Many internal surgical procedures require the removal of tissue as part of the surgical procedure. The removal of such tissue invariably results in severing multiple blood vessels leading to localized blood loss. Significant blood loss may compromise the patient's health by potentially leading to hypovolemic shock. Even minor blood loss may complicate the surgery by resulting in blood pooling into the surgical site and thereby obscuring the visibility of the tissue from the surgeons and surgical assistants. The problem of blood loss into the surgical site may be especially important in broad-area surgeries, such as liver resections, in which multiple blood vessels may be severed during the procedure.
In one aspect, an electrosurgical instrument may include an end effector. The end effector may include a first body, a first electrode on the left side of the first body, a second electrode on the right side of the first body, and a fluid aspiration port in fluid communication with a fluid path. The first and second electrodes may be configured to receive electrosurgical energy to treat tissue in a target treatment zone. The fluid aspiration port may be configured to remove a material from the target treatment zone.
In one aspect of the electrosurgical instrument, the end effector may further include a cavity disposed between the first electrode and the second electrode, a first irrigation channel on the left side of the first body, a second irrigation channel on the right side of the first body, a first fluid discharge port on the first electrode, and a second fluid discharge port on the second electrode. The first fluid discharge port may be in fluid communication with the first irrigation channel. The second fluid discharge port may be in fluid communication with the second irrigation channel. The fluid aspiration port may be disposed at the proximal end of the cavity between the first electrode and the second electrode. The first body may be made of a flexible low durometer material.
In one aspect of the electrosurgical instrument, each of the first and second electrodes comprises a thin conductive material that is insert-molded into the first body.
In one aspect of the electrosurgical instrument, each of the first and second irrigation channels is formed inside the first body.
In one aspect of the electrosurgical instrument, the first body may be made of a flexible low durometer material, where the first body defines a surface at a distal end of the first body and the fluid aspiration port may be disposed in a center portion of the surface at the distal end of the first body.
In one aspect of the electrosurgical instrument, the first and second electrodes are disposed in the first body. A distal end of each of the first and second electrodes is exposed on the surface at the distal end of the first body.
In one aspect of the electrosurgical instrument, the fluid aspiration port may be further configured to deliver an irrigation fluid to the target treatment zone through the fluid path.
In one aspect of the electrosurgical instrument, the first body has an organic shape.
In one aspect of the electrosurgical instrument, the first body may include a first portion covering the first electrode on the left side of the first body, a second portion covering the second electrode on the right side of the first body, and a third portion disposed between the first portion and the second portion. A distal portion of the first electrode and a distal portion of the second electrode may extend beyond a distal end of the first body. The first electrode, the second electrode, and the first body may be formed by a co-extrusion process.
In one aspect of the electrosurgical instrument, the end effector may further include a second body. The first body may be included in the second body. The fluid aspiration port may be formed between the second body and the third portion of the first body.
In one aspect of the electrosurgical instrument, the fluid aspiration port may be formed on a surface at a distal end of the third portion of the first body.
In one aspect of the electrosurgical instrument, the first body may comprise a PolyEther Ether Ketone (PEEK) plastic material or a Polytetrafluoroethylene (PTFE) material.
In one aspect of the electrosurgical instrument, the fluid path may include a clogged tissue remover with a hollow body and a prong disposed at a distal end of the hollow body.
In one aspect of the electrosurgical instrument, the clogged tissue remover may be extendable with respect to the fluid path.
In one aspect of the electrosurgical instrument, the fluid path may be extendable with respect to a shaft in the electrosurgical instrument and the clogged tissue remover is stationary with respect to the shaft. When the fluid path is retracted with respect to the shaft, the clogged tissue remover may be extended with respect to the fluid path, which may allow the clogged tissue remover to remove clogged tissue in the fluid path.
In one aspect of the electrosurgical instrument, the fluid path may be coupled to a detent mechanism configured to releasably hold the fluid path between a first position and a second position. The clogged tissue remover may be extended with respect to the fluid path to remove clogged tissue in the fluid path when the detent mechanism is in the first position, and the clogged tissue remover may be retracted with respect to the fluid path when the detent mechanism is in the second position.
In one aspect of the electrosurgical instrument, the electrosurgical instrument may further include a shaft, where the end effector is removably engaged with the shaft.
In one aspect of the electrosurgical instrument, the shaft may include a first receptacle and a second receptacle that are configured to receive the first and second electrodes, respectively. The first and second electrodes are spring-loaded.
In one aspect of the electrosurgical instrument, the electrosurgical instrument may further include a fluid discharge port formed on the first body and in fluid communication with a first irrigation channel in the end effector. The fluid discharge port may be configured to deliver an irrigation fluid to the target treatment zone. A second irrigation channel in the shaft may be removably engaged with the first irrigation channel.
In one aspect of the electrosurgical instrument, at least one of the first and second electrodes may include a flexible material and a thin conductive material coated over the flexible material, which allows the at least one of the first and second electrodes to deform to conform to a shape of tissue in direct contact with the at least one of the first and second electrodes.
In one aspect of the electrosurgical instrument, a distal portion of the at least one of the first and second electrodes may be coupled to a linkage moveable between a first position and a second position. The distal portion of the at least one of the first and second electrodes may form a convex shape when the linkage is in the first position and the distal tip portion of the at least one of the first and second electrodes may form a concave shape when the linkage is in the second position.
In one aspect, an electrosurgical instrument may include a shaft and a mesh end effector. The mesh end effector may include at least one insulated weft wire and a plurality of insulated warp wires. Each of the plurality of insulated warp wires may be alternately woven above and below the at least one insulated weft wire. Each of the plurality of insulated warp wires may define at least one high point where each of the plurality of insulated warp wires is woven above the at least one insulated weft wire. The at least one high point in each of the plurality of insulated warp wires may expose a non-insulated conductive site to provide electrosurgical energy to a target tissue.
In one aspect of the electrosurgical instrument, a polarity of each of the plurality of insulated warp wires may alternate so that the polarity of each of the plurality of insulated warp wires is opposite to an adjacent insulated warp wire.
In one aspect of the electrosurgical instrument, the mesh end effector may be in a shape selected from the group consisting of a flat, a dome, and a rod.
In one aspect, a method to manufacture an electrosurgical instrument may include providing a plurality of layers, where each of the plurality of layers includes a signal wire disposed in a top portion of each of the plurality of layers and a plurality of dot wires extending down from the signal wire, wherein the signal wire is configured to deliver electrosurgical energy to the plurality of dot wires. Then, the plurality of layers may be arranged. A molding material may be overmolded onto the arranged plurality of layers. Then, a bottom portion of the overmolded plurality of layers may be cut to expose a cut end of each of the plurality of dot wires. The overmolded plurality of layers may define a first bottom surface that is formed after the cutting. The first bottom surface of the overmolded plurality of layers may form an array of the cut ends of the plurality of dot wires.
In one aspect of the method, a polarity of each of the plurality of layers may alternate so that the polarity of each of the plurality of layers is opposite to an adjacent layer.
In one aspect of the method, the overmolded plurality of layers may define a second bottom surface that is formed after the overmolding but before the cutting. Cutting the bottom portion of the overmolded plurality of layers may comprise grinding the second bottom surface of the overmolded plurality of layers to expose the cut end of each of the plurality of dot wires.
The features of the various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:
Applicant of the present application owns the following patent applications filed Sep. 29, 2017 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 15/720,810, titled BIPOLAR ELECTRODE SALINE LINKED CLOSED LOOP MODULATED VACUUM SYSTEM, by inventors David A. Witt et al., now U.S. Patent Application Publication 2019/0099209.
U.S. patent application Ser. No. 15/720,822, titled SALINE CONTACT WITH ELECTRODES, by inventors Mark A. Davison et al., now U.S. Patent Application Publication No. 2019/0099212.
U.S. patent application Ser. No. 15/720,831, titled SYSTEMS AND METHODS FOR MANAGING FLUID AND SUCTION IN ELECTROSURGICAL SYSTEMS, by inventors David A. Witt et al., now U.S. Pat. No. 11,033,323.
Typically, an electrosurgical cautery device is used to seal the blood vessels, thereby preventing blood loss. Such electrosurgical cautery devices may include bipolar devices that incorporate a pair of electrodes that are powered by radiofrequency (RF) energy to heat and cauterize the tissue and blood vessels. Direct application of the electrodes to the tissue may lead to unwanted effects such as localized tissue charring and fouling of the electrodes by charred tissue matter sticking to them.
A method to reduce charring and fouling may include introducing a saline fluid into the surgical site to irrigate the site. Alternatively, the saline fluid may be heated by the electrodes to form a steam to cauterize the tissue. In this manner, the tissue is not placed in direct contact with the electrodes and electrode fouling is prevented. Although a saline fluid may be used, any electrically conductive fluid (e.g., an aqueous mixture containing ionic salts) may be used to promote steam-based cauterization. After the steam cauterizes the tissue by transferring its heat thereto, the steam may condense to water. The resulting water may be used to clear the surgical site of unwanted material such as the remnants of the cauterized tissue. An aspirator may be used to remove the mixture of water and tissue remnants. It may be difficult and inefficient for the surgeon to cauterize and aspirate the tissue especially if separate devices are required. Thus, a device incorporating the cauterization and aspiration functions is desirable.
The incorporation of both a saline source and an evacuation source for aspiration into a bipolar electrosurgical cautery instrument may be problematic. If the aspirator operates continuously, then the saline may not reside in contact with the electrodes long enough to be heated and to form steam. If the saline source operates continuously, then excess saline may be delivered to the surgical site and obscure the area from the surgeon. It is possible to have a device with multiple actuators to allow the surgeon to selectively emit a fluid to be vaporized by the electrodes and evacuate the surgical site. However, such multiple actuators may be clumsy to use and lead to hand and finger fatigue during a long surgical procedure.
Therefore, it is desirable to have a device that permits a surgeon to effectively and efficiently provide steam cauterization and tissue mixture aspiration to a surgical site without requiring excessive manipulation of the surgical device.
In some non-limiting examples, an electrosurgical device may incorporate functions to cauterize and aspirate tissues during a broad-area surgical procedure. In some electrosurgical devices, energized electrodes may be used to perform the cauterization procedure. However, as disclosed above, the electrodes of such devices may be susceptible to fouling by the tissue contacted by the electrodes during cauterization. It may be appreciated that cauterization of tissue may be accomplished by exposing the tissue to a heated material other than the electrodes. As also disclosed above, in one non-limiting example, a fluid, such as a saline fluid, may be heated by the electrodes and the heated fluid or steam may then be used to cauterize the tissue. The saline, or other conductive fluid, may be heated by an electrical current flowing between the electrodes. In this manner, the temperature used to cauterize the tissue may be limited by the temperature of the steam (e.g., at around 100° C.) thereby reducing the potential of tissue charring. Further, the surrounding tissue may be moistened by the steam, thereby preventing desiccation due to their proximity to a heated device. Additionally, the steam, upon losing heat by contacting the tissue, may condense to water, and the water may then be used to irrigate the surgical site. In this manner, a saline fluid may be used for the dual purposes of cauterization and irrigation, thereby increasing the efficiency of the cauterization procedure.
The electrosurgical device 100 may include a housing 105 with a shaft 135 extending distally from the housing 105. The housing 105 may include, on a proximal end, a proximal fluid source port 115 and a proximal fluid evacuation port 110. In some electrosurgical device systems, the proximal fluid source port 115 may be placed in fluid communication with a source of a fluid, for example saline, buffered saline, Ringer's solution, or other electrically conducting fluids such as aqueous fluids containing ionic salts. The fluid source may operate as a gravity feed source or it may include components to actively pump the fluid into the proximal fluid source port 115. An actively pumping fluid source may include, without limitation, a power supply, a pump, a fluid source, and control electronics to allow a user to actively control the pumping operation of the actively pumping fluid source. In some electrosurgical device systems, the fluid evacuation port 110 may be placed in fluid communication with a vacuum source. The vacuum source may include a power supply, a pump, a storage component to store material removed by the vacuum source, and control electronics to allow a user to actively control the pumping operation of the vacuum source.
In addition, the housing 105 may include a connector 116 to which a cable 117 of an energy source 120 may be attached. The energy source 120 may be configured to supply energy (e.g., RF energy) to the electrodes 145a,b. The energy source 120 may include a generator configured to supply power to the electrosurgical device 100 through external means, such as through the cable 117. In certain instances, the energy source 120 may include a microcontroller coupled to an external wired generator. The external generator may be powered by AC mains. The electrical and electronic circuit elements associated with the energy source 120 may be supported by a control circuit board assembly, for example. The microcontroller may generally comprise a memory and a microprocessor (“processor”) operationally coupled to the memory. The electronic portion of the energy source 120 may be configured to control transmission of energy to electrodes 145a,b at the end effector 140 of the electrosurgical device 100. It should be understood that the term processor as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits. The processor may be a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system. The energy source 120 may also include input devices to allow a user to program the operation of the energy source 120.
The housing 105 may also include one or more activation devices to permit a user to control the functions of the electrosurgical device 100. In some non-limiting examples, the electrosurgical device 100 may include a metering valve 125 that may be activated by a user to control an amount of fluid flowing through the electrosurgical device and provide, at the distal end, an amount of the fluid to the end effector 140. In some non-limiting examples, the metering valve 125 may also permit the user to control an amount of energy supplied by the energy source 120 to the electrodes 145a,b at the end effector 140. As an example, the metering valve 125 may comprise a screw activation pinch valve to regulate the flow of fluid through the electrosurgical device 100. Additionally, the metering valve 125 may have a push-button activation function to permit current to flow from the energy source 120 to the electrodes 145a,b upon depression of the push-button by a user. It may be recognized that in some non-limiting examples, the housing 105 may include a metering valve 125 to allow regulation of fluid flow through the electrosurgical device 100 and a separate energy control device to control the amount of current sourced to the electrodes 145a,b.
The housing 105 may also be attached to a shaft 135 at a distal end of the housing 105. An end effector 140 may be associated with a distal end of the shaft 135. The end effector 140 may include electrodes 145a,b that may be in electrical communication with the energy source 120 and may receive electrical power therefrom. In some non-limiting examples, a first electrode 145a may receive electrical energy of a first polarity (such as a positive polarity) from the energy supply 120, and the second electrode 145b may receive electrical energy of a second and opposing polarity (such as a negative polarity) from the energy supply 120. Alternatively, the first electrode 145a may be connected to a ground terminal of the energy supply 120, and the second electrode 145b may be connected to a varying AC voltage terminal of the energy supply 120. The electrodes 145a,b may extend beyond the distal end of the shaft 135. The extended ends of the electrodes 145a,b may be separated by a diverter 155. The diverter 155 may contact the first electrode 145a at a first edge of the diverter 155, and the diverter 155 may contact the second electrode 145b at a second edge of the diverter 155. The diverter 155 may comprise an electrically insulating material and/or a heat resistant material, which may include, without limitation, a plastic such as a polycarbonate or a ceramic. The diverter 155 may be deformable or non-deformable. In some non-limiting examples, the housing 105 may include a mechanism to control a shape of a deformable diverter 155.
The end effector 140 may also include a fluid discharge port 150 that may be in fluid communication with the fluid source port 115 through a first fluid path. The first fluid path, such as a source fluid path (see 315 in
In some non-limiting examples, the fluid aspiration port 165 may be formed at the distal end of an aspiration tube 160. The aspiration tube 160 may also form part of the aspirated fluid path 210. The aspiration tube 160 may be located within the shaft 135 or it may be located outside of and beneath the shaft 135. An aspiration tube 160 located outside of the shaft 135 may be in physical communication with an external surface of the shaft 135. In some examples, the aspiration tube 160 may have a fixed location with respect to the shaft 135. In some alternative examples, the aspiration tube 160 may be extendable in a distal direction with respect to the shaft 135. Extension of the extendable aspiration tube 160 may be controlled by means of an aspiration tube control device. As one non-limiting example, the aspiration tube control device may comprise a slide switch 130. The slide switch 130, in a first position (e.g., in a proximal position), may cause the aspiration tube 160 to remain in a first or retracted position in which the aspiration port 165 is located essentially below the fluid discharge port 150. However, the slide switch 130 in a second position (e.g., in a distal position), may cause the aspiration tube 160 to extend in a distal direction to a fully extended position so that the aspiration port 165 is located distal from and beneath the fluid discharge port 150. In one example, the slide switch 130 may preferentially position the aspiration tube 160 in one of two positions, such as the retracted position and the fully extended position. It may be recognized, however, that the slide switch 130 may also permit the aspiration tube 160 to assume any position between the retracted position and the fully extended position. Regardless of the position of the aspiration tube 160 as disclosed above, the aspiration port 165 may be maintained at a location beneath a plane defined by the top surface of the diverter 155. In this manner, the diverter 155 is configured to prevent fluid emitted by the fluid discharge port 150 from directly being removed at the aspiration port 165.
Additionally, the metering valve 125 may include additional components 225 that may be used to control an electrical connection between the electrodes 145a,b and the energy source 120. For example, an RF switch 530 may be used to form the electrical connections between the electrodes 145a,b and the energy source 120. In one example, the RF switch 530 may be a momentary contact switch that connects the electrodes 145a,b and the energy source 120 only when actively depressed by a user. Alternatively, the RF switch 530 may be a latching push button switch that may be sequentially activated (push-to-make) and deactivated (push-to-break) upon being depressed. A closure spring 534 may be included among the switch components 225 to return the switch button 525 to an undepressed state when a user is not actively depressing the switch button 525.
The end effector 1010 may also include a body 1020. The first electrode 145a may be located on the right side of the body 1020 and the second electrode 145b may be located on the left side of the body 1020. The body 1020 may also include a first irrigation channel formed inside the body 1020, for example, in a center portion 1030 of the body 1020. As illustrated in
In some examples, the shaft 1020 may include a second irrigation channel 1040. The second irrigation channel 1040 in the shaft 1020 may be removably engaged with the first irrigation channel in the end effector 1010. For example, a distal portion of the second irrigation channel 1040 may be configured to be connected to a proximal portion of the first irrigation channel. When the electrodes 145a,b are engaged with the receptacles 1060a,b, the second irrigation channel 1040 may also become engaged with the first irrigation channel so that an irrigation fluid from a fluid source port (e.g., fluid source port 115) may be delivered to the first irrigation channel through the second irrigation channel 1040. The second irrigation channel 1040 may be released from the first irrigation channel when the electrodes 145a,b are released from the receptacles 1060a,b. In some examples, the second irrigation channel 1040 may be part of a source fluid path (e.g., source fluid path 315) connected to the fluid source port. In some examples, the irrigation fluid may be water, saline, buffered saline, Ringer's solution, or other electrically conducting fluids such as aqueous fluids containing ionic salts.
The clogged tissue remover 1110 may be extendable in a distal direction with respect to the aspiration tube 1100. In
In some examples, the aspiration tube 1100 may be extendable in a distal direction with respect to a shaft (e.g., shaft 135) and the clogged tissue remover 1110 may be stationary with respect to the shaft. For example, extension of the extendable aspiration tube 1110 may be controlled by means of an aspiration tube control device as discussed above with respect to
In other examples, the aspiration tube control device may comprise a detent mechanism 1150 as illustrated in
In some examples, when the aspiration tube 1110 and/or detent body 1155 are in a retracted position, the first rib 1162 may be located distally from the detent legs 1170a,b as illustrated in
When the aspiration tube 1100 is retracted, the clogged tissue remover 1110 may be extended with respect to the aspiration tube 1100. For example, when the aspiration tube 1100 and/or the detent body 1155 are in the retracted position, the clogged tissue remover 1110 may be caused to be exposed outside the aspiration port 1105. The clogged tissue remover 1110 may be retracted with respect to the aspiration tube 1100 when the aspiration tube 1100 and/or the detent body 1155 are in the extended position. In some examples, the aspiration tube 1100 may be stationary, for example, with respect to a shaft (e.g., shaft 135) and the clogged tissue remover 1110 may be moveable/extendable in a distal direction with respect to the shaft and the aspiration tube 1100.
In some examples, the flexible shaft 1250 may be similar to the shaft 135. The flexible shaft 1250 may be made from any appropriate flexible/deformable materials, such as rubber, plastic, a memory foam material, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material. In some examples, the flexible shaft 1250 may be coupled to a housing (e.g., housing 105). In other examples, the flexible shaft 1250 may be coupled to the housing through a rigid shaft 1255. The rigid shaft 1255 may be made from any appropriate stiff material, such as metal, plastic, and/or wood.
In some examples, the electrosurgical device 1200 may include a first articulation band 1260a and a second articulation band 1260b. The articulation bands 1260a,b may extend from a housing (e.g., housing 105) through the flexible shaft 1250 and extend distally and protrude from the distal end of flexible shaft 1250. Alternatively, the articulation bands 1260a,b may extend only through the shaft 1250 and extend distally and protrude from the distal end of the flexible shaft 1250. In some examples, the first articulation band 1260a may be placed on the right side of the flexible shaft 1250 and the second articulation band 1260b may be placed on the left side of the flexible shaft 1250. The first articulation band 1260a may include a first flange 1270a at a distal portion thereof. Similarly, the second articulation band 1260b may include a second flange 1270b at a distal portion thereof. The first and second flanges 1270a,b may be anchored to the end effector 1210 as illustrated in
The articulation bands 1260a,b may be configured to articulate the end effector 1210 by retracting/pulling proximally at least one of the articulation bands 1260a,b. For example, when the first articulation band 1260a on the right side of the flexible shaft 1250 is retracted/pulled, the flexible shaft 1250 and/or the end effector 1210 may be articulated to the right. When the second articulation band 1260b on the left side of the flexible shaft 1250 is retracted/pulled, the flexible shaft 1250 and/or the end effector 1210 may be articulated to the left. In some examples, the articulation bands 1260a,b may be placed on the upper portion of the flexible shaft 1250 as illustrated in
In some examples, the flexible shaft 1350 may be similar to the shaft 135. The flexible shaft 1350 may be made from any appropriate flexible/deformable materials, such as rubber, plastic, a memory foam material, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material. In some examples, the flexible shaft 1350 may be coupled to a housing (e.g., housing 105). In other examples, the flexible shaft 1350 may be coupled to the housing through a rigid shaft 1355. In some examples, the rigid shaft 1355 may be placed inside the flexible shaft 1350 at a proximal portion of the flexible shaft 1350 as illustrated in
In some examples, the electrosurgical device 1300 may include an articulation wire 1360. The articulation wire 1360 may extend from a housing (e.g., housing 105) through the flexible shaft 1350/rigid shaft 1355. In some examples, the articulation wire 1360 may be placed inside the irrigation channel 1335. In other examples, the articulation wire 1360 may be placed in any other suitable place in the shafts 1350, 1355. The articulation wire 1360 may be curved or include a bend as illustrated in
The articulation wire 1360 may be extendable in a distal direction with respect to the flexible shaft 1350 and/or the rigid shaft 1355. In some examples, as the articulation wire 1360 extends distally passing beyond a certain point (e.g., a boundary 1352 between the flexible shaft 1350 and the rigid shaft 1355), the flexible shaft 1350 may be articulated along the shape of the articulation wire 1360. When the articulation wire 1360 is retracted, for example, back into the rigid shaft 1355, the flexible shaft 1350 may return to its normal shape (e.g., straight).
In some examples, the articulation wire 1360 may be made from any appropriate stiff materials, such as metal, plastic, or wood. In some examples, the bending angle of the articulation wire 1360 may be in the range of about 0 to 180 degrees, preferably in the range of about 0 to 120 degrees, more preferably in the range of about 0 to 90 degrees. In some examples, the flexible shaft 1350 and/or the rigid shaft 1355 may be rotatable up to 360 degrees, which may allow full articulation to any anatomical structure nearby in the operating field. In some examples, one or more stiffening rings may be attached to the articulation wire 1360 to add stiffness to the flexible shaft 1350.
In some examples, the flexible shaft 1450 may be similar to the shaft 1350. The flexible shaft 1450 may be made from any appropriate flexible/deformable materials, such as rubber, plastic, a memory foam material, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material. In some examples, the flexible shaft 1450 may be coupled to a housing (e.g., housing 105). In other examples, the flexible shaft 1450 may be coupled to the housing through a rigid shaft 1455. In some examples, the rigid shaft 1455 may be placed inside the flexible shaft 1450. The rigid shaft 1455 may be made from any appropriate stiff material, such as metal, plastic, and/or wood.
In some examples, the electrosurgical device 1400 may include an articulation wire 1460. The articulation wire 1460 may extend from a housing (e.g., housing 105) through the flexible shaft 1450/rigid shaft 1455. In some examples, the articulation wire 1460 may be conductive and coupled to the second electrode 1420b at a distal end of the articulation wire 1460 as illustrated in
The articulation wire 1460 may be curved or include a bend as articulation wire 1360. Therefore, the flexible shaft 1450 may be curved or bent along the shape of the articulation wire 1460. In some examples, the rigid shaft 1455 inside the flexible shaft 1450 may be extendable in a distal direction with respect to the flexible shaft 1450. The rigid shaft 1455 may extends distally with respect to the flexible shaft 1450 to remove the curve or bend from the articulation wire 1460, straitening the flexible shaft 1450. When the rigid shaft 1455 is retracted proximally with respect to the flexible shaft 1450, the flexible shaft 1450 may be curved or bent along the shape of the articulation wire 1460 again.
In some examples, the articulation wire 1460 may be made from any appropriate deformable stiff material, such as metal or plastic. In some examples, the bending angle of the articulation wire 1460 may be in the range of 0 to 180 degrees, preferably in the range of about 0 to 120 degrees, more preferably in the range of 0 to 90 degrees. In some examples, the flexible shaft 1450 and/or the rigid shaft 1455 may be rotatable up to 360 degrees, which may allow full articulation to any anatomical structure nearby in the operating field.
The electrodes 1530a,b may be in electrical communication with an energy source (e.g., energy source 120), for example, through conductive wires. For example, the second electrode 1530b may be connected to the energy source through a conductive wire 1565. In some examples, the first electrode 1530a may receive electrical energy of a first polarity (such as a positive polarity) from the energy source and the second electrode 1530b may receive electrical energy of a second and opposing polarity (such as a negative polarity) from the energy source. Alternatively, the first electrode 1530a may be connected to a ground terminal of the energy source, and the second electrode 1530b may be connected to a varying AC voltage terminal of the energy source. The first and second electrodes 1530a,b may be configured to receive electrosurgical energy to treat tissue in a target treatment zone.
In some examples, the first electrode 1530a may be placed on the right side of the body 1520 and the second electrode 1530b may be placed on the left side of the body 1520 as illustrated in
In some examples, the body 1520 may include a cavity or hole 1540 disposed between the first electrode 1530a and the second electrode 1530b. The aspiration port 1535 may be disposed at a proximal end of the cavity 1540 and face in a distal direction, which may allow the aspiration port 1535 to face the target treatment zone, removing materials (e.g., cut tissue or fluid) near the target treatment zone during operation. In other examples, the aspiration port 1535 may be disposed at any other suitable place of the end effector 1500. The aspiration port 1535 may be in fluid communication with an aspiration channel (e.g., aspiration channels 1345, 1445) and coupled to an evacuation port (e.g., evacuation port 110) through the aspiration channel.
In some examples, the body 1520 may include one or more fluid discharge ports 1550a, 1550b, 1555a,b, 1570 in fluid communication with one or more irrigation channels 1560. In some examples, one or more fluid discharge ports 1550a,b may be formed in the first and/or second electrodes 1550a,b on the top surface of the body 1520. One or more fluid discharge ports 1555a,b also may be formed on the distal end of the body 1520. Some fluid discharge ports 1570 may be formed on the bottom surface of the body 1520.
In some examples, the body 1520 may include a first irrigation channel and a second irrigation channel 1560. The first and second irrigation channels may be formed inside the body 1520, for example, under the first and second electrodes 1550a,b, respectively. In some examples, the irrigation channels 1560 may be molded into the body 1520. The fluid discharge ports 1550a,b, 1555a,b, and/or 1570 formed in the electrodes 1530a,b, and/or the irrigations channels 1560 formed under the electrodes 1530a,b may facilitate the provision of the irrigation fluid (e.g., saline fluid, water) to metal contacts and target treatment region. In other examples, the irrigation channels may be formed in any other suitable place of the body 1520. The fluid irrigation channels 1560 may be in fluid communication with a fluid path (e.g., source fluid path 315) in the shaft 1510. In some examples, the fluid irrigation channels 1560 may be part of the fluid path in the shaft 1510. The fluid path may be coupled to a fluid source port (e.g., fluid source port 115).
As illustrated in
The electrodes 1630a,b may be in electrical communication with an energy source (e.g., energy source 120), for example, through conductive wires. In some examples, the first electrode 1630a may receive electrical energy of a first polarity (such as a negative polarity) from the energy source and the second electrode 1630b may receive electrical energy of a second and opposing polarity (such as a positive polarity) from the energy source. Alternatively, the first electrode 1630a may be connected to a ground terminal of the energy source, and the second electrode 1630b may be connected to a varying AC voltage terminal of the energy source. The first and second electrodes 1630a,b may be configured to receive electrosurgical energy to treat tissue in a target treatment zone.
In some examples, the first electrode 1630a may be placed on the right side of the body 1620 and the second electrode 1630b may be placed on the left side of the body 1620 as illustrated in
The body 1620 may define a surface 1640 at a distal end of the body 1620. A distal end 1650a of the first electrode 1630a may be exposed on the distal end surface 1640. Similarly, a distal end 1650b of the second electrode 1630b may be exposed on the distal end surface 1640. In some examples, the distal end surface 1640 may have an oval convex shape or any other suitable shape, such as oval concave, flat, etc. As illustrated in
In some examples, the aspiration port 1655 may be disposed at the distal end surface 1640 of the body 1620. The aspiration port 1655 may be disposed in a center portion of the distal end surface 1640 or in any other suitable portion (e.g., left, right) of the distal end surface 1640. The aspiration channel 1660 may be molded into the body 1620. In some examples, the aspiration channel 1660 may comprise a first lumen 1662 and a second lumen 1664. The first lumen 1662 may be in the distal portion of the body 1620 and the second lumen may be in the proximal portion of the body 1620. The first lumen 1662 may be in a non-geometric or organic shape (e.g., trumpet or flared shape where a diameter/width is increased toward a distal end of the first lumen 1662). In some examples, the height of the first lumen 1662 may be substantially the same from the distal end to the proximal end of the first lumen or only have a subtle change (either decreasing or increasing). The aspiration port 1655 may be disposed at the distal end of the first lumen 1662.
The second lumen 1664 may have a tube shape. In some examples, a diameter (both width and height) of the second lumen 1664 may be increased toward a proximal end thereof. A proximal end of the first lumen 1662 may be coupled to the distal end of the second lumen at 1670a. The aspiration channel 1660 (the first lumen 1662 and/or the second lumen 1664) may be configured to deform as the body 1620 deforms. The second lumen 1664 may be coupled to a second aspiration channel 1680 of the shaft 1610. In some examples, the shaft 1610 and the second aspiration channel 1680 may be made from stiff materials, such as metal, plastic, wood. In other examples, the shaft 1610 and the second aspiration channel 1680 may be made from flexible materials.
In some examples, the body 1620 may include a fluid discharge port (e.g., fluid discharge port 150) in fluid communication with an irrigation channel (e.g., source fluid path 315). In some examples, the aspiration port 1655 may also act as the fluid discharge port and the aspiration channel 1660 may also act as the irrigation channel. In this case, the aspiration port 1655 may be also configured to deliver an irrigation fluid to the target treatment zone through the aspiration channel 1660.
The flexible body 1620 molded out of low durometer materials and having an organic shape may flex and allow surgeons to approach fragile tissue (e.g., liver parenchyma) in a novel way that could be less traumatic than traditional, rigid end effectors. Also, the flat shape of the distal portion of the body 1620 where the distal end surface 1640 has a width (W) much greater than the height (H), may allow the end effector 1600 to be well suited into a cavity during a liver resection. Also, the molded lumens 1662, 1664 may transition from a fine, small opening distally (e.g. first lumen 1662 with a shorter height than the second lumen 1664) to a larger, circular opening proximally (e.g., second lumen 1664 having a diameter increasing toward the proximal end of the second lumen 1664), which may reduce clogging during suction and/or irrigation significantly. Also, some aspects of the present disclosure may advantageously form a body and/or an aspiration channel with a non-geometric/organic shape using a molding process, which would be difficult to manufacture using conventional suction/irrigation device manufacturing approaches.
The electrodes 1730a,b may be in electrical communication with an energy source (e.g., energy source 120), for example, through conductive wires. In some examples, the first electrode 1730a may be placed on the right side of the first body 1710 and the second electrode 1730b may be placed on the left side of the first body 1710 as illustrated in
In some examples, the height (H1) of the first portion 1715a and/or the second portion 1715b is greater than the height (H2) of the third portion 1715c. Therefore, one or more cavities or holes may be formed between the second body 1720 and the first body 1710 (e.g., the third portion 1715c). For example, a first aspiration port 1740a in fluid communication with a first aspiration channel may be formed above the first body 1710 (e.g., between a top surface of the third portion 1715c and the second body 1720). The first aspiration channel may extend through the first and second bodies 1710, 1720. In some examples, the first aspiration channel may extend from an evacuation port (e.g., evacuation port 110) through a housing (e.g., housing 105) and through a shaft (e.g., shaft 135) and/or a first/second bodies 1710,1720 to the first aspiration port 1740a. Similarly, a second aspiration port 1740b in fluid communication with a second aspiration channel may be formed below the first body 1710 (e.g., between a bottom surface of the third portion 1715c and the second body 1720). The second aspiration channel may extend through the first and second bodies 1710, 1720. In some examples, the second aspiration channel may extend from an evacuation port (e.g., evacuation port 110) through a housing (e.g., housing 105) and through a shaft (e.g., shaft 135) and/or a first/second bodies 1710,1720 to the second aspiration port 1740b. The aspiration ports 1740a,b may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channels.
In some examples, at least one of the first and second aspiration ports 1740a,b may act as a fluid discharge port (e.g., fluid discharge port 150) configured to deliver an irrigation fluid to the target treatment zone through a fluid path (e.g., first or second aspiration channels). For example, when the second port 1740b acts as an aspiration port, the first port 1740a may act as a fluid discharge port.
In some examples, the first body 1710 may include one or more fluid discharge ports 1750a, 1750b, 1760. The fluid discharge ports 1750a, 1750b, 1760 may be formed on a distal end surface of the first body 1710 (e.g., distal end surfaces of the first, second, and/or third portions 1715a,b,c). In some examples, the fluid discharge ports 1750a, 1750b may be formed on a distal end surface of the first portion 1715a and/or the second portion 1715b above the first electrode 1730a and/or the second electrode 1730b as shown in
Remaining features and characteristics of the end effector 1800 illustrated and described with respect to
As discussed above, in some aspects of the present disclosure, the first and second electrodes 1730a,b, the first body 1710, and/or the second body 1720 may be formed altogether through a co-extrusion process. Also, both the aspiration ports/channels and fluid discharge ports/channels may be formed during the co-extrusion process. Since the aspiration ports/channels and the fluid discharge ports/channels do not need to be formed separately, this may reduce the number of manufacturing steps and consequently reduce manufacturing costs significantly. Therefore, some aspects of the present disclosure may advantageously enable the manufacturing of an end effector with electrodes and aspiration/fluid discharge ports with less cost than conventional manufacturing processes.
The warp wires 1950a,b may be alternately woven above and below the weft wires 1940a-d. In some example, the weaving sequence of the warp wires 1950a,b may be opposite to the weaving sequence of an adjacent warp wire. For example, 1st, 3rd, 5th, . . . , (2n−1)st warp wires may be woven up-down-up-down- . . . while 2nd, 4th, 6th, . . . , (2n)th warp wires may be woven down-up-down-up . . . as shown in
In some examples, each of the warp wires 1950a,b may define one or more high points 1960a-d where a warp wire is woven above the weft wire. For example, high points 1960a,c may be formed where the warp wire 1950a is woven above the weft wires 1940a,c, respectively. Similarly, high points 1960b,d may be formed where the warp wire 1950b is woven above the weft wires 1940b,d, respectively. The high points 1960a-d may not be insulated and, thus, conductive to provide electrosurgical energy to a target tissue. That is, the conductive wire portion of the warp wires 1950a,b inside the insulation cover layer may be exposed to outside in the high points 1960a-d of the warp wires 1950a,b. In some examples, the insulation cover of the warp wires 1950a,b on the high points 1960a-d may be removed mechanically or chemically to expose the conductive wires under the insulation cover. Since the high points 1960a-d are protruding from other area, it would be easier to remove the insulated cover only from those points using chemicals, sandpaper, etc. This would yield a pattern of conductive sites (e.g., high point conductive sites 1960) in an alternating array as shown in
In some examples, there may be a single weft wire 2040 having straight portions 2045a-f and curved portions 2042a-e as shown in
The shaft 1920 may include conductive wires coupled to the warp wires 1950a,b. The warp wires 1950a,b may be in electrical communication with an energy source (e.g., energy source 120) through the conductive wires. The housing 1930 may include a button 1935 that may be activated by a user. The button 1935 may have a push-button activation function to permit current to flow from the energy source to the warp wires 1950a,b upon depression of the push-button by a user. In some examples, the energy source may be located outside the housing 1930 and connected through a cord 1937. In some examples, the mesh end effector 1910 may have various geometries, such as flat, dome, rod/pencil shapes as shown in
In some examples, the mesh end effector 1910 may include a fluid discharge port configured to deliver an irrigation fluid (e.g., water, saline, etc.) through a fluid irrigation channel. The fluid discharge port may be located on the inner wall of the mesh frame 1915 or any other suitable place in the mesh end effector 1910 (e.g., back of the mesh wires 1940a-d, 1950b,a). In some examples, the fluid discharge port may be located inside the shaft 1920, for example, near the distal portion thereof. In some examples, the electrosurgical device 1900 may include an irrigation fluid flow rate controller, for example, in the handle 1930 to control the rate of the irrigation fluid delivered to the wires and target treatment zone.
In the illustrated example, at least one weft wire may be provided, where the at least one weft wire is insulated (block 2110). In some examples, there is a single weft wire having curved portions and straight portions. In other examples, there are multiple straight weft wires. Then, a plurality of warp wires may be woven above and below the at least one weft wire alternately, where each of the plurality of warp wires is conductive and insulated with a cover insulation layer, and where each of the plurality of warp wires defines at least one high point in which each of the plurality of warp wires is woven above the at least one weft wire (block 2120). Then, the cover insulation layer on the at least one high point in each of the plurality of warp wires may be removed (block 2130). For example, the cover insulation layer on the high points may be removed chemically or mechanically as discussed above.
Then, a first group of warp wires may be connected to a conductive wire configured to provide electrical energy of a first polarity (block 2140). For example, (2n−1)st warp wires may be electrically connected to a conductive wire configured to provide electrical energy of a positive polarity. Then, a second group of warp wires may be connected to a conductive wire configured to provide electrical energy of a second polarity (block 2150). For example, (2n)th warp wires may be electrically connected to another conductive wire configured to provide electrical energy of a negative polarity.
In the illustrated example, a plurality of layers may be provided, where each of the plurality of layers includes a signal wire disposed in a top portion of each of the plurality of layers and a plurality of dot wires extending down from the signal wire, where the signal wire is configured to deliver electrosurgical energy to the plurality of dot wires (block 2210). For example, a layer 2300 may include a signal wire 2310 in a top portion thereof as shown in
Then, the plurality of layers may be arranged (block 2230). For example, the plurality of layers may be arranged in parallel to each other as shown in
In some examples, a first group of layers (e.g., (2n−1)st layers) may be connected to a conductive wire 2362 configured to provide electrical energy of a first polarity (e.g., positive polarity) and a second group of layers (e.g., (2n)th layers) may be connected to another conductive wire 2364 configured to provide electrical energy of a second polarity (e.g., negative polarity) as shown in
Then, a molding material may be overmolded onto the arranged plurality layers (block 2230). Examples of the molding material may include rubber, plastic, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material.
The overmolded plurality of layers may be cut to expose a cut end of each of the plurality of dot wires, where the overmolded plurality of layers define a bottom surface that is formed after the cutting and where the bottom surface of the overmolded plurality of layers forms an array of the cut ends of the plurality of dot wires (block 2240). For example, a bottom portion of the overmolded layers may be cut/truncated to expose a cut end 2345 of each of the plurality of dot wires 2420. In some examples, the overmolded layers may be cut/truncated by grinding or polishing the bottom surface of the overmolded layers that is formed after the overmolding but before the cutting. The truncated overmolded layers may define a bottom surface 2340 that is formed after the cutting and the bottom surface 2340 may form an array of the cut ends 2345 of the dot wires 2320. The cut ends 2345 of the dot wires 2320 may be configured to deliver electrosurgical energy to the target treatment zone. In some examples, the truncated overmolded layers with the bottom surface 2340 may become a component of an end effector 2350.
In some examples, the diameter of the cut ends 2345 may be in the range of about 0.005 inches to about 0.05 inches, preferably in the range of about 0.008 inches to about 0.03 inches, more preferably in the range of about 0.01 inches to about 0.02 inches. In other examples, the cut ends 2345 may have any other suitable diameter. In some examples, the distance 2347 between the cut ends 2345 may be in the range of about 0.005 inches to about 0.1 inches, preferably about 0.01 inches to about 0.08 inches, more preferably about 0.02 inches to about 0.06 inches. In other examples, the cut ends 2345 may have any other suitable distance. In some examples, the overmolded layers may include a fluid discharge port configured to deliver an irrigation fluid (e.g., water, saline, etc.) though a fluid irrigation channel. The fluid discharge port and the fluid irrigation channel may be molded into the overmolded layer during the overmolding process.
It will be appreciated that the terms “proximal” and “distal” are used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will further be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” or “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting or absolute.
Various aspects of surgical instruments are described herein. It will be understood by those skilled in the art that the various aspects described herein may be used with the described surgical instruments. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed examples are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.
Reference throughout the specification to “various aspects,” “some aspects,” “one example,” or “one aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one example. Thus, appearances of the phrases “in various aspects,” “in some aspects,” “in one example,” or “in one aspect” in places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example may be combined, in whole or in part, with features, structures, or characteristics of one or more other aspects without limitation.
While various aspects herein have been illustrated by description of several aspects and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, it is generally accepted that endoscopic procedures are more common than laparoscopic procedures. Accordingly, the present invention has been discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present invention to an instrument for use only in conjunction with an endoscopic tube (e.g., trocar). On the contrary, it is believed that the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.
It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosure, a discussion of such elements is not provided herein.
While several aspects have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various aspects, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosure as defined by the appended claims.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Various aspects of the subject matter described herein are set out in the following numbered clauses:
An electrosurgical instrument comprising: an end effector comprising: a first body; a first electrode on the left side of the first body; a second electrode on the right side of the first body, wherein the first and second electrodes are configured to receive electrosurgical energy to treat tissue in a target treatment zone; and a fluid aspiration port in fluid communication with a fluid path, wherein the fluid aspiration port is configured to remove a material from the target treatment zone.
The electrosurgical instrument of Example 1, wherein the end effector further comprising: a cavity disposed between the first electrode and the second electrode; a first irrigation channel on the left side of the first body; a second irrigation channel on the right side of the first body; a first fluid discharge port on the first electrode, wherein the first fluid discharge port is in fluid communication with the first irrigation channel; and a second fluid discharge port on the second electrode, wherein the second fluid discharge port is in fluid communication with the second irrigation channel, wherein the fluid aspiration port is disposed at the proximal end of the cavity between the first electrode and the second electrode, wherein the first body is made of a flexible low durometer material.
The electrosurgical instrument of Example 2, wherein each of the first and second electrodes comprises a thin conductive material that is insert-molded into the first body.
The electrosurgical instrument of one or more of Examples 2-3, wherein each of the first and second irrigation channels is formed inside the first body.
The electrosurgical instrument of one or more of Examples 1-4, wherein the first body is made of a flexible low durometer material, wherein the first body defines a surface at a distal end of the first body and the fluid aspiration port is disposed in a center portion of the surface at the distal end of the first body.
The electrosurgical instrument of Example 5, wherein the first and second electrodes are disposed in the first body, wherein a distal end of each of the first and second electrodes is exposed on the surface at the distal end of the first body.
The electrosurgical instrument of one or more of Examples 5-6, wherein the fluid aspiration port is further configured to deliver an irrigation fluid to the target treatment zone through the fluid path.
The electrosurgical instrument of one or more of Examples 5-7, wherein the first body has an organic shape.
The electrosurgical instrument of one or more of Examples 1-8, wherein the first body comprises: a first portion covering the first electrode on the left side of the first body; a second portion covering the second electrode on the right side of the first body; and a third portion disposed between the first portion and the second portion, wherein a distal portion of the first electrode and a distal portion of the second electrode extend beyond a distal end of the first body; wherein the first electrode, the second electrode, and the first body are formed by a co-extrusion process.
The electrosurgical instrument of Example 9, wherein the end effector further comprises a second body, wherein the first body is included in the second body, wherein the fluid aspiration port is formed between the second body and the third portion of the first body.
The electrosurgical instrument of one or more of Examples 9-10, wherein the fluid aspiration port is formed on a surface at a distal end of the third portion of the first body.
The electrosurgical instrument of one or more of Examples 9-11, wherein the first body comprises a PEEK plastic material or a PTFE material.
The electrosurgical instrument of one or more of Examples 1-12, wherein the fluid path includes a clogged tissue remover having a hollow body and a prong disposed at a distal end of the hollow body.
The electrosurgical instrument of Example 13, wherein the clogged tissue remover is extendable with respect to the fluid path.
The electrosurgical instrument of one or more Examples 13-14, wherein the fluid path is extendable with respect to a shaft in the electrosurgical instrument and the clogged tissue remover is stationary with respect to the shaft, wherein when the fluid path is retracted with respect to the shaft, the clogged tissue remover is extended with respect to the fluid path, which allows the clogged tissue remover to remove clogged tissue in the fluid path.
The electrosurgical instrument of Example 15, wherein the fluid path is coupled to a detent mechanism configured to releasably hold the fluid path between a first position and a second position, wherein the clogged tissue remover is extended with respect to the fluid path to remove clogged tissue in the fluid path when the detent mechanism is in the first position and the clogged tissue remover is retracted with respect to the fluid path when the detent mechanism is in the second position.
The electrosurgical instrument of one or more if Examples 1-16, further comprising a shaft, wherein the end effector is removably engaged with the shaft.
The electrosurgical instrument of Example 17, wherein the shaft comprises a first receptacle and a second receptacle that are configured to receive the first and second electrodes, respectively, wherein the first and second electrodes are spring-loaded.
The electrosurgical instrument of one or more of Examples 17-18, further comprising a fluid discharge port formed on the first body and in fluid communication with a first irrigation channel in the end effector, wherein the fluid discharge port is configured to deliver an irrigation fluid to the target treatment zone, wherein a second irrigation channel in the shaft is removably engaged with the first irrigation channel.
The electrosurgical instrument of one or more of Examples 1-19, wherein at least one of the first and second electrodes comprises a thin conductive material coated over a flexible material, which allows the at least one of the first and second electrodes to deform to conform to a shape of tissue in direct contact with the at least one of the first and second electrodes.
The electrosurgical instrument of one or more of Examples 1-20, wherein a distal portion of the at least one of the first and second electrodes is coupled to a linkage moveable between a first position and a second position, wherein the distal portion of the at least one of the first and second electrodes forms a convex shape when the linkage is in the first position and the distal tip portion of the at least one of the first and second electrodes forms a concave shape when the linkage is in the second position.
An electrosurgical instrument comprising: a shaft; and a mesh end effector comprising: at least one insulated weft wire; and a plurality of insulated warp wires, wherein each of the plurality of insulated warp wires is alternately woven above and below the at least one insulated weft wire, wherein each of the plurality of insulated warp wires defines at least one high point where each of the plurality of insulated warp wires is woven above the at least one insulated weft wire, wherein the at least one high point in each of the plurality of insulated warp wires exposes a non-insulated conductive site to provide electrosurgical energy to a target tissue.
The electrosurgical instrument of Example 22, wherein a polarity of each of the plurality of insulated warp wires alternates so that the polarity of each of the plurality of insulated warp wires is opposite to an adjacent insulated warp wire.
The electrosurgical instrument of one or more Examples 22-23, wherein the mesh end effector is in a shape selected from the group consisting of a flat, a dome, and a rod.
A method comprising: providing a plurality of layers, wherein each of the plurality of layers includes a signal wire disposed in a top portion of each of the plurality of layers and a plurality of dot wires extending down from the signal wire, wherein the signal wire is configured to deliver electrosurgical energy to the plurality of dot wires; arranging the plurality of layers; overmolding a molding material onto the arranged plurality of layers; and cutting a bottom portion of the overmolded plurality of layers to expose a cut end of each of the plurality of dot wires, wherein the overmolded plurality of layers define a first bottom surface that is formed after the cutting, wherein the first bottom surface of the overmolded plurality of layers forms an array of the cut ends of the plurality of dot wires.
The method of Example 25, wherein a polarity of each of the plurality of layers alternates so that the polarity of each of the plurality of layers is opposite to an adjacent layer.
The method of one or more of Examples 25-26, wherein the overmolded plurality of layers define a second bottom surface that is formed after the overmolding but before the cutting, wherein cutting the bottom portion of the overmolded plurality of layers comprises grinding the second bottom surface of the overmolded plurality of layers to expose the cut end of each of the plurality of dot wires.
Number | Name | Date | Kind |
---|---|---|---|
2366274 | Luth et al. | Jan 1945 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
2736960 | Armstrong | Mar 1956 | A |
2849788 | Creek | Sep 1958 | A |
2867039 | Zach | Jan 1959 | A |
3015961 | Roney | Jan 1962 | A |
3043309 | McCarthy | Jul 1962 | A |
3166971 | Stoecker | Jan 1965 | A |
3358676 | Frei et al. | Dec 1967 | A |
3525912 | Wallin | Aug 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3580841 | Cadotte et al. | May 1971 | A |
3614484 | Shoh | Oct 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3703651 | Blowers | Nov 1972 | A |
3710399 | Hurst | Jan 1973 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3777760 | Essner | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3906217 | Lackore | Sep 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
3988535 | Hickman et al. | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4034762 | Cosens et al. | Jul 1977 | A |
4047136 | Satto | Sep 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4063561 | McKenna | Dec 1977 | A |
4099192 | Aizawa et al. | Jul 1978 | A |
4156187 | Murry et al. | May 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4203430 | Takahashi | May 1980 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4278077 | Mizumoto | Jul 1981 | A |
4281785 | Brooks | Aug 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4314559 | Allen | Feb 1982 | A |
4384584 | Chen | May 1983 | A |
4445063 | Smith | Apr 1984 | A |
4463759 | Garito et al. | Aug 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4492231 | Auth | Jan 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4582236 | Hirose | Apr 1986 | A |
4585282 | Bosley | Apr 1986 | A |
4597390 | Mulhollan et al. | Jul 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4655746 | Daniels et al. | Apr 1987 | A |
4671287 | Fiddian-Green | Jun 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4797803 | Carroll | Jan 1989 | A |
4798588 | Aillon | Jan 1989 | A |
4802461 | Cho | Feb 1989 | A |
4803506 | Diehl et al. | Feb 1989 | A |
4830462 | Karny et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4850354 | Mcgurk-Burleson et al. | Jul 1989 | A |
4860745 | Farin et al. | Aug 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4878493 | Pasternak et al. | Nov 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4910389 | Sherman et al. | Mar 1990 | A |
4910633 | Quinn | Mar 1990 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4919129 | Weber, Jr. et al. | Apr 1990 | A |
4920978 | Colvin | May 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4936842 | D'Amelio et al. | Jun 1990 | A |
4961738 | Mackin | Oct 1990 | A |
4967670 | Morishita et al. | Nov 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5007919 | Silva et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5061269 | Muller | Oct 1991 | A |
5093754 | Kawashima | Mar 1992 | A |
5099216 | Pelrine | Mar 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5150102 | Takashima | Sep 1992 | A |
5150272 | Danley et al. | Sep 1992 | A |
5156633 | Smith | Oct 1992 | A |
5160334 | Billings et al. | Nov 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196007 | Ellman et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5205817 | Idemoto et al. | Apr 1993 | A |
5209719 | Baruch et al. | May 1993 | A |
5213569 | Davis | May 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5267091 | Chen | Nov 1993 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5313306 | Kuban et al. | May 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5318564 | Eggers | Jun 1994 | A |
5318565 | Kuriloff et al. | Jun 1994 | A |
5318570 | Hood et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324260 | O'Neill et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5333624 | Tovey | Aug 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5352219 | Reddy | Oct 1994 | A |
5359992 | Hori et al. | Nov 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5370640 | Kolff | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395331 | O'Neill et al. | Mar 1995 | A |
5395363 | Billings et al. | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5396266 | Brimhall | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5413575 | Haenggi | May 1995 | A |
5417709 | Slater | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5428504 | Bhatia | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5431640 | Gabriel | Jul 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5451227 | Michaelson | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5462604 | Shibano et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5477788 | Morishita | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5483501 | Park et al. | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5486189 | Mudry et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5520704 | Castro et al. | May 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5542916 | Hirsch et al. | Aug 1996 | A |
5542938 | Avellanet et al. | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5562657 | Griffin | Oct 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5571121 | Heifetz | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5584830 | Ladd et al. | Dec 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609573 | Sandock | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643175 | Adair | Jul 1997 | A |
5645065 | Shapiro et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5657697 | Murai | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674219 | Monson et al. | Oct 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5700243 | Narciso, Jr. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5704900 | Dobrovolny et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720742 | Zacharias | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722326 | Post | Mar 1998 | A |
5722426 | Kolff | Mar 1998 | A |
5732636 | Wang et al. | Mar 1998 | A |
5733074 | Stock et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5738652 | Boyd et al. | Apr 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5741305 | Vincent et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792138 | Shipp | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5800449 | Wales | Sep 1998 | A |
5805140 | Rosenberg et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810718 | Akiba et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5836867 | Speier et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5836943 | Miller, III | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5883454 | Hones et al. | Mar 1999 | A |
5887018 | Bayazitoglu et al. | Mar 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5902239 | Buurman | May 1999 | A |
5904147 | Conlan et al. | May 1999 | A |
5906579 | Vander Salm et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5929846 | Rosenberg et al. | Jul 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944298 | Koike | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957849 | Munro | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5984938 | Yoon | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6007484 | Thompson | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6014580 | Blume et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6080152 | Nardella et al. | Jun 2000 | A |
6083151 | Renner et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6123466 | Persson et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6127757 | Swinbanks | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6144402 | Norsworthy et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6154198 | Rosenberg | Nov 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6173199 | Gabriel | Jan 2001 | B1 |
6173715 | Sinanan et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6176857 | Ashley | Jan 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193709 | Miyawaki et al. | Feb 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6219572 | Young | Apr 2001 | B1 |
6221007 | Green | Apr 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6241724 | Fleischman et al. | Jun 2001 | B1 |
6248074 | Ohno et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6259230 | Chou | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6315789 | Cragg | Nov 2001 | B1 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
6379351 | Thapliyal et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6387094 | Eitenmuller | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391026 | Hung et al. | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6416469 | Phung et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6461363 | Gadberry et al. | Oct 2002 | B1 |
6464689 | Qin et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464703 | Bartel | Oct 2002 | B2 |
6471172 | Lemke et al. | Oct 2002 | B1 |
6475211 | Chess et al. | Nov 2002 | B2 |
6475216 | Muller et al. | Nov 2002 | B2 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500112 | Khouri | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6503248 | Levine | Jan 2003 | B1 |
6506208 | Hunt et al. | Jan 2003 | B2 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6520960 | Blocher et al. | Feb 2003 | B2 |
6522909 | Garibaldi et al. | Feb 2003 | B1 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6540693 | Burbank et al. | Apr 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6551309 | LePivert | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6561983 | Cronin et al. | May 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6584360 | Francischelli et al. | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6594517 | Nevo | Jul 2003 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6610060 | Muller et al. | Aug 2003 | B2 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6616600 | Pauker | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620129 | Stecker et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6648817 | Schara et al. | Nov 2003 | B2 |
6651669 | Burnside | Nov 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6669690 | Okada et al. | Dec 2003 | B1 |
6673248 | Chowdhury | Jan 2004 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6696844 | Wong et al. | Feb 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6719765 | Bonutti | Apr 2004 | B2 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723094 | Desinger | Apr 2004 | B1 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6731047 | Kauf et al. | May 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6746443 | Morley et al. | Jun 2004 | B1 |
6752815 | Beaupre | Jun 2004 | B2 |
6762535 | Take et al. | Jul 2004 | B2 |
6766202 | Underwood et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773435 | Schulze et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776165 | Jin | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6789939 | Schrodinger et al. | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6806317 | Morishita et al. | Oct 2004 | B2 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6814731 | Swanson | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6936003 | Iddan | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6939347 | Thompson | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6974462 | Safer | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
6986738 | Glukhovsky et al. | Jan 2006 | B2 |
6986780 | Rudnick et al. | Jan 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7004951 | Gibbens, III | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7039453 | Mullick et al. | May 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044937 | Kirwan et al. | May 2006 | B1 |
7052496 | Yamauchi | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7063699 | Hess et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083579 | Yokoi et al. | Aug 2006 | B2 |
7083617 | Kortenbach et al. | Aug 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7094235 | Francischelli | Aug 2006 | B2 |
7096560 | Oddsen, Jr. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7120498 | Imran et al. | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156853 | Ratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169104 | Ueda et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7170823 | Fabricius et al. | Jan 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7211094 | Gannoe et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226448 | Bertolero et al. | Jun 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7235064 | Hopper et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7241290 | Doyle et al. | Jul 2007 | B2 |
7241294 | Reschke | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7251531 | Mosher et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7276065 | Morley et al. | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7282773 | Li et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7297145 | Woloszko et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7364577 | Wham et al. | Apr 2008 | B2 |
7367973 | Manzo et al. | May 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
7380695 | Doll et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7403224 | Fuller et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422586 | Morris et al. | Sep 2008 | B2 |
7422592 | Morley et al. | Sep 2008 | B2 |
7429259 | Cadeddu et al. | Sep 2008 | B2 |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431704 | Babaev | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7439732 | LaPlaca | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7448993 | Yokoi et al. | Nov 2008 | B2 |
7449004 | Yamada et al. | Nov 2008 | B2 |
7450998 | Zilberman et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7498080 | Tung et al. | Mar 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7505812 | Eggers et al. | Mar 2009 | B1 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7511733 | Takizawa et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7520877 | Lee, Jr. et al. | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7540872 | Schechter et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544200 | Houser | Jun 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7553309 | Buysse et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7566318 | Haefner | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7582086 | Privitera et al. | Sep 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7599743 | Hassler, Jr. et al. | Oct 2009 | B2 |
7601119 | Shahinian | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7608083 | Lee et al. | Oct 2009 | B2 |
7611512 | Ein-Gal | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7621910 | Sugi | Nov 2009 | B2 |
7621930 | Houser | Nov 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7632267 | Dahla | Dec 2009 | B2 |
7632269 | Truckai et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7640447 | Qiu | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7648499 | Orszulak et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7662151 | Crompton, Jr. et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7678069 | Baker et al. | Mar 2010 | B1 |
7678105 | McGreevy et al. | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7691095 | Bednarek et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691103 | Fernandez et al. | Apr 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7726537 | Olson et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7751115 | Song | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7753909 | Chapman et al. | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789283 | Shah | Sep 2010 | B2 |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7793814 | Racenet et al. | Sep 2010 | B2 |
7799027 | Hafner | Sep 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819872 | Johnson et al. | Oct 2010 | B2 |
D627066 | Romero | Nov 2010 | S |
7824401 | Manzo et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7850688 | Hafner | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7867228 | Nobis et al. | Jan 2011 | B2 |
7871392 | Sartor | Jan 2011 | B2 |
7871423 | Livneh | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7877852 | Unger et al. | Feb 2011 | B2 |
7877853 | Unger et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7892606 | Thies et al. | Feb 2011 | B2 |
7896875 | Heim et al. | Mar 2011 | B2 |
7896878 | Johnson et al. | Mar 2011 | B2 |
7901400 | Wham et al. | Mar 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7919184 | Mohapatra et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7922953 | Guerra | Apr 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
D637288 | Houghton | May 2011 | S |
D638540 | Ijiri et al. | May 2011 | S |
7935114 | Takashino et al. | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942868 | Cooper | May 2011 | B2 |
7947039 | Sartor | May 2011 | B2 |
7951165 | Golden et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7967602 | Lindquist | Jun 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
7988567 | Kim et al. | Aug 2011 | B2 |
7997278 | Utley et al. | Aug 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8033173 | Ehlert et al. | Oct 2011 | B2 |
8038612 | Paz | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8048070 | O'Brien et al. | Nov 2011 | B2 |
8052672 | Laufer et al. | Nov 2011 | B2 |
8056720 | Hawkes | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8057498 | Robertson | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8062211 | Duval et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070748 | Hixson et al. | Dec 2011 | B2 |
8075555 | Truckai et al. | Dec 2011 | B2 |
8075558 | Truckai et al. | Dec 2011 | B2 |
8092475 | Cotter et al. | Jan 2012 | B2 |
8100894 | Mucko et al. | Jan 2012 | B2 |
8105323 | Buysse et al. | Jan 2012 | B2 |
8105324 | Palanker et al. | Jan 2012 | B2 |
8114104 | Young et al. | Feb 2012 | B2 |
8114119 | Spivey et al. | Feb 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128657 | Shiono et al. | Mar 2012 | B2 |
8133218 | Daw et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8147488 | Masuda | Apr 2012 | B2 |
8147508 | Madan et al. | Apr 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162940 | Johnson et al. | Apr 2012 | B2 |
8177784 | Van Wyk et al. | May 2012 | B2 |
8177794 | Cabrera et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8187166 | Kuth et al. | May 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
8192433 | Johnson et al. | Jun 2012 | B2 |
8197472 | Lau et al. | Jun 2012 | B2 |
8197479 | Olson et al. | Jun 2012 | B2 |
8197494 | Jaggi et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8206212 | Iddings et al. | Jun 2012 | B2 |
8221415 | Francischelli | Jul 2012 | B2 |
8221416 | Townsend | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8236019 | Houser | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8241235 | Kahler et al. | Aug 2012 | B2 |
8241283 | Guerra et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241312 | Messerly | Aug 2012 | B2 |
8244368 | Sherman | Aug 2012 | B2 |
8246615 | Behnke | Aug 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8252012 | Stulen | Aug 2012 | B2 |
8257352 | Lawes et al. | Sep 2012 | B2 |
8257377 | Wiener et al. | Sep 2012 | B2 |
8262563 | Bakos et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267854 | Asada et al. | Sep 2012 | B2 |
8267935 | Couture et al. | Sep 2012 | B2 |
8273085 | Park et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8277447 | Garrison et al. | Oct 2012 | B2 |
8277471 | Wiener et al. | Oct 2012 | B2 |
8282581 | Zhao et al. | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8287528 | Wham et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298228 | Buysse et al. | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8303583 | Hosier et al. | Nov 2012 | B2 |
8306629 | Mioduski et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8319400 | Houser et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328761 | Widenhouse et al. | Dec 2012 | B2 |
8328834 | Isaacs et al. | Dec 2012 | B2 |
8333778 | Smith et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8334635 | Voegele et al. | Dec 2012 | B2 |
8338726 | Palmer et al. | Dec 2012 | B2 |
8343146 | Godara et al. | Jan 2013 | B2 |
8344596 | Nield et al. | Jan 2013 | B2 |
8348880 | Messerly et al. | Jan 2013 | B2 |
8348947 | Takashino et al. | Jan 2013 | B2 |
8348967 | Stulen | Jan 2013 | B2 |
8353297 | Dacquay et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8361569 | Saito et al. | Jan 2013 | B2 |
8372064 | Douglass et al. | Feb 2013 | B2 |
8372099 | Deville et al. | Feb 2013 | B2 |
8372101 | Smith et al. | Feb 2013 | B2 |
8377053 | Orszulak | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8377085 | Smith et al. | Feb 2013 | B2 |
8382754 | Odom et al. | Feb 2013 | B2 |
8382782 | Robertson et al. | Feb 2013 | B2 |
8382792 | Chojin | Feb 2013 | B2 |
8388646 | Chojin | Mar 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8394094 | Edwards et al. | Mar 2013 | B2 |
8394115 | Houser et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8398633 | Mueller | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403948 | Deville et al. | Mar 2013 | B2 |
8403949 | Palmer et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8409076 | Pang et al. | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418349 | Smith et al. | Apr 2013 | B2 |
8419757 | Smith et al. | Apr 2013 | B2 |
8419758 | Smith et al. | Apr 2013 | B2 |
8419759 | Dietz | Apr 2013 | B2 |
8425410 | Murray et al. | Apr 2013 | B2 |
8425545 | Smith et al. | Apr 2013 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430897 | Novak et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439911 | Mueller | May 2013 | B2 |
8439939 | Deville et al. | May 2013 | B2 |
8444662 | Palmer et al. | May 2013 | B2 |
8444664 | Balanev et al. | May 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8454599 | Inagaki et al. | Jun 2013 | B2 |
8454639 | Du et al. | Jun 2013 | B2 |
8460288 | Tamai et al. | Jun 2013 | B2 |
8460292 | Truckai et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8469956 | McKenna et al. | Jun 2013 | B2 |
8469981 | Robertson et al. | Jun 2013 | B2 |
8475361 | Barlow et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8484833 | Cunningham et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486057 | Behnke, II | Jul 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8496682 | Guerra et al. | Jul 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512364 | Kowalski et al. | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8523889 | Stulen et al. | Sep 2013 | B2 |
8529437 | Taylor et al. | Sep 2013 | B2 |
8529565 | Masuda et al. | Sep 2013 | B2 |
8531064 | Robertson et al. | Sep 2013 | B2 |
8535311 | Schall | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8535341 | Allen | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8542501 | Kyono | Sep 2013 | B2 |
8553430 | Melanson et al. | Oct 2013 | B2 |
8562516 | Saadat et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8562604 | Nishimura | Oct 2013 | B2 |
8568390 | Mueller | Oct 2013 | B2 |
8568412 | Brandt et al. | Oct 2013 | B2 |
8569997 | Lee | Oct 2013 | B2 |
8574187 | Marion | Nov 2013 | B2 |
8574231 | Boudreaux et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579928 | Robertson et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8591459 | Clymer et al. | Nov 2013 | B2 |
8591506 | Wham et al. | Nov 2013 | B2 |
D695407 | Price et al. | Dec 2013 | S |
8596513 | Olson et al. | Dec 2013 | B2 |
8597182 | Stein et al. | Dec 2013 | B2 |
8597297 | Couture et al. | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8623011 | Spivey | Jan 2014 | B2 |
8623016 | Fischer | Jan 2014 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8623044 | Timm et al. | Jan 2014 | B2 |
8628529 | Aldridge et al. | Jan 2014 | B2 |
8632461 | Glossop | Jan 2014 | B2 |
8632539 | Twomey et al. | Jan 2014 | B2 |
8636648 | Gazdzinski | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8636761 | Cunningham et al. | Jan 2014 | B2 |
8638428 | Brown | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8641712 | Couture | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8650728 | Wan et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8663223 | Masuda et al. | Mar 2014 | B2 |
8668691 | Heard | Mar 2014 | B2 |
RE44834 | Dumbauld et al. | Apr 2014 | E |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8696662 | Eder et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8702609 | Hadjicostis | Apr 2014 | B2 |
8702704 | Shelton, IV et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709035 | Johnson et al. | Apr 2014 | B2 |
8715270 | Weitzner et al. | May 2014 | B2 |
8715277 | Weizman | May 2014 | B2 |
8721640 | Taylor et al. | May 2014 | B2 |
8734443 | Hixson et al. | May 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747351 | Schultz | Jun 2014 | B2 |
8747404 | Boudreaux et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753338 | Widenhouse et al. | Jun 2014 | B2 |
8758342 | Bales et al. | Jun 2014 | B2 |
8764747 | Cummings et al. | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8790342 | Stulen et al. | Jul 2014 | B2 |
8795274 | Hanna | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795327 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808319 | Houser et al. | Aug 2014 | B2 |
8814856 | Elmouelhi et al. | Aug 2014 | B2 |
8814865 | Reschke | Aug 2014 | B2 |
8814870 | Paraschiv et al. | Aug 2014 | B2 |
8827992 | Koss et al. | Sep 2014 | B2 |
8827995 | Schaller et al. | Sep 2014 | B2 |
8834466 | Cummings et al. | Sep 2014 | B2 |
8834488 | Farritor et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8845630 | Mehta et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852184 | Kucklick | Oct 2014 | B2 |
8864757 | Klimovitch et al. | Oct 2014 | B2 |
8864761 | Johnson et al. | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8882766 | Couture et al. | Nov 2014 | B2 |
8882791 | Stulen | Nov 2014 | B2 |
8887373 | Brandt et al. | Nov 2014 | B2 |
8888776 | Dietz et al. | Nov 2014 | B2 |
8888783 | Young | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8906012 | Conley et al. | Dec 2014 | B2 |
8906016 | Boudreaux et al. | Dec 2014 | B2 |
8906017 | Rioux et al. | Dec 2014 | B2 |
8911438 | Swoyer et al. | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8926607 | Norvell et al. | Jan 2015 | B2 |
8926608 | Bacher et al. | Jan 2015 | B2 |
8929888 | Rao et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8939287 | Markovitch | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8939975 | Twomey et al. | Jan 2015 | B2 |
8944997 | Fernandez et al. | Feb 2015 | B2 |
8945125 | Schechter et al. | Feb 2015 | B2 |
8951248 | Messerly et al. | Feb 2015 | B2 |
8951272 | Robertson et al. | Feb 2015 | B2 |
8956349 | Aldridge et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8961515 | Twomey et al. | Feb 2015 | B2 |
8961547 | Dietz et al. | Feb 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968308 | Horner et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968332 | Farritor et al. | Mar 2015 | B2 |
8974453 | Wang | Mar 2015 | B2 |
8978845 | Kim | Mar 2015 | B2 |
8979838 | Woloszko et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979844 | White et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989855 | Murphy et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992520 | Van Wyk et al. | Mar 2015 | B2 |
8992526 | Brodbeck et al. | Mar 2015 | B2 |
9005199 | Beckman et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9023035 | Allen, IV et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9031667 | Williams | May 2015 | B2 |
9033983 | Takashino et al. | May 2015 | B2 |
9039695 | Giordano et al. | May 2015 | B2 |
9039705 | Takashino | May 2015 | B2 |
9039731 | Joseph | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044243 | Johnson et al. | Jun 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9044256 | Cadeddu et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050093 | Aldridge et al. | Jun 2015 | B2 |
9050098 | Deville et al. | Jun 2015 | B2 |
9050113 | Bloom et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9066723 | Beller et al. | Jun 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078664 | Palmer et al. | Jul 2015 | B2 |
9089327 | Worrell et al. | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9094006 | Gravati et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107672 | Tetzlaff et al. | Aug 2015 | B2 |
9113889 | Reschke | Aug 2015 | B2 |
9113900 | Buysse et al. | Aug 2015 | B2 |
9119630 | Townsend et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9125667 | Stone et al. | Sep 2015 | B2 |
9138289 | Conley et al. | Sep 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9155585 | Bales, Jr. et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168082 | Evans et al. | Oct 2015 | B2 |
9168085 | Juzkiw et al. | Oct 2015 | B2 |
9168089 | Buysse et al. | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186204 | Nishimura et al. | Nov 2015 | B2 |
9187758 | Cai et al. | Nov 2015 | B2 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192421 | Garrison | Nov 2015 | B2 |
9192431 | Woodruff et al. | Nov 2015 | B2 |
9198714 | Worrell et al. | Dec 2015 | B2 |
9198715 | Livneh | Dec 2015 | B2 |
9198716 | Masuda et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204919 | Brandt et al. | Dec 2015 | B2 |
9216050 | Condie et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9254165 | Aronow et al. | Feb 2016 | B2 |
9259234 | Robertson et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9265567 | Orban, III et al. | Feb 2016 | B2 |
9265571 | Twomey et al. | Feb 2016 | B2 |
9265926 | Strobl et al. | Feb 2016 | B2 |
9271784 | Evans et al. | Mar 2016 | B2 |
9274988 | Hsu et al. | Mar 2016 | B2 |
9277962 | Koss et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283027 | Monson et al. | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9308014 | Fischer | Apr 2016 | B2 |
9314292 | Trees et al. | Apr 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9326812 | Waaler et al. | May 2016 | B2 |
9333025 | Monson et al. | May 2016 | B2 |
9339323 | Eder et al. | May 2016 | B2 |
9339326 | McCullagh et al. | May 2016 | B2 |
9344042 | Mao | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351754 | Vakharia et al. | May 2016 | B2 |
9358061 | Plascencia, Jr. et al. | Jun 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9364225 | Sniffin et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375256 | Cunningham et al. | Jun 2016 | B2 |
9375267 | Kerr et al. | Jun 2016 | B2 |
9381060 | Artale et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9408660 | Strobl et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9456863 | Moua | Oct 2016 | B2 |
9456864 | Witt et al. | Oct 2016 | B2 |
9456876 | Hagn | Oct 2016 | B2 |
9468490 | Twomey et al. | Oct 2016 | B2 |
9492224 | Boudreaux et al. | Nov 2016 | B2 |
9504524 | Behnke, II | Nov 2016 | B2 |
9510906 | Boudreaux et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526565 | Strobl | Dec 2016 | B2 |
9549663 | Larkin | Jan 2017 | B2 |
9554845 | Arts | Jan 2017 | B2 |
9554846 | Boudreaux | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9585709 | Krapohl | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9610091 | Johnson et al. | Apr 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9622810 | Hart et al. | Apr 2017 | B2 |
9627120 | Scott et al. | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9642669 | Takashino et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649144 | Aluru et al. | May 2017 | B2 |
9649151 | Goodman et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668806 | Unger et al. | Jun 2017 | B2 |
9687295 | Joseph | Jun 2017 | B2 |
9700339 | Nield | Jul 2017 | B2 |
9707005 | Strobl et al. | Jul 2017 | B2 |
9707027 | Ruddenklau et al. | Jul 2017 | B2 |
9707030 | Davison et al. | Jul 2017 | B2 |
9713489 | Woloszko et al. | Jul 2017 | B2 |
9713491 | Roy et al. | Jul 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724152 | Horiie et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9737358 | Beckman et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757186 | Boudreaux et al. | Sep 2017 | B2 |
9775665 | Ellman | Oct 2017 | B2 |
9775669 | Marczyk et al. | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9782220 | Mark et al. | Oct 2017 | B2 |
9788891 | Christian et al. | Oct 2017 | B2 |
9795436 | Yates et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808308 | Faller et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814514 | Shelton, IV et al. | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9820771 | Norton et al. | Nov 2017 | B2 |
9833239 | Yates et al. | Dec 2017 | B2 |
9848937 | Trees et al. | Dec 2017 | B2 |
9848939 | Mayer et al. | Dec 2017 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9872725 | Worrell et al. | Jan 2018 | B2 |
9877720 | Worrell et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
9877782 | Voegele et al. | Jan 2018 | B2 |
9888954 | Van Wyk et al. | Feb 2018 | B2 |
9888958 | Evans et al. | Feb 2018 | B2 |
9901390 | Allen, IV et al. | Feb 2018 | B2 |
9901754 | Yamada | Feb 2018 | B2 |
9907563 | Germain et al. | Mar 2018 | B2 |
9913680 | Voegele et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9918773 | Ishikawa et al. | Mar 2018 | B2 |
9931157 | Strobl et al. | Apr 2018 | B2 |
9937001 | Nakamura | Apr 2018 | B2 |
9943357 | Cunningham et al. | Apr 2018 | B2 |
9949620 | Duval et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9949788 | Boudreaux | Apr 2018 | B2 |
9974539 | Yates et al. | May 2018 | B2 |
9993289 | Sobajima et al. | Jun 2018 | B2 |
10010339 | Witt et al. | Jul 2018 | B2 |
10016207 | Suzuki et al. | Jul 2018 | B2 |
10022142 | Aranyi et al. | Jul 2018 | B2 |
10034707 | Papaioannou et al. | Jul 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10058376 | Horner et al. | Aug 2018 | B2 |
10070916 | Artale | Sep 2018 | B2 |
10080606 | Kappus et al. | Sep 2018 | B2 |
10092310 | Boudreaux et al. | Oct 2018 | B2 |
10092348 | Boudreaux | Oct 2018 | B2 |
10092350 | Rothweiler et al. | Oct 2018 | B2 |
10105174 | Krapohl | Oct 2018 | B2 |
10111699 | Boudreaux | Oct 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10130410 | Strobl et al. | Nov 2018 | B2 |
10130414 | Weiler et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10159524 | Yates et al. | Dec 2018 | B2 |
10166060 | Johnson et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10194911 | Miller et al. | Feb 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194977 | Yang | Feb 2019 | B2 |
10211586 | Adams et al. | Feb 2019 | B2 |
10231776 | Artale et al. | Mar 2019 | B2 |
10238387 | Yates et al. | Mar 2019 | B2 |
10245095 | Boudreaux | Apr 2019 | B2 |
10258404 | Wang | Apr 2019 | B2 |
10265118 | Gerhardt | Apr 2019 | B2 |
10278721 | Dietz et al. | May 2019 | B2 |
10307203 | Wyatt | Jun 2019 | B2 |
10314638 | Gee et al. | Jun 2019 | B2 |
10321950 | Yates et al. | Jun 2019 | B2 |
10342602 | Strobl et al. | Jul 2019 | B2 |
10413352 | Thomas et al. | Sep 2019 | B2 |
10420601 | Marion et al. | Sep 2019 | B2 |
10420607 | Woloszko et al. | Sep 2019 | B2 |
10426873 | Schultz | Oct 2019 | B2 |
10433900 | Harris et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10463421 | Boudreaux et al. | Nov 2019 | B2 |
10478243 | Couture et al. | Nov 2019 | B2 |
10485607 | Strobl et al. | Nov 2019 | B2 |
10524852 | Cagle et al. | Jan 2020 | B1 |
10524854 | Woodruff et al. | Jan 2020 | B2 |
10575868 | Hall et al. | Mar 2020 | B2 |
10675082 | Shelton, IV et al. | Jun 2020 | B2 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020133149 | Bessette | Sep 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030066938 | Zimmerman | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212395 | Woloszko | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040093039 | Schumert | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040167508 | Wham et al. | Aug 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20050015125 | Mioduski et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050119640 | Sverduk et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050215858 | Vail | Sep 2005 | A1 |
20050256405 | Makin et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050272972 | Iddan | Dec 2005 | A1 |
20050273139 | Krauss et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060058825 | Ogura et al. | Mar 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060270916 | Skwarek et al. | Nov 2006 | A1 |
20060293656 | Shadduck et al. | Dec 2006 | A1 |
20070008744 | Heo et al. | Jan 2007 | A1 |
20070010709 | Reinschke | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070020065 | Kirby | Jan 2007 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070032704 | Gandini et al. | Feb 2007 | A1 |
20070032785 | Diederich et al. | Feb 2007 | A1 |
20070051766 | Spencer | Mar 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070135686 | Pruitt et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070182842 | Sonnenschein et al. | Aug 2007 | A1 |
20070185474 | Nahen | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203483 | Kim et al. | Aug 2007 | A1 |
20070208340 | Ganz et al. | Sep 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070265613 | Edelstein et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20070270651 | Gilad et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070276424 | Mikkaichi et al. | Nov 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20080015413 | Barlow et al. | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080103495 | Mihori et al. | May 2008 | A1 |
20080114355 | Whayne et al. | May 2008 | A1 |
20080147058 | Horrell et al. | Jun 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188755 | Hart | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080228179 | Eder et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080281200 | Vole et al. | Nov 2008 | A1 |
20080281315 | Gines | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20080300588 | Groth et al. | Dec 2008 | A1 |
20080312502 | Swain et al. | Dec 2008 | A1 |
20090012516 | Curtis et al. | Jan 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090143678 | Keast et al. | Jun 2009 | A1 |
20090182322 | D'Amelio et al. | Jul 2009 | A1 |
20090182331 | D'Amelio et al. | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090248021 | McKenna | Oct 2009 | A1 |
20090254080 | Honda | Oct 2009 | A1 |
20090264879 | McClurken et al. | Oct 2009 | A1 |
20090270771 | Takahashi | Oct 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090287205 | Ingle | Nov 2009 | A1 |
20100022824 | Cybulski et al. | Jan 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100204802 | Wilson et al. | Aug 2010 | A1 |
20100222752 | Collins, Jr. et al. | Sep 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100280368 | Can et al. | Nov 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20110009857 | Subramaniam et al. | Jan 2011 | A1 |
20110028964 | Edwards | Feb 2011 | A1 |
20110087224 | Cadeddu et al. | Apr 2011 | A1 |
20110118601 | Barnes et al. | May 2011 | A1 |
20110125151 | Strauss et al. | May 2011 | A1 |
20110178515 | Bloom | Jul 2011 | A1 |
20110257680 | Reschke et al. | Oct 2011 | A1 |
20110270245 | Horner et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110313415 | Fernandez et al. | Dec 2011 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120041358 | Mann et al. | Feb 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120080334 | Shelton, IV et al. | Apr 2012 | A1 |
20120085358 | Cadeddu et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116222 | Sawada et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120296371 | Kappus et al. | Nov 2012 | A1 |
20130023925 | Mueller | Jan 2013 | A1 |
20130035685 | Fischer et al. | Feb 2013 | A1 |
20130123776 | Monson et al. | May 2013 | A1 |
20130158659 | Bergs et al. | Jun 2013 | A1 |
20130158660 | Bergs et al. | Jun 2013 | A1 |
20130253256 | Griffith et al. | Sep 2013 | A1 |
20130296843 | Boudreaux et al. | Nov 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005705 | Weir et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140014544 | Bugnard et al. | Jan 2014 | A1 |
20140039493 | Conley et al. | Feb 2014 | A1 |
20140194864 | Martin et al. | Jul 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140194875 | Reschke et al. | Jul 2014 | A1 |
20140207135 | Winter | Jul 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140350540 | Kitagawa et al. | Nov 2014 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150080876 | Worrell et al. | Mar 2015 | A1 |
20150250531 | Dycus et al. | Sep 2015 | A1 |
20150257819 | Dycus et al. | Sep 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272659 | Boudreaux et al. | Oct 2015 | A1 |
20150327918 | Sobajima et al. | Nov 2015 | A1 |
20160045248 | Unger et al. | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160066980 | Schall et al. | Mar 2016 | A1 |
20160100747 | Nitsan | Apr 2016 | A1 |
20160143687 | Hart et al. | May 2016 | A1 |
20160157923 | Ding | Jun 2016 | A1 |
20160157927 | Corbett et al. | Jun 2016 | A1 |
20160175029 | Witt et al. | Jun 2016 | A1 |
20160199124 | Thomas et al. | Jul 2016 | A1 |
20160199125 | Jones | Jul 2016 | A1 |
20160270842 | Strobl et al. | Sep 2016 | A1 |
20160270843 | Boudreaux et al. | Sep 2016 | A1 |
20160278848 | Boudreaux et al. | Sep 2016 | A1 |
20160296270 | Strobl et al. | Oct 2016 | A1 |
20170056097 | Monson et al. | Mar 2017 | A1 |
20170105787 | Witt et al. | Apr 2017 | A1 |
20170105789 | Boudreaux et al. | Apr 2017 | A1 |
20170135751 | Rothweiler et al. | May 2017 | A1 |
20170164972 | Johnson et al. | Jun 2017 | A1 |
20170189102 | Hibner et al. | Jul 2017 | A1 |
20170312014 | Strobl et al. | Nov 2017 | A1 |
20170312015 | Worrell et al. | Nov 2017 | A1 |
20170312017 | Trees et al. | Nov 2017 | A1 |
20170312018 | Trees et al. | Nov 2017 | A1 |
20170312019 | Trees et al. | Nov 2017 | A1 |
20170325878 | Messerly et al. | Nov 2017 | A1 |
20170325886 | Graham | Nov 2017 | A1 |
20170367751 | Ruddenklau et al. | Dec 2017 | A1 |
20180085156 | Witt et al. | Mar 2018 | A1 |
20180125571 | Witt et al. | May 2018 | A1 |
20180228530 | Yates et al. | Aug 2018 | A1 |
20180263683 | Renner et al. | Sep 2018 | A1 |
20180280075 | Nott et al. | Oct 2018 | A1 |
20180368906 | Yates et al. | Dec 2018 | A1 |
20190000468 | Adams et al. | Jan 2019 | A1 |
20190000470 | Yates et al. | Jan 2019 | A1 |
20190000528 | Yates et al. | Jan 2019 | A1 |
20190000530 | Yates et al. | Jan 2019 | A1 |
20190000555 | Schings et al. | Jan 2019 | A1 |
20190059980 | Shelton, IV et al. | Feb 2019 | A1 |
20190099209 | Witt et al. | Apr 2019 | A1 |
20190099212 | Davison et al. | Apr 2019 | A1 |
20190099213 | Witt et al. | Apr 2019 | A1 |
20200375651 | Witt et al. | Dec 2020 | A1 |
20210100605 | Renner et al. | Apr 2021 | A1 |
20210338309 | Witt et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
1634601 | Jul 2005 | CN |
1922563 | Feb 2007 | CN |
2868227 | Feb 2007 | CN |
4300307 | Jul 1994 | DE |
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
10201569 | Jul 2003 | DE |
102005032371 | Jan 2007 | DE |
0171967 | Feb 1986 | EP |
0705571 | Apr 1996 | EP |
1862133 | Dec 2007 | EP |
2060238 | May 2009 | EP |
1747761 | Oct 2009 | EP |
1767164 | Jan 2013 | EP |
2578172 | Apr 2013 | EP |
2419159 | Aug 2013 | ES |
2032221 | Apr 1980 | GB |
S537994 | Jan 1978 | JP |
H08229050 | Sep 1996 | JP |
2002186627 | Jul 2002 | JP |
2009213878 | Sep 2009 | JP |
2010057926 | Mar 2010 | JP |
WO-8103272 | Nov 1981 | WO |
WO-9314708 | Aug 1993 | WO |
WO-9800069 | Jan 1998 | WO |
WO-9923960 | May 1999 | WO |
WO-0024330 | May 2000 | WO |
WO-0128444 | Apr 2001 | WO |
WO-02080794 | Oct 2002 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2008130793 | Oct 2008 | WO |
WO-2009067649 | May 2009 | WO |
WO-2010104755 | Sep 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2011144911 | Nov 2011 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061638 | May 2012 | WO |
WO-2013131823 | Sep 2013 | WO |
WO-2016088017 | Jun 2016 | WO |
Entry |
---|
Abbott, et al. Proceedings of the 2007 IEEEIRDJ International Conference on Intelligent Robots and Systems. 410-416, 2007. |
Cadeddu et al., “Magnetic positioning system for trocarless laparoscopic instruments,” American College of Surgeons Poster, 2004. |
Cadeddu et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single site surgery: initial human experience,” Surgical Endoscopy, SAGES Oral Manuscript, 2009. |
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” American Urological Association Poster, 2002. |
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” Journal of Urology Abstract, 2002. |
Castellvi et al., “Completely transvaginal NOTES cholecystectomy in a porcine model using novel endoscopic instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009. |
Castellvi et al., “Hybrid transgastric NOTES cholecystectomy in a porcine model using a magnetically anchored cautery and novel instrumentation,” Submitted for Presentation, ASGE, 2009. |
Castellvi et al., “Hybrid transvaginal NOTES sleeve gastrectomy in a porcine model using a magnetically anchored camera and novel instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009. |
Duchene et al., “Magnetic positioning system for trocarless laparoscopic instruments,” Engineering and Urology Society Poster, 2004. |
Fernandez et al., “Development of a transabdominal anchoring system for trocar-less laparoscopic surgery,” ASME Proceedings of/MECE, 2003. |
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” Submittedfor Presentation, Poster, SAGES Annual Meeting, 2008. |
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” SAGES Annual Meeting Poster, 2008. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-Abdominal Camera and Retractor”, Annals of Surgery, vol. 245, No. 3, pp. 379-384, Mar. 2007. |
Peirs et al., “A miniature manipulator for integration in self-propelling endoscope,” Sensors and Actuators, 92:343-9, 2001. |
Raman et al., “Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation,” Journal of Endourology, 23(3):, 2009.367-371,2009. |
Rapaccini et al., “Gastric Wall Thickness in Normal and Neoplastic Subjects: A Prospective Study Performed by Abdominal Ultrasound”, Gastrointestinal Radiology, vol. 13, pp. 197-199. 1988. |
Scott et al., “A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008. |
Scott et al., “Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Surg. Endosc., 21:2308-2316, 2007. |
Scott et al., “Evaluation of a novel air seal access port for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008. |
Scott et al., “Magnetically anchored instruments for transgastric endoscopic surgery,” Oral Presentation for SAGES Annual Meeting, Emerging Technology Oral Abstract ET005, 2006. |
Scott et al., “Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008. |
Scott et al., “Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Oral Presentation, ASGE Annual Meeting/DDW, 2007. |
Scott et al., “Trans gastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments,” SAGES Annual Meeting Poster, 2007. |
Scott et al., “Transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Abstract for Video Submission, ASGE II1h Annual Video Forum, 2007. |
Scott et al., “Transvaginal single access ‘pure’ NOTES sleeve gastrectomy using a deployable magnetically anchored video camera,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Poster, 2008. |
Swain et al., “Linear stapler formation of ileo-rectal, entero-enteral and gastrojejunal anastomoses during dual and single access ‘pure’ NOTES procedures: Methods, magnets and stapler modifications,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008. |
Swain et al., “Wireless endosurgery for NOTES,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008. |
Tang et al., “Live video manipulator for endoscopy and natural orifice transluminal endoscopic surgery (with videos),” Gastrointestinal Endoscopy, 68:559-564, 2008. |
Zeltser et al., “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, 178:288-291, 2007. |
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp. |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Meeh. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages). |
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages). |
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages). |
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages). |
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages). |
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288. |
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291. |
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999. |
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549. |
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541. |
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989. |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995). |
Campbell et al., “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008], Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
Hormann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/. |
Number | Date | Country | |
---|---|---|---|
20190099217 A1 | Apr 2019 | US |