness of the vacuum seal foil 404 may be in the range of about 0.005 inches to about 0.015 inches. The preferred thickness is about 0.007 inches.


Referring to FIG. 5, there is illustrated another embodiment of a flexible edge seal including a structural support element and a supported foil. The edge seal 500 is substantially similar to that illustrated in FIG. 4, including a structural support element 402 and a supported foil 404. In this embodiment, however, a no support groove is provided in the glass pane 106.


Referring now to FIG. 6, there is illustrated another embodiment of a flexible edge seal also including a stand-off assembly. The edge seal 600 includes the seal member 602, which in this case is one-piece as shown in FIG. 1, but which in other embodiments could be multi-piece, as shown in FIG. 2. The edge seal 600 further includes an anchor member 604, a filament 606 connected to the anchor member, and a plurality of stand-off elements 608 attached on the filament. The stand-off elements 608 maintain the gap 112 (e.g., against atmospheric pressure forces) between the glass panes 104, 106 when the gap is evacuated. A second anchor member (not shown) is attached to the opposite end of the filament 606 to maintain the filament and stand-off elements 608 in place. It will be appreciated that the shape of the anchor member 604 may be selected to cooperate with the shape of the metal seal member 602 to hold the anchor member in place during assembly of the VIGU.


Referring now to FIG. 7, a seal assembly having typical dimensions is shown. The units shown are in inches.


Referring now to FIGS. 8A, 8B and 8C, a method of assembling a VIGU using metal seals is shown


It will be appreciated by those skilled in the art having the benefit of this disclosure that these flexible edge seals for vacuum insulating glazing units provide glazing units having increased thermal barrier performance. It should be understood that the drawings and detailed description herein are to be regarded in an illustrative rather than a restrictive manner, and are not intended to be limiting to the particular forms and examples disclosed. On the contrary, included are any further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments apparent to those of ordinary skill in the art, without departing from the spirit and scope hereof, as defined by the following claims. Thus, it is intended that the following claims be interpreted to embrace all such further modifications, changes, rearrangements, substitutions, alternatives, design choices, and embodiments.

Claims
  • 1. A flexible edge seal for a vacuum insulating glazing unit, the vacuum insulating glazing unit having a first glass pane and a second glass pane, the second glass pane being spaced-apart from the first glass pane, and each of the first and second glass panes having an inner surface facing towards the other glass pane and an outer surface facing away from the other glass pane, the edge seal comprising: a seal member formed of a bondable material and having a first end, a second end and a center section disposed therebetween;the first end being adapted to form a first bonding surface bondable to an outer surface of a first glass pane;the second end being adapted to form a second bonding surface bondable to an inner surface of a second glass pane; andthe center section comprising, when viewed in side cross section, a plurality of convolutes, wherein each convolute includes a convolute bend and a straight section;wherein the seal member is formed from a thin metal material that this not self-supporting, and the flexible edge seal further comprises a support element disposed between the seal member and at least one of the glass panes, the support element also having a plurality of convolutes formed thereon, and the support element serving to support the seal member when a differential pressure is applied across the seal member; anda stand-off assembly including an anchor member positioned between the seal member and at least one of the glass panes;a filament connected to the anchor member; anda plurality of stand-off elements attached to the filament;wherein the filaments and stand-off elements may be disposed in the space between the first and second glass panes when the seal member is attached to the first and second glass panes.
  • 2. The flexible edge seal of claim 1, wherein the straight sections of the convolutes are oriented at an angle within a range of plus-or-minus 30 degrees from a line perpendicular to the inner surface of the second glass pane.
  • 3. The flexible edge seal of claim 1, wherein the convolute bends of the convolutes have a radius within the range from about 0.050 inches to about 0.400 inches.
  • 4. The flexible edge seal of claim 3, wherein the convolute bends have a radius of about 0.125 inches and the overall (peak-to-peak) height of the convolutes is about 0.500 inches.
  • 5. The flexible edge seal of claim 1, wherein at least one of the first and second end sections is tapered in thickness at an angle within the range from about 2 degrees to about 10 degrees.
  • 6. A vacuum insulating glazing unit comprising: a first glass pane;a second glass pane spaced-apart from the first glass pane, each of the first and second glass panes having an inner surface facing towards the other glass pane and an outer surface facing away from the other glass pane;an edge seal including a seal member formed of a bondable material and having a first end, a second end and a center section disposed therebetween; the first end having a first bonding surface bonded to the outer surface of the first glass pane;the second end having a second bonding surface bonded to the inner surface of the second glass pane; andthe center section comprising, when viewed in side cross section, a plurality of convolutes, wherein each convolute includes a convolute bend and a straight section;wherein the seal member is formed from a thin metal material that this not self-supporting, and the flexible edge seal further comprises a support element disposed between the seal member and at least one of the glass panes, the support element also having a plurality of convolutes formed thereon, and the support element serving to support the seal member when a differential pressure is applied across the seal member; anda stand-off assembly including an anchor member positioned between the seal member and at least one of the glass panes;a filament connected to the anchor member; anda plurality of stand-off elements attached to the filament;wherein the filaments and stand-off elements may be disposed in the space between the first and second glass panes when the seal member is attached to the first and second glass panes.
  • 7. The vacuum insulating glazing unit of claim 6, wherein the straight sections of the convolutes are oriented at an angle within a range of plus-or-minus 30 degrees from a line perpendicular to the inner surface of the second glass pane.
  • 8. The vacuum insulating glazing unit of claim 6, wherein the convolute bends of the convolutes have a radius within the range from about 0.050 inches to about 0.400 inches.
  • 9. The vacuum insulating glazing unit of claim 8, wherein the convolute bends have a radius of about 0.125 inches and the overall (peak-to-peak) height of the convolutes is about 0.500 inches.
  • 10. The vacuum insulating glazing unit of claim 6, wherein at least one of the first and second end sections is tapered in thickness at an angle within the range from about 2 degrees to about 10 degrees.
  • 11. A vacuum insulating glazing unit comprising: a first glass pane;a second glass pane spaced-apart from the first glass pane, each of the first and second glass panes having an inner surface facing towards the other glass pane and an outer surface facing away from the other glass pane;an edge seal including a seal member formed of a bondable material and having a first end, a second end and a center section disposed therebetween; the first end having a first bonding surface bonded to the outer surface of the first glass pane;the second end having a second bonding surface bonded to the inner surface of the second glass pane; andthe center section comprising, when viewed in side cross section, a plurality of convolutes, wherein each convolute includes a convolute bend and a straight section; anda stand-off assembly including an anchor member positioned between the seal member and at least one of the glass panes;a filament connected to the anchor member; anda plurality of stand-off elements attached to the filament;
  • 12. The vacuum insulating glazing unit of claim 11, wherein the straight sections of the convolutes are oriented at an angle within a range of plus-or-minus 30 degrees from a line perpendicular to the inner surface of the second glass pane.
  • 13. The vacuum insulating glazing unit of claim 11, wherein the convolute bends of the convolutes have a radius within the range from about 0.050 inches to about 0.400 inches.
  • 14. The vacuum insulating glazing unit of claim 13, wherein the convolute bends have a radius of about 0.125 inches and the overall (peak-to-peak) height of the convolutes is about 0.500 inches.
  • 15. The vacuum insulating glazing unit of claim 11, wherein at least one of the first and second end sections is tapered in thickness at an angle within the range from about 2 degrees to about 10 degrees.
  • 16. The vacuum insulating glazing unit of claim 11, wherein the seal member is formed from a thin metal material that this not self-supporting, and the flexible edge seal further comprises a support element disposed between the seal member and at least one of the glass panes, the support element also having a plurality of convolutes formed thereon, and the support element serving to support the seal member when a differential pressure is applied across the seal member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application for Patent Ser. No. 61/145,095, filed on Jan. 15, 2009, and entitled FLEXIBLE EDGE SEAL FOR VACUUM INSULATING GLAZING UNIT, the specification of which is incorporated herein by reference in its entirety.

Government Interests

This Invention was made with government support under Contract No. DE-FC26-06NT42765 awarded by the Department of Energy. The Government has certain rights in this invention.

US Referenced Citations (216)
Number Name Date Kind
49167 Stetson Aug 1865 A
988308 Campbell Apr 1911 A
1004257 Higbee Sep 1911 A
1127381 Byrnes Feb 1915 A
1388126 Rohland Aug 1921 A
1436197 Rohland Nov 1922 A
1560690 Housekeeper Nov 1925 A
2011557 Anderegg Aug 1935 A
2057969 Payson Aug 1935 A
2119009 Elias May 1938 A
2122453 Clause Jul 1938 A
2177001 Owen Oct 1939 A
2206558 Bennet Jul 1940 A
2220690 Stupakoff Nov 1940 A
2308918 Hertel et al. Jan 1943 A
2625717 Wampler et al. Jan 1953 A
2708774 Seelen May 1955 A
2730987 Nelson Jan 1956 A
2756467 Etling Jul 1956 A
3232732 Wax Feb 1966 A
3389522 Hordis Apr 1966 A
3611019 Krembs Oct 1971 A
3698878 Hale et al. Oct 1972 A
3778127 Langston Dec 1973 A
3778244 Nedelec Dec 1973 A
3808115 Manion Apr 1974 A
3828960 Walles Aug 1974 A
3865567 Klomp Feb 1975 A
3901997 Groth Aug 1975 A
3902883 Bayer Sep 1975 A
3922705 Yerman Nov 1975 A
3940898 Kaufman Mar 1976 A
3971178 Mazzoni Jul 1976 A
3979668 Samulowitz Sep 1976 A
3990201 Falbel Nov 1976 A
4016644 Kurtz Apr 1977 A
4035539 Luboshez Jul 1977 A
4047351 Derner Sep 1977 A
4060660 Carlson Nov 1977 A
4063271 Bean et al. Dec 1977 A
4089143 Lapietra May 1978 A
4099082 Chodil et al. Jul 1978 A
4130452 Indri Dec 1978 A
4132218 Bennett Jan 1979 A
4186725 Schwartz Feb 1980 A
4204015 Wardlaw et al. May 1980 A
4261086 Giachino et al. Apr 1981 A
4274936 Love Jun 1981 A
4303732 Torobin Dec 1981 A
4355323 Kock Oct 1982 A
4357187 Stanley Nov 1982 A
4427123 Komeda et al. Jan 1984 A
4444821 Young Apr 1984 A
4468423 Hall Aug 1984 A
4486482 Kobayashi Dec 1984 A
4531511 Hochberg Jul 1985 A
4536998 Matteucci et al. Aug 1985 A
4547432 Pitts Oct 1985 A
4649085 Landram Mar 1987 A
4683154 Benson Jul 1987 A
4687687 Terneu Aug 1987 A
4737475 Thomas Apr 1988 A
4780164 Ruckheim Oct 1988 A
4798695 Redel Jan 1989 A
4928448 Phillip May 1990 A
5005557 Bachli Apr 1991 A
5009218 Bachli Apr 1991 A
5014466 Winner May 1991 A
5017252 Aldrich May 1991 A
5032439 Glicksman Jul 1991 A
5083058 Nonomura et al. Jan 1992 A
5085926 Iida Feb 1992 A
5086729 Katigiri Feb 1992 A
5107649 Benson Apr 1992 A
5115299 Wright May 1992 A
5115612 Newton et al. May 1992 A
5118924 Mehra et al. Jun 1992 A
5124185 Kerr Jun 1992 A
5157893 Benson et al. Oct 1992 A
5175975 Benson et al. Jan 1993 A
5227206 Bachli Jul 1993 A
5270084 Parker Dec 1993 A
5302414 Alkhimov et al. Apr 1994 A
5330816 Rusek Jul 1994 A
5370913 Lin Dec 1994 A
5378527 Nakanishi Jan 1995 A
5423119 Yang Jun 1995 A
5433056 Benson Jul 1995 A
5489321 Benson Feb 1996 A
5491953 Lafond Feb 1996 A
5508092 Kimock Apr 1996 A
5525430 Chahroudi Jun 1996 A
5582866 White Dec 1996 A
5589239 Tomono et al. Dec 1996 A
5610431 Martin Mar 1997 A
5625222 Yoneda et al. Apr 1997 A
5643644 Demars Jul 1997 A
5657607 Collins et al. Aug 1997 A
5719979 Furuyama Feb 1998 A
5778629 Howes Jul 1998 A
5789857 Ymaura Aug 1998 A
5811926 Novich Sep 1998 A
5846638 Meissner Dec 1998 A
5855638 Demars Jan 1999 A
5856914 O'Boyle Jan 1999 A
5891536 Collins Apr 1999 A
5897927 Tsai Apr 1999 A
5902652 Collins et al. May 1999 A
5920463 Thomas et al. Jul 1999 A
5937611 Howes Aug 1999 A
5945721 Tatoh Aug 1999 A
5949655 Glenn Sep 1999 A
5950398 Hubbard Sep 1999 A
5982010 Namba et al. Nov 1999 A
5983593 Carbary et al. Nov 1999 A
6007397 Ju Dec 1999 A
6020628 Mravic et al. Feb 2000 A
6052965 Florentin Apr 2000 A
6054195 Collins Apr 2000 A
6071575 Collins Jun 2000 A
6083578 Collins Jul 2000 A
6101783 Howes Aug 2000 A
6114804 Kawase Sep 2000 A
6131410 Swierkowski Oct 2000 A
6139913 Van Steenkiste et al. Oct 2000 A
6141925 Halvorson, Jr. et al. Nov 2000 A
6168040 Sautner et al. Jan 2001 B1
6191359 Sengupta et al. Feb 2001 B1
6291036 Wang Sep 2001 B1
6352749 Aggas Mar 2002 B1
6365242 Veerasamy Apr 2002 B1
6372312 Aggas Apr 2002 B1
6383580 Aggas May 2002 B1
6387460 Shukuri May 2002 B1
6399169 Wang Jun 2002 B1
6416375 Cho Jul 2002 B1
6420002 Aggas et al. Jul 2002 B1
6436492 Landa et al. Aug 2002 B1
6444281 Wang Sep 2002 B1
6468610 Morimoto Oct 2002 B1
6478911 Wang Nov 2002 B1
6479112 Shukuri Nov 2002 B1
6497931 Aggas Dec 2002 B1
6503583 Nalepka et al. Jan 2003 B2
6506272 Aggas Jan 2003 B1
6521988 Hauser et al. Feb 2003 B2
6537121 Baret Mar 2003 B1
6538312 Peterson et al. Mar 2003 B1
6541083 Landa et al. Apr 2003 B1
6541084 Wang Apr 2003 B2
6548895 Benavides et al. Apr 2003 B1
6558494 Wang May 2003 B1
6571580 Lodge Jun 2003 B1
6627814 Stark Sep 2003 B1
6635321 Wang et al. Oct 2003 B2
6637644 Bachli Oct 2003 B2
6639313 Martin et al. Oct 2003 B1
6641689 Aggas Nov 2003 B1
6653724 Kim et al. Nov 2003 B1
6656768 Thomas Dec 2003 B2
6668500 Lamberts Dec 2003 B1
6692600 Veerasamy Feb 2004 B2
6696849 Ban et al. Feb 2004 B2
6701749 Wang et al. Mar 2004 B2
6723379 Stark Apr 2004 B2
6736295 Lin et al. May 2004 B2
6759590 Stark Jul 2004 B2
6763638 Berger, Jr. Jul 2004 B1
6789362 Hessabi Sep 2004 B1
6793990 Sakaguchi Sep 2004 B1
6860075 Bachli Mar 2005 B2
6897125 Morrow et al. May 2005 B2
6924974 Stark Aug 2005 B2
6928776 Hornung Aug 2005 B2
6946171 Aggas Sep 2005 B1
6955026 Misonou Oct 2005 B2
6962834 Stark Nov 2005 B2
6966208 Collins Nov 2005 B1
6974518 Hornung Dec 2005 B2
6974622 Wade Dec 2005 B2
7045181 Yoshizawa May 2006 B2
7081178 Collins Jul 2006 B2
7100343 France Sep 2006 B2
7114306 Minaai Oct 2006 B2
7141130 Minaai Nov 2006 B2
7238546 Stark Jul 2007 B2
7517712 Stark Apr 2009 B2
7832177 Stark Nov 2010 B2
20010020738 Iizima et al. Sep 2001 A1
20020041424 Lynam Apr 2002 A1
20020043046 Cooper et al. Apr 2002 A1
20020113296 Cho et al. Aug 2002 A1
20030188881 Stark Oct 2003 A1
20040020676 Stark Feb 2004 A1
20040104460 Stark Jun 2004 A1
20040111986 Zurhaar Jun 2004 A1
20040161530 Stark Aug 2004 A1
20040187437 Stark Sep 2004 A1
20040188124 Stark Sep 2004 A1
20050067179 Stark Mar 2005 A1
20050138892 Misinou Jun 2005 A1
20050217319 Yoshizawa Oct 2005 A1
20050257877 Stark Nov 2005 A1
20050275079 Stark Dec 2005 A1
20060157274 Stark Jul 2006 A1
20060187608 Stark Aug 2006 A1
20060191215 Stark Aug 2006 A1
20060207218 Minaai et al. Sep 2006 A1
20090032924 Stark Feb 2009 A1
20090074997 Stark Mar 2009 A1
20090324858 Jaeger Dec 2009 A1
20100034996 Mott Feb 2010 A1
20100068561 Rohwer et al. Mar 2010 A1
20100119740 Bettger May 2010 A1
20100175347 Bettger Jul 2010 A1
20100178439 Bettger Jul 2010 A1
Foreign Referenced Citations (7)
Number Date Country
0240584 Oct 1987 EP
0983974 Mar 2000 EP
1544180 Jun 2005 EP
10-297944 Nov 1998 JP
10-330134 Dec 1998 JP
2006121954 Nov 2006 WO
2010019484 Feb 2010 WO
Related Publications (1)
Number Date Country
20100178439 A1 Jul 2010 US
Provisional Applications (1)
Number Date Country
61145095 Jan 2009 US