The herein invention is related to flexible electrically switchable panels or glazing structures and methods of manufacturing such flexible electrically switchable panels or glazing structures.
Great efforts have been made to optimize the manner in which one can control electromagnetic radiation passing through a window, e.g., in residences, commercial buildings, automobiles, etc. Such control may be to provide privacy, reduce glare from ambient sunlight, or to control harmful effects of ultraviolet light. Technology associated with such light control has evolved significantly over the conventional window shade or blind.
One approach to electromagnetic radiation control uses passive films, such as high reflectivity films, heat saving films, and fade-protection films. However, such films generally result in a constant reduction in interior light and loss in visibility. Another approach uses glass panels having radiation transmission characteristics that absorb infrared and ultraviolet wavelengths, while transmitting visible wavelengths.
Further approaches to electromagnetic radiation control use “smart window” technology, wherein light transmission characteristics may be electrically controlled in order to meet lighting needs, minimize thermal load on heating and/or cooling systems, provide privacy within interior spaces of buildings and vehicles, or control detriments associated with ultraviolet light exposure.
One type of smart window technology is based on twisted nematic or super twisted nematic liquid crystal technology. However, in such systems, polarizers are required, resulting in high optical loss, as up to 60% of incident light is absorbed by the polarizers in a non-blocking mode of operation.
Another type of smart window technology is based on polymer dispersed liquid crystal technology (PDLC). In general, PDLC technology involves phase separation of nematic liquid crystal from a homogeneous liquid crystal containing a suitable amount of polymer. The phase separation can be realized by polymerization of the polymer. The phase separated nematic liquid crystal forms micro-sized droplets dispersed in the polymer bed. In the off-state, the liquid crystal molecules within the droplets are randomly oriented, resulting in mismatching of the refractive indexes between the polymer bed and the liquid crystal droplets and hence a translucent or light scattering state. When a suitable electric field is applied, the liquid crystal orients such that the refractive indexes between the polymer bed and the liquid crystal droplets are oriented such that a transparent state results. The main disadvantage of the PDLC technology is the inherent haze caused by the optical index mismatching, particularly at large viewing angles.
An attractive panel switching technology is based on polymer stabilized cholesteric texture (PSCT) liquid crystal technology. For a general introduction to PSCT and related polymer-stabilized liquid crystal technologies, see the “Virtual Textbook” at Case Western Reserve's PLC website: http://plc.cwru.edu/tutorial/enhanced/main.htm, which is incorporated herein by reference. PSCT generally may be formed in “normal” mode, “reverse” mode, or bistable mode. In the normal mode, the liquid crystals are in a focal conic state and scatter light. If an electric field is applied to the liquid crystal via a conductive coating, the liquid crystals orient themselves with the electric field and the panel appears transparent. In the power-OFF state, the panel has a frosted or milky appearance and provides privacy. In the power-ON state the panel is transparent.
PCT patent application number U.S. 00/09184 entitled “Electro-Optical Glazing Structures Having Scattering and Transparent Modes of Operation” is incorporated by reference herein and owned by Reveo, Inc., affiliated with the applicants herein, and relates PSCT glazing structures. Kent State University patents relevant to normal mode PSCT include U.S. Pat. No. 5,437,811 entitled “Liquid Crystalline Light Modulating Device and Material”, U.S. Pat. No. 5,691,795 entitled “Polymer Stabilized Liquid Crystalline Light Modulating Device and Material”, and U.S. Pat. No. 5,695,682 entitled “Liquid Crystalline Light Modulating Device and Material”, all of which are incorporated herein by reference. Philips patents relevant to PSCT glazing structures include U.S. Pat. No. 5,188,760 entitled “Liquid Crystalline Material and Display Cell containing said Material”, which is incorporated herein by reference.
“Reverse mode” PSCT is similar to the normal mode PSCT product, but with some key differences. The liquid crystal panel is transparent in the power-OFF state and scattering/opaque in the power-ON state. Further, an additional orientation layer is generally applied to the substrates before lamination of the liquid crystal mixture. During curing of the panel, which is typically slower than for normal mode product, no electric field is applied to the mixture. Also, the formulation is a modified liquid crystal mixture, and includes higher polymer concentration. Reverse mode PSCT are particularly suitable for automotive type applications when a fail-safe state must be transparent. It is also preferred for use when the main duty of the glazing structure is to act as a transparent window.
Kent State patents relevant to reverse mode PSCT include U.S. Pat. No. 5,691,795 entitled “Polymer Stabilized Liquid Crystalline light Modulating Device and Material” and U.S. Pat. No. 5,437,811 entitled “Liquid Crystalline Light Modulating Device and Material”, both of which are incorporated herein by reference.
Bistable PSCT systems operate in a different manner, whereby a voltage need only be applied to switch from a scattering/opaque state to a transparent state, and vice versa. Such systems are desirable due to low energy requirements, as voltage is applied only for switching operations.
Flexible devices formed of polymer stabilized liquid crystals are described in Hakemi et al. U.S. Pat. No. 6,049,366, incorporated by reference herein, and assigned to Sniaricerche S.c.p.A. Described therein are methods, of making flexible films by lamination wherein the polymer stabilized liquid crystals contain microparticles or microspacers (well known in PDLC art). However, while the lamination process is disclosed, no method is taught therein to facilitate exposing the conductive surfaces, cutting the laminate (especially during a web process or a web process having an electric field applied), or forming various shapes.
While these references disclose various materials, structures, and processes useful to preparation of flexible glazing structures, there nonetheless remains a need for improved processing techniques to realize these flexible glazing structures at a commercially feasible cost range. Process improvements are particularly required to increase speed of production of flexible glazing structures. Problems encountered for realizing commercial products include exposing of conductors for electrical connection, cutting laminated structures, particularly when a voltage is required during cutting processes, and cutting and shaping the flexible glazing structures to desired shapes and dimensions. No conventional processing techniques address these problems.
The above-discussed and other problems and deficiencies of the prior art are overcome or alleviated by the several methods and apparatus of the present invention for.
The present invention relates generally to solving the above-mentioned problems. Particularly, methods and processes are disclosed that enable fast and efficient cutting and shaping of flexible glazing structures into any desired shape and size.
In certain embodiments, methods and processes are disclosed whereby barrier lines are formed to define regular or irregular cutting lines and seals.
In certain embodiments, methods and processes are disclosed whereby notches are defined to expose upper and lower substrate conductive surfaces.
In certain embodiments, methods and processes are disclosed whereby glazing structures of irregular shapes and sizes are formed.
The above-discussed and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description and drawings.
For a more complete understanding of the present invention, the following Detailed Description of the Invention should be read in conjunction with the following Drawings, wherein:
Herein disclosed is a method of manufacturing flexible glazing structures, and more generally a method of manufacturing flexible liquid crystal cells. The structures formed according to the present invention may be useful as laminates upon conventional windows or glass substrates, stand alone glazing structures (e.g., wherein some degree of flexibility of the glazing structure is desirable, as in eyeglasses or face shields), or flexible displays. The structure may be retrofitted on existing interior and exterior architectural glazings, automotive windows, and other interior glazings. A transparent adhesive may be used to stick the panel to the window, which may be integral with the panel or separately provided. The panel may also be applied to original windows before installation. Many applications of the structure formed according to the present invention will be apparent to one skilled in the art.
The embodiments herein may be applicable to most type of liquid crystal cells, and in particular to PSCT based liquid crystal cells, including normal-mode, reverse-mode and bistable-mode.
In general, and referring to
Application of the electric field and curing may occur simultaneously to achieve the desired properties of the liquid crystal material, i.e., to form a polymer network to stabilize the liquid crystals in a focal conic state.
In certain preferred embodiments, materials are selected to allow room temperature coating, lamination or both.
The substrates may be the same or different, and may be selected from the group consisting of plastics of plastic-on-glass, as are known to those skilled on the art of flexible LCDs. Suitable substrates include polyethyleneterephthalate (PET), polybutyleneterphthalate, polyether sulfones (PES), polyamides, polycarbonates, and polypropylene.
An electrode layer is formed on each cell. In certain embodiments, the electrode layer is formed on the substrate prior use in the glazing structure fabrication process. However, it is understood that the electrode layer may be applied in the same fabrication process at a preceding step. The electrodes may be the same or different, and may be selected from the group consisting of tin oxides, indium tin oxide (ITO), thin films of other high conductivity metals such as gold, titanium or the like, or electrically conductive polymers. The electrodes may be formed on the substrates by any conventional techniques, such as sputtering, electron-beam vacuum deposition, ion-plating, chemical vapor deposition, or other, coating techniques.
The form and dimensions of the substrates may be selected based on the desired properties of the glazing structure (e.g., desired transparency and flexibility, ambient operating conditions, desired voltage). Generally, the form and dimensions are suitable for laminating and cutting as described herein. The substrates may be in the form of sheets, plates, or film. Films are generally preferred as they may be readily dispensed and handled on a web process on rolls. The thickness of such substrates are not limited, but are generally about 20 μm to about 1000 μm. In certain embodiments, the substrate may be pre-treated with a solvent wipe or buffing step.
Thus, in certain preferred embodiments, the conductive substrates comprise commercially available ITO) coated PET. In other preferred embodiments, the conductive substrates comprise a conductive polymeric coating on PET (e.g., as available from Agfa and Avery Dennison). In most preferred embodiments, the PET thickness is about 4 mil to about 7 mil (about 100 μm to about 175 μM).
Also, as described generally above, spacer particles (3) may be employed. Such particles may be any dimension as in known in the art to impart the desired cell spacing between substrates for liquid crystal material. The spacer particles may be any form or material that is compatible with the system. Such spacer particles may alternatively, or in conjunction with discrete application, be mixed with the liquid crystal formulation before the coating step. In certain preferred embodiments the spacer particles comprise glass beads or glass rods having diameters of about 20 μm to about 30 μm).
Typically, the substrate edges are wiped clean and sealed with adhesive prior to application of electrical contacts to the conductive coatings on the exposed substrate surfaces.
The liquid crystal formulation generally comprises chiral and/or nematic liquid crystal material; a prepolymer material, preferably non-mesogenic, organic monomers, in a quantity of about 1% to about 8% by weight, preferably about 2% to about 4% by weight; photoinitiator material. Optionally, dyes and other additives may be included for color (dichroic dyes are preferred). Not intending to be limiting, the aforementioned PCT patent application number U.S. 00/09184, and U.S. Pat. Nos. 5,437,811, 5,691,795, 5,695,682,5,188,760, 6,049,366, all of which are incorporated by reference herein, describe various PSCT compositions that may be used to fabricate cells that will benefit from the methods of the present invention.
The above described process for forming flexible glazing structures generally results in continuous ribbons of laminate of fixed width, the web width. This continuous ribbon must be cut into shorter lengths and sealed. It would be desirable to provide such a process wherein shapes may be pre-formed in the web, particularly to complement the need for a wider range of product sizes and shapes. This process preferably enables high line speeds, a range of shapes and sizes, and low cost production.
Obstacles to overcome in order to provide such a process include:
Referring now to
In one example, the glazing structure, once coated, laminated and cured, can be cut with scissors and subsequently sealed after cutting without damage to the panel. The spacer and liquid crystal formulation tend to open the cut edges apart after cutting is complete. The open edge can then be sealed with adhesive. For example, the edge may be dipped in adhesive, adhesive tape may be applied to edges, or other known sealing technique may be employed.
However, if the cutting step is carried out in the above-described process when an electric field is applied to the panel, the two substrates may likely short as they are pressed together during cutting.
Further embodiments describe methods to eliminate shorting during the cutting step, even if the cutting is performed with an applied electric field (e.g., with an electrically insulated cutting tool). In certain embodiments, the laminate is cut after the liquid crystal material is cured. In further embodiments, the laminate is cut before the liquid crystal material is cured or applied.
Referring to
In one embodiment, as shown in
After coating with liquid crystal material, laminating the second conductive substrate 12, and curing, the laminate can be cut along the barrier line 15, shown in
In further embodiments, challenges are overcome to cut the glazing structure to custom shapes. To achieve non-standard widths, i.e., widths less than the web width, a key obstacle is to provide access to electrical contact areas on both substrates. As shown in
Another techniques for creating custom shapes generally results in a panel that can be switched by connecting the positive terminal of the driver to an exposed notch on the upper substrates and the negative terminal to a notch on the lower substrate. For example, the barrier method shown with respect to
Referring now to
Referring now to
An alternative method to shear panels from a continuous web may be without adhesive or barrier materials prior to lamination. After lamination, the desired panel shape is cut out. This cutting step may require cooling or a special cutting technique to eliminate electrical shorting. The upper and lower substrates are sheared to create an offset area, as shown in
Referring to
Referring now to
Referring to
In a further method, a portion of the operation may occur at low temperatures. By temporarily increasing the rigidity of the liquid crystal layer during cutting, the likelihood of electrical shorting may be reduced. The laminate is frozen or cooled such that the viscosity of the liquid crystal material is increased. Thus, the laminate may be cut without the two conductive (e.g., ITO) layers contacting each other.
In another method, and referring now to
In a further embodiment, and referring now to
In a further embodiment, and referring now to
Referring now to
While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
Number | Date | Country | Kind |
---|---|---|---|
60400762 | Aug 2002 | US | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/24515 | 8/4/2003 | WO | 6/1/2005 |