Flexible electrosurgical instrument

Information

  • Patent Grant
  • 11484358
  • Patent Number
    11,484,358
  • Date Filed
    Friday, September 29, 2017
    6 years ago
  • Date Issued
    Tuesday, November 1, 2022
    a year ago
Abstract
An end effector of an electrosurgical device may include a first body, a first electrode on the left side of the first body, and a second electrode on the right side of the first body. The first and second electrodes may be configured to receive electrosurgical energy to treat tissue in a target treatment zone. The end effector may also include a fluid aspiration port in fluid communication with a fluid path. The fluid aspiration port may be configured to remove a material from the target treatment zone.
Description
BACKGROUND

Many internal surgical procedures require the removal of tissue as part of the surgical procedure. The removal of such tissue invariably results in severing multiple blood vessels leading to localized blood loss. Significant blood loss may compromise the patient's health by potentially leading to hypovolemic shock. Even minor blood loss may complicate the surgery by resulting in blood pooling into the surgical site and thereby obscuring the visibility of the tissue from the surgeons and surgical assistants. The problem of blood loss into the surgical site may be especially important in broad-area surgeries, such as liver resections, in which multiple blood vessels may be severed during the procedure.


SUMMARY

In one aspect, an electrosurgical instrument may include an end effector. The end effector may include a first body, a first electrode on the left side of the first body, a second electrode on the right side of the first body, and a fluid aspiration port in fluid communication with a fluid path. The first and second electrodes may be configured to receive electrosurgical energy to treat tissue in a target treatment zone. The fluid aspiration port may be configured to remove a material from the target treatment zone.


In one aspect of the electrosurgical instrument, the end effector may further include a cavity disposed between the first electrode and the second electrode, a first irrigation channel on the left side of the first body, a second irrigation channel on the right side of the first body, a first fluid discharge port on the first electrode, and a second fluid discharge port on the second electrode. The first fluid discharge port may be in fluid communication with the first irrigation channel. The second fluid discharge port may be in fluid communication with the second irrigation channel. The fluid aspiration port may be disposed at the proximal end of the cavity between the first electrode and the second electrode. The first body may be made of a flexible low durometer material.


In one aspect of the electrosurgical instrument, each of the first and second electrodes comprises a thin conductive material that is insert-molded into the first body.


In one aspect of the electrosurgical instrument, each of the first and second irrigation channels is formed inside the first body.


In one aspect of the electrosurgical instrument, the first body may be made of a flexible low durometer material, where the first body defines a surface at a distal end of the first body and the fluid aspiration port may be disposed in a center portion of the surface at the distal end of the first body.


In one aspect of the electrosurgical instrument, the first and second electrodes are disposed in the first body. A distal end of each of the first and second electrodes is exposed on the surface at the distal end of the first body.


In one aspect of the electrosurgical instrument, the fluid aspiration port may be further configured to deliver an irrigation fluid to the target treatment zone through the fluid path.


In one aspect of the electrosurgical instrument, the first body has an organic shape.


In one aspect of the electrosurgical instrument, the first body may include a first portion covering the first electrode on the left side of the first body, a second portion covering the second electrode on the right side of the first body, and a third portion disposed between the first portion and the second portion. A distal portion of the first electrode and a distal portion of the second electrode may extend beyond a distal end of the first body. The first electrode, the second electrode, and the first body may be formed by a co-extrusion process.


In one aspect of the electrosurgical instrument, the end effector may further include a second body. The first body may be included in the second body. The fluid aspiration port may be formed between the second body and the third portion of the first body.


In one aspect of the electrosurgical instrument, the fluid aspiration port may be formed on a surface at a distal end of the third portion of the first body.


In one aspect of the electrosurgical instrument, the first body may comprise a PolyEther Ether Ketone (PEEK) plastic material or a Polytetrafluoroethylene (PTFE) material.


In one aspect of the electrosurgical instrument, the fluid path may include a clogged tissue remover with a hollow body and a prong disposed at a distal end of the hollow body.


In one aspect of the electrosurgical instrument, the clogged tissue remover may be extendable with respect to the fluid path.


In one aspect of the electrosurgical instrument, the fluid path may be extendable with respect to a shaft in the electrosurgical instrument and the clogged tissue remover is stationary with respect to the shaft. When the fluid path is retracted with respect to the shaft, the clogged tissue remover may be extended with respect to the fluid path, which may allow the clogged tissue remover to remove clogged tissue in the fluid path.


In one aspect of the electrosurgical instrument, the fluid path may be coupled to a detent mechanism configured to releasably hold the fluid path between a first position and a second position. The clogged tissue remover may be extended with respect to the fluid path to remove clogged tissue in the fluid path when the detent mechanism is in the first position, and the clogged tissue remover may be retracted with respect to the fluid path when the detent mechanism is in the second position.


In one aspect of the electrosurgical instrument, the electrosurgical instrument may further include a shaft, where the end effector is removably engaged with the shaft.


In one aspect of the electrosurgical instrument, the shaft may include a first receptacle and a second receptacle that are configured to receive the first and second electrodes, respectively. The first and second electrodes are spring-loaded.


In one aspect of the electrosurgical instrument, the electrosurgical instrument may further include a fluid discharge port formed on the first body and in fluid communication with a first irrigation channel in the end effector. The fluid discharge port may be configured to deliver an irrigation fluid to the target treatment zone. A second irrigation channel in the shaft may be removably engaged with the first irrigation channel.


In one aspect of the electrosurgical instrument, at least one of the first and second electrodes may include a flexible material and a thin conductive material coated over the flexible material, which allows the at least one of the first and second electrodes to deform to conform to a shape of tissue in direct contact with the at least one of the first and second electrodes.


In one aspect of the electrosurgical instrument, a distal portion of the at least one of the first and second electrodes may be coupled to a linkage moveable between a first position and a second position. The distal portion of the at least one of the first and second electrodes may form a convex shape when the linkage is in the first position and the distal tip portion of the at least one of the first and second electrodes may form a concave shape when the linkage is in the second position.


In one aspect, an electrosurgical instrument may include a shaft and a mesh end effector. The mesh end effector may include at least one insulated weft wire and a plurality of insulated warp wires. Each of the plurality of insulated warp wires may be alternately woven above and below the at least one insulated weft wire. Each of the plurality of insulated warp wires may define at least one high point where each of the plurality of insulated warp wires is woven above the at least one insulated weft wire. The at least one high point in each of the plurality of insulated warp wires may expose a non-insulated conductive site to provide electrosurgical energy to a target tissue.


In one aspect of the electrosurgical instrument, a polarity of each of the plurality of insulated warp wires may alternate so that the polarity of each of the plurality of insulated warp wires is opposite to an adjacent insulated warp wire.


In one aspect of the electrosurgical instrument, the mesh end effector may be in a shape selected from the group consisting of a flat, a dome, and a rod.


In one aspect, a method to manufacture an electrosurgical instrument may include providing a plurality of layers, where each of the plurality of layers includes a signal wire disposed in a top portion of each of the plurality of layers and a plurality of dot wires extending down from the signal wire, wherein the signal wire is configured to deliver electrosurgical energy to the plurality of dot wires. Then, the plurality of layers may be arranged. A molding material may be overmolded onto the arranged plurality of layers. Then, a bottom portion of the overmolded plurality of layers may be cut to expose a cut end of each of the plurality of dot wires. The overmolded plurality of layers may define a first bottom surface that is formed after the cutting. The first bottom surface of the overmolded plurality of layers may form an array of the cut ends of the plurality of dot wires.


In one aspect of the method, a polarity of each of the plurality of layers may alternate so that the polarity of each of the plurality of layers is opposite to an adjacent layer.


In one aspect of the method, the overmolded plurality of layers may define a second bottom surface that is formed after the overmolding but before the cutting. Cutting the bottom portion of the overmolded plurality of layers may comprise grinding the second bottom surface of the overmolded plurality of layers to expose the cut end of each of the plurality of dot wires.





BRIEF DESCRIPTION OF THE FIGURES

The features of the various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:



FIG. 1 illustrates a perspective view of one aspect of an electrosurgical device.



FIG. 2 illustrates an expanded view of one aspect of an end effector of the electrosurgical device depicted in FIG. 1.



FIG. 3 illustrates a side perspective view of one aspect of the electrosurgical device depicted in FIG. 1.



FIGS. 4, 5, and 6 illustrate plan views of the bottom, side, and top, respectively, of one aspect of the electrosurgical device depicted in FIG. 1.



FIG. 7 illustrates a plan front (distal) view of one aspect of the electrosurgical device depicted in FIG. 1.



FIG. 8 illustrates a plan rear (proximal) view of one aspect of the electrosurgical device depicted in FIG. 1.



FIG. 9 illustrates a partial sectional perspective view of one aspect of the electrosurgical device depicted in FIG. 1.



FIG. 10 illustrates a partial sectional plan front (distal) view of one aspect of the electrosurgical device depicted in FIG. 1.



FIG. 11 illustrates a perspective view of one aspect of the interior components of the electrosurgical device depicted in FIG. 1.



FIGS. 12, 13, and 14 illustrate plan views of the top, side, and bottom, respectively, of one aspect of the interior components of the electrosurgical device depicted in FIG. 11.



FIG. 15 illustrates a plan front (distal) view of one aspect of the interior components of the electrosurgical device depicted in FIG. 11.



FIG. 16 illustrates a plan rear (proximal) view of one aspect of the interior components of the electrosurgical device depicted in FIG. 11.



FIG. 17 illustrates an additional perspective view of one aspect of the interior components of the electrosurgical device depicted in FIG. 1.



FIG. 18 illustrates an expanded perspective view of one aspect of an end effector of the electrosurgical device depicted in FIG. 17.



FIG. 19 illustrates an expanded perspective view of one aspect of activation controls of the electrosurgical device depicted in FIG. 17.



FIG. 20 illustrates a front (distal) perspective view of one aspect of the electrosurgical device depicted in FIG. 17.



FIG. 21 illustrates a rear (proximal) perspective view of one aspect of the electrosurgical device depicted in FIG. 17.



FIG. 22 illustrates a cross-sectional view of one aspect of the electrosurgical device depicted in FIG. 9.



FIG. 23 illustrates a partial sectional perspective view of one aspect of the electrosurgical device depicted in FIG. 9, illustrating a first position of one aspect of a slide switch.



FIG. 24 illustrates a partial sectional perspective view of one aspect of the electrosurgical device depicted in FIG. 9, illustrating a second position of one aspect of a slide switch.



FIG. 25 illustrates an additional perspective view of one aspect of the interior components of the electrosurgical device depicted in FIG. 9, illustrating a second position of one aspect of a slide switch.



FIG. 26 illustrates an expanded perspective view of one aspect of an end effector of the electrosurgical device depicted in FIG. 25, illustrating an extended position of one aspect of an aspiration tube.



FIG. 27 illustrates an expanded perspective view of one aspect of activation controls of the electrosurgical device depicted in FIG. 25, illustrating a second position of one aspect of a slide switch.



FIG. 28 illustrates an expanded cross-sectional view of one aspect of a metering valve of the electrosurgical device depicted in FIG. 1.



FIGS. 29, 30, and 31 illustrate plan views of the top, side, and bottom, respectively, of one aspect of the electrosurgical device depicted in FIG. 25, illustrating a second position of one aspect of a slide switch.



FIGS. 29, 30, and 31 illustrate plan views of the top, side, and bottom, respectively, of one aspect of the electrosurgical device depicted in FIG. 25, illustrating a second position of one aspect of a slide switch.



FIGS. 32, 33, and 34 illustrate plan views of the top, side, and bottom, respectively, of one aspect of the electrosurgical device depicted in FIG. 9, illustrating a first position of one aspect of a slide switch.



FIG. 35 illustrates a perspective view of one aspect of an end effector of the electrosurgical device depicted in FIG. 1.



FIG. 36 illustrates a perspective view of a model of one aspect of an end effector of the electrosurgical device depicted in FIG. 1.



FIG. 37 illustrates a perspective view of a first aspect of a pair of electrodes and a diverter of an end effector of the electrosurgical device depicted in FIG. 1.



FIG. 38 illustrates a top plan view of the first aspect of a pair of electrodes and a diverter depicted in FIG. 37.



FIG. 39 illustrates a perspective view of a second aspect of a pair of electrodes and a diverter of an end effector of the electrosurgical device depicted in FIG. 1.



FIG. 40 illustrates a top plan view of the second aspect of a pair of electrodes and a diverter depicted in FIG. 39.



FIG. 41 illustrates a perspective view of an alternative aspect of an end effector of the electrosurgical device depicted in FIG. 1.



FIG. 42 illustrates a front (distal) plan view of the alternative aspect of the end effector depicted in FIG. 41.



FIG. 43 illustrates another aspect of the end effector of the electrosurgical device depicted in FIG. 1



FIG. 44 illustrates a perspective view of one aspect of an electrosurgical device.



FIG. 45 illustrates a perspective view of one aspect of the electrode tip depicted in FIG. 44.



FIG. 46 illustrates a perspective view of one aspect of the shaft depicted in FIG. 44.



FIG. 47 illustrates a schematic cross-sectional view of one aspect of an aspiration tube illustrating a first position of the aspiration tube.



FIG. 48 illustrates a schematic cross-sectional view of one aspect of the aspiration tube illustrating a second position of the aspiration tube.



FIG. 49 illustrates a schematic cross-sectional view of one aspect of an aspiration tube.



FIG. 50 illustrates a (distal) perspective view of one aspect of an electrosurgical device.



FIG. 51 illustrates a partial sectional (distal) perspective view of one aspect of the electrosurgical device depicted in FIG. 50. Electrical wires are not shown for clarity.



FIG. 52 illustrates a partial sectional perspective view of one aspect of the flexible shaft depicted in FIG. 50. Electrical wires are not shown for clarity.



FIG. 53 illustrates a proximal cross-sectional view of one aspect of the flexible shaft depicted in FIG. 50. Electrical wires are not shown for clarity.



FIG. 54 illustrates a (distal) perspective view of one aspect of an electrosurgical device.



FIG. 55 illustrates a partial sectional perspective view of one aspect of the electrosurgical device depicted in FIG. 54.



FIG. 56 illustrates a partial sectional perspective view of one aspect of the electrosurgical device depicted in FIG. 54.



FIG. 57 illustrates a proximal cross-sectional view of one aspect of the flexible shaft depicted in FIG. 54.



FIG. 58 illustrates a partial transparent (distal) perspective view of an aspect of an electrosurgical device.



FIG. 59 illustrates a proximal cross-sectional view of an aspect of the flexible shaft depicted in FIG. 58.



FIG. 60 illustrates a perspective view of one aspect of an end effector.



FIG. 61 illustrates a partial sectional perspective view of one aspect of the end effector depicted in FIG. 54.



FIG. 62 illustrates a perspective view of one aspect of the end effector depicted in FIG. 60.



FIG. 63 illustrates a perspective view of one aspect of the end effector depicted in FIG. 60, illustrating the end effector being used in a confined open surgery.



FIG. 64 illustrates a perspective view of one aspect of an end effector coupled to a shaft.



FIG. 65 illustrates a top view of one aspect of the end effector depicted in FIG. 64.



FIG. 66 illustrates a side view of one aspect of the end effector depicted in FIG. 64.



FIG. 67 illustrates a perspective view of one aspect of the end effector depicted in FIG. 64, illustrating the end effector flexing up and down.



FIG. 68 illustrates a (distal) perspective view of one aspect of an end effector.



FIG. 69 illustrates a front view of one aspect of the end effector depicted in FIG. 68.



FIG. 70 illustrates a front view of one aspect of a first body in FIG. 68.



FIG. 71 illustrates a perspective view of one aspect of an end effector.



FIG. 72 illustrates a perspective view of one aspect of an end effector.



FIG. 73 illustrates a perspective view of one aspect of an electrosurgical device.



FIG. 74 illustrates a schematic front view of one aspect of a mesh end effector depicted in FIG. 73, illustrating a pattern of conductive sites in an alternating array where the polarity of the conductive sites is alternating.



FIG. 75 illustrates a front view of one aspect of a mesh end effector depicted in FIG. 73.



FIG. 76 illustrates a perspective view of one aspect of the electrosurgical device depicted in FIG. 73, illustrating a mesh end effector removably engaged with a shaft of the electrosurgical device.



FIGS. 77, 78, and 79 illustrate perspective views of an alternative aspect of the electrosurgical device depicted in FIG. 73.



FIG. 80 illustrates a flowchart of an example method to manufacture a mesh end effector according to one aspect of the present disclosure.



FIG. 81 illustrates a flowchart of an example method to manufacture an array of electrode dots on a single surface according to one aspect of the present disclosure.



FIG. 82 illustrates a front view of one aspect of a layer with a signal wire and dot wires.



FIG. 83 illustrates a front view of an alternative aspect of the layer with a signal wire and dot wires depicted in FIG. 82.



FIG. 84 illustrates a perspective view of a plurality of layers arranged according to an example of the present disclosure.



FIG. 85 illustrates a perspective view of a plurality of layers arranged in a jig machine according to an example of the present disclosure.



FIG. 86 illustrates a schematic perspective view of layers having different polarities according to an example of the present disclosure.



FIG. 87 illustrates a perspective bottom view of a bottom surface of truncated overmolded layers according to an example of the present disclosure.



FIG. 88 illustrates a perspective view of one aspect of an electrosurgical device.



FIG. 89 illustrates a schematic cross-sectional top view of one aspect of an electrode.



FIG. 90 illustrates a schematic cross-sectional top view of one aspect of an electrode, illustrating a first position of one aspect of a linkage.



FIG. 91 illustrates a schematic cross-sectional top view of one aspect of the electrode depicted in FIG. 90, illustrating a second position of one aspect of a linkage.





DETAILED DESCRIPTION

Applicant of the present application owns the following patent applications filed Sep. 29, 2017 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/720,810, titled BIPOLAR ELECTRODE SALINE LINKED CLOSED LOOP MODULATED VACUUM SYSTEM, by inventors David A. Witt et al., now U.S. Patent Application Publication 2019/0099209.


U.S. patent application Ser. No. 15/720,822, titled SALINE CONTACT WITH ELECTRODES, by inventors Mark A. Davison et al., now U.S. Patent Application Publication No. 2019/0099212.


U.S. patent application Ser. No. 15/720,831, titled SYSTEMS AND METHODS FOR MANAGING FLUID AND SUCTION IN ELECTROSURGICAL SYSTEMS, by inventors David A. Witt et al., now U.S. Pat. No. 11,033,323.


Typically, an electrosurgical cautery device is used to seal the blood vessels, thereby preventing blood loss. Such electrosurgical cautery devices may include bipolar devices that incorporate a pair of electrodes that are powered by radiofrequency (RF) energy to heat and cauterize the tissue and blood vessels. Direct application of the electrodes to the tissue may lead to unwanted effects such as localized tissue charring and fouling of the electrodes by charred tissue matter sticking to them.


A method to reduce charring and fouling may include introducing a saline fluid into the surgical site to irrigate the site. Alternatively, the saline fluid may be heated by the electrodes to form a steam to cauterize the tissue. In this manner, the tissue is not placed in direct contact with the electrodes and electrode fouling is prevented. Although a saline fluid may be used, any electrically conductive fluid (e.g., an aqueous mixture containing ionic salts) may be used to promote steam-based cauterization. After the steam cauterizes the tissue by transferring its heat thereto, the steam may condense to water. The resulting water may be used to clear the surgical site of unwanted material such as the remnants of the cauterized tissue. An aspirator may be used to remove the mixture of water and tissue remnants. It may be difficult and inefficient for the surgeon to cauterize and aspirate the tissue especially if separate devices are required. Thus, a device incorporating the cauterization and aspiration functions is desirable.


The incorporation of both a saline source and an evacuation source for aspiration into a bipolar electrosurgical cautery instrument may be problematic. If the aspirator operates continuously, then the saline may not reside in contact with the electrodes long enough to be heated and to form steam. If the saline source operates continuously, then excess saline may be delivered to the surgical site and obscure the area from the surgeon. It is possible to have a device with multiple actuators to allow the surgeon to selectively emit a fluid to be vaporized by the electrodes and evacuate the surgical site. However, such multiple actuators may be clumsy to use and lead to hand and finger fatigue during a long surgical procedure.


Therefore, it is desirable to have a device that permits a surgeon to effectively and efficiently provide steam cauterization and tissue mixture aspiration to a surgical site without requiring excessive manipulation of the surgical device.


In some non-limiting examples, an electrosurgical device may incorporate functions to cauterize and aspirate tissues during a broad-area surgical procedure. In some electrosurgical devices, energized electrodes may be used to perform the cauterization procedure. However, as disclosed above, the electrodes of such devices may be susceptible to fouling by the tissue contacted by the electrodes during cauterization. It may be appreciated that cauterization of tissue may be accomplished by exposing the tissue to a heated material other than the electrodes. As also disclosed above, in one non-limiting example, a fluid, such as a saline fluid, may be heated by the electrodes and the heated fluid or steam may then be used to cauterize the tissue. The saline, or other conductive fluid, may be heated by an electrical current flowing between the electrodes. In this manner, the temperature used to cauterize the tissue may be limited by the temperature of the steam (e.g., at around 100° C.) thereby reducing the potential of tissue charring. Further, the surrounding tissue may be moistened by the steam, thereby preventing desiccation due to their proximity to a heated device. Additionally, the steam, upon losing heat by contacting the tissue, may condense to water, and the water may then be used to irrigate the surgical site. In this manner, a saline fluid may be used for the dual purposes of cauterization and irrigation, thereby increasing the efficiency of the cauterization procedure.



FIGS. 1-8 depict views of one example of such an electrosurgical device 100. For FIGS. 1-8, common reference numbers refer to common components within the figures.


The electrosurgical device 100 may include a housing 105 with a shaft 135 extending distally from the housing 105. The housing 105 may include, on a proximal end, a proximal fluid source port 115 and a proximal fluid evacuation port 110. In some electrosurgical device systems, the proximal fluid source port 115 may be placed in fluid communication with a source of a fluid, for example saline, buffered saline, Ringer's solution, or other electrically conducting fluids such as aqueous fluids containing ionic salts. The fluid source may operate as a gravity feed source or it may include components to actively pump the fluid into the proximal fluid source port 115. An actively pumping fluid source may include, without limitation, a power supply, a pump, a fluid source, and control electronics to allow a user to actively control the pumping operation of the actively pumping fluid source. In some electrosurgical device systems, the fluid evacuation port 110 may be placed in fluid communication with a vacuum source. The vacuum source may include a power supply, a pump, a storage component to store material removed by the vacuum source, and control electronics to allow a user to actively control the pumping operation of the vacuum source.


In addition, the housing 105 may include a connector 116 to which a cable 117 of an energy source 120 may be attached. The energy source 120 may be configured to supply energy (e.g., RF energy) to the electrodes 145a,b. The energy source 120 may include a generator configured to supply power to the electrosurgical device 100 through external means, such as through the cable 117. In certain instances, the energy source 120 may include a microcontroller coupled to an external wired generator. The external generator may be powered by AC mains. The electrical and electronic circuit elements associated with the energy source 120 may be supported by a control circuit board assembly, for example. The microcontroller may generally comprise a memory and a microprocessor (“processor”) operationally coupled to the memory. The electronic portion of the energy source 120 may be configured to control transmission of energy to electrodes 145a,b at the end effector 140 of the electrosurgical device 100. It should be understood that the term processor as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or at most a few integrated circuits. The processor may be a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system. The energy source 120 may also include input devices to allow a user to program the operation of the energy source 120.


The housing 105 may also include one or more activation devices to permit a user to control the functions of the electrosurgical device 100. In some non-limiting examples, the electrosurgical device 100 may include a metering valve 125 that may be activated by a user to control an amount of fluid flowing through the electrosurgical device and provide, at the distal end, an amount of the fluid to the end effector 140. In some non-limiting examples, the metering valve 125 may also permit the user to control an amount of energy supplied by the energy source 120 to the electrodes 145a,b at the end effector 140. As an example, the metering valve 125 may comprise a screw activation pinch valve to regulate the flow of fluid through the electrosurgical device 100. Additionally, the metering valve 125 may have a push-button activation function to permit current to flow from the energy source 120 to the electrodes 145a,b upon depression of the push-button by a user. It may be recognized that in some non-limiting examples, the housing 105 may include a metering valve 125 to allow regulation of fluid flow through the electrosurgical device 100 and a separate energy control device to control the amount of current sourced to the electrodes 145a,b.


The housing 105 may also be attached to a shaft 135 at a distal end of the housing 105. An end effector 140 may be associated with a distal end of the shaft 135. The end effector 140 may include electrodes 145a,b that may be in electrical communication with the energy source 120 and may receive electrical power therefrom. In some non-limiting examples, a first electrode 145a may receive electrical energy of a first polarity (such as a positive polarity) from the energy supply 120, and the second electrode 145b may receive electrical energy of a second and opposing polarity (such as a negative polarity) from the energy supply 120. Alternatively, the first electrode 145a may be connected to a ground terminal of the energy supply 120, and the second electrode 145b may be connected to a varying AC voltage terminal of the energy supply 120. The electrodes 145a,b may extend beyond the distal end of the shaft 135. The extended ends of the electrodes 145a,b may be separated by a diverter 155. The diverter 155 may contact the first electrode 145a at a first edge of the diverter 155, and the diverter 155 may contact the second electrode 145b at a second edge of the diverter 155. The diverter 155 may comprise an electrically insulating material and/or a heat resistant material, which may include, without limitation, a plastic such as a polycarbonate or a ceramic. The diverter 155 may be deformable or non-deformable. In some non-limiting examples, the housing 105 may include a mechanism to control a shape of a deformable diverter 155.


The end effector 140 may also include a fluid discharge port 150 that may be in fluid communication with the fluid source port 115 through a first fluid path. The first fluid path, such as a source fluid path (see 315 in FIG. 11), may permit the fluid to flow from the fluid source port 115 to the fluid discharge port 150. In some non-limiting examples, the fluid discharge port 150 may be positioned above the diverter 155 so that a fluid emitted by the fluid discharge port 150 may be collected on a top surface of the diverter 155. The end effector may also include a fluid aspiration port 165 that may be in fluid communication with the fluid evacuation port 110 through a second fluid path. The second fluid path, such as an aspirated fluid path (see 210 in FIG. 9), may permit a liquid mixture generated at the surgical site to flow from the fluid aspiration port 165 to the fluid evacuation port 110. The liquid mixture may then be removed from the electrosurgical device 100 by the vacuum source and stored in the storage component for later removal.


In some non-limiting examples, the fluid aspiration port 165 may be formed at the distal end of an aspiration tube 160. The aspiration tube 160 may also form part of the aspirated fluid path 210. The aspiration tube 160 may be located within the shaft 135 or it may be located outside of and beneath the shaft 135. An aspiration tube 160 located outside of the shaft 135 may be in physical communication with an external surface of the shaft 135. In some examples, the aspiration tube 160 may have a fixed location with respect to the shaft 135. In some alternative examples, the aspiration tube 160 may be extendable in a distal direction with respect to the shaft 135. Extension of the extendable aspiration tube 160 may be controlled by means of an aspiration tube control device. As one non-limiting example, the aspiration tube control device may comprise a slide switch 130. The slide switch 130, in a first position (e.g., in a proximal position), may cause the aspiration tube 160 to remain in a first or retracted position in which the aspiration port 165 is located essentially below the fluid discharge port 150. However, the slide switch 130 in a second position (e.g., in a distal position), may cause the aspiration tube 160 to extend in a distal direction to a fully extended position so that the aspiration port 165 is located distal from and beneath the fluid discharge port 150. In one example, the slide switch 130 may preferentially position the aspiration tube 160 in one of two positions, such as the retracted position and the fully extended position. It may be recognized, however, that the slide switch 130 may also permit the aspiration tube 160 to assume any position between the retracted position and the fully extended position. Regardless of the position of the aspiration tube 160 as disclosed above, the aspiration port 165 may be maintained at a location beneath a plane defined by the top surface of the diverter 155. In this manner, the diverter 155 is configured to prevent fluid emitted by the fluid discharge port 150 from directly being removed at the aspiration port 165.



FIGS. 9 and 10 present partial interior views of an electrosurgical device 200. In addition to the components disclosed above with respect to FIGS. 1-8, the electrosurgical device 200 includes an aspirated fluid path 210 that forms a fluid connection between the proximal fluid evacuation port 110 and the distal fluid aspiration port 165. Also illustrated are valve components 225 of the metering valve 125 and control components 230 of the aspiration tube such as, for example, a slide switch 130. Fluid discharge port 150, electrodes 145a,b, fluid aspiration port 165, and a portion of housing 105 are also illustrated in FIGS. 9 and 10.



FIGS. 11-21 present a variety of views of the interior components of electrosurgical device 300. FIG. 18 is a close-up view of the distal end of the electrosurgical device 300 shown in FIG. 17, and FIG. 19 is a close-up view of actuator components of the electrosurgical device 300 shown in FIG. 17, depicting the metering valve 125 and slide switch 130. Additional components depicted in FIGS. 11-21 include the source fluid path 315 that forms a fluid connection between the proximal fluid source port 115 and the distal fluid discharge port 150. In some examples, the valve components 225 of the metering valve 125 are disposed along the length of the source fluid path 315 permitting a user of the electrosurgical device 300 to regulate a flow of fluid through the source fluid path 315 from the fluid source port 115 to the fluid discharge port 150. In some examples of the valve components 225, a screw actuator, such as a pinch valve, may be used to compress a portion of the source fluid path 315, thereby restricting a flow of fluid therethrough. It may be recognized that any number of fluid control valves may be used as valve components 225 including, without limitation, a ball valve, a butterfly valve, a choke valve, a needle valve, and a gate valve. It may be understood from FIGS. 11-21 that source fluid path 315 extends from fluid source port 115 through the housing 105 and through shaft 135 to the distal fluid discharge port 150. Similarly, it may be understood from FIGS. 11-22 that aspirated fluid path 210 extends from the proximal fluid evacuation port 110 through the housing 105 and through shaft 135 to the distal fluid aspiration port 165. Additionally, electrodes 145a,b may extend from housing 105 through shaft 135 and extend distally and protrude from the end of shaft 135. Alternatively, electrodes 145a,b may extend only through the shaft 135 and extend distally and protrude from the end of shaft 135. Proximal ends 345a,b of the electrodes 145a,b may receive connectors to place the electrodes 145a,b in electrical communication with energy source 120. Electrodes 145a,b may receive the electrical energy from the energy source 120 to permit cauterization to the tissue in the surgical site either through direct contact of the tissue with the protruding portion of the electrodes 145a,b or through heating a fluid contacting electrodes 145a,b.



FIG. 22 is a cross-sectional view of electrosurgical device 400. In particular, the cross-sectional view 400 illustrates the two fluid paths through the device. Thus, FIG. 22 illustrates source fluid path 315 in fluid communication with the proximal fluid source port 115 and the distal fluid discharge port 150. Additionally, FIG. 22 illustrates an example of a physical relationship between source fluid path 315 and the valve components 225 of the metering valve 125. FIG. 22 also illustrates an example in which the source fluid path 315 may extend through both the housing 105 and the shaft 135. Further, FIG. 22 illustrates aspirated fluid path 210 in fluid communication with the proximal fluid evacuation port 110 and the distal fluid aspiration port 165. The aspirated fluid path 210 may also include an aspiration tube 160 that may be disposed at a distal end of the aspirated fluid path 210. The distal fluid aspiration port 165 may be formed at a distal end of the aspiration tube 160.



FIGS. 23-27 and 29-34 illustrate partial interior views of an electrosurgical device 200 having an aspiration tube 160 in a proximal or retracted position and an electrosurgical device 500 having an aspiration tube 160 in a distal or extended position Z. FIG. 23 is similar to FIG. 9 and particularly illustrates a first and proximal position X of the slide switch 130 (as a non-limiting example of an aspiration tube control device) along with a proximal or retracted position of aspiration tube 160. FIG. 24 particularly illustrates a second and distal position Y of the slide switch 130 (as a non-limiting example of an aspiration tube control device) in addition to a distal or extended position Z of aspiration tube 160. FIG. 25 illustrates an alternative perspective view of electrosurgical device 500. FIG. 26 is an expanded perspective view of the distal end of the electrosurgical device 500 shown in FIG. 25, particularly illustrating the distal end of aspiration tube 160 in the extended position Z. FIG. 27 is an expanded perspective view of actuator components of the electrosurgical device 500 shown in FIG. 25, particularly illustrating the second or distal position X of the slide switch 130. FIGS. 29, 30, and 31 present plan views of the top, side, and bottom, respectively, of electrosurgical device 500. FIGS. 29-31 may be compared with FIGS. 32, 33, and 34 which present plan views of the top, side, and bottom, respectively, of electrosurgical device 200. FIGS. 29-31 illustrate the distal positions Y and Z of slide switch 130 and aspiration tube 160, respectively. FIGS. 32-34 illustrate the proximal position X of slide switch 130 and the proximal or retracted position of aspiration tube 160.



FIG. 28 illustrates a cross sectional view of an example of a metering valve 125 depicting some exemplary metering valve components 225. The valve components 225 may include a switch button 525 that may be activated by a user. The valve components 225 may also include an adjustable stop mechanism 527 that may adjust the position of a pinch valve 532 with respect to a portion of the source fluid path 315. The adjustable stop mechanism 527 may comprise a screw activated portion that may be adjusted by a rotation of the switch button 525. In this manner, a user may rotate the switch button 525 and adjust an amount of fluid flowing through the source fluid path 315 to exit from the distal fluid discharge port 150 based on an amount of compression applied to source fluid path 315 by a pinch valve. In some examples, the adjustable stop mechanism 527 may have two positions (an “open” position and a “closed” position). Alternatively, the adjustable stop mechanism 527 may be adjustable and permit the user to select any amount of fluid flow through the source fluid path 315.


Additionally, the metering valve 125 may include additional components 225 that may be used to control an electrical connection between the electrodes 145a,b and the energy source 120. For example, an RF switch 530 may be used to form the electrical connections between the electrodes 145a,b and the energy source 120. In one example, the RF switch 530 may be a momentary contact switch that connects the electrodes 145a,b and the energy source 120 only when actively depressed by a user. Alternatively, the RF switch 530 may be a latching push button switch that may be sequentially activated (push-to-make) and deactivated (push-to-break) upon being depressed. A closure spring 534 may be included among the switch components 225 to return the switch button 525 to an undepressed state when a user is not actively depressing the switch button 525.



FIG. 35 presents a perspective view of a general example of an end effector 600. As disclosed above, the end effector 600 may be composed of a pair of electrodes 145a,b extending from a shaft 135, a distal fluid discharge port 150, a diverter 155, and an aspiration port 165 that may be part of an aspiration tube 160. The diverter 155 may be placed between the pair of electrodes 145a,b in such a manner as to form a contact of a first edge of the diverter 155 with a surface of one electrode 145a, and a contact of a second edge of the diverter 155 with a surface on a second electrode 145b. In some examples, a proximal edge of the diverter 155 may form a mechanical communication with an end surface of the shaft 135. In this manner, fluid emitted by the distal fluid discharge port 150 may be retained on a first or top surface of the diverter 155. The fluid on the top surface of the diverter 155 may be retained on that surface for a sufficient time to maintain contact of the fluid with a surface of both electrodes 145a,b. If the fluid is an ionic fluid, current passing through the fluid between the electrodes 145a,b may heat the fluid sufficiently to form a steam capable of cauterizing tissue. FIG. 36 depicts a perspective view of a fabricated model of the end effector 600 as depicted in FIG. 35.



FIGS. 37-40 depict a variety of examples of an end effector as generally disclosed as end effector 600 depicted in FIG. 35. FIGS. 37 and 38 illustrate a perspective view and a top plan view, respectively, of one example of end effector 700. End effector 700 illustrates many of the components disclosed above with respect to end effector 600 of FIG. 36. These components include the shaft 135, the fluid discharge port 150, the aspirator port 165, the electrodes 145a,b, and aspiration tube 160. In addition to the aspirator port 165, the aspiration tube 160 may include additional ports along the length of the aspiration tube 160 to aspirate material from the surgical site. The diverter 755 of end effector 700 includes a number of features 757a configured to direct the flow of a fluid emitted by fluid discharge port 150 to the surfaces of electrodes 145a,b. Features 757a may include curved guide-ways protruding from the top surface of the diverter 755. Additionally, the top surface of the diverter 755 may include additional features at the distal end to further guide the fluid towards the electrodes 145a,b. The electrodes 145a,b may have a generally circular or elliptical cross section 745a,b at a portion near the distal end of the shaft 135. Further, the electrodes 145a,b may be chamfered at their distal ends 747a,b resulting in an oval or egg-shaped distal end 747a,b. Cross-sectional view F in FIG. 38 illustrates that the oval distal ends 747a,b of the electrodes 145a,b have their respective long axes directed to the outer portion of the end effector 700, away from the diverter 755.



FIGS. 39 and 40 illustrate a perspective view and a top plan view, respectively, of another example of end effector 700. In FIGS. 39 and 40, the distal portion of the electrodes 145a,b may have a circular or oval cross section, but the electrodes 145a,b may have a fabiform or kidney-shaped cross section 745c,d closer (proximal) to the shaft 135. Such a fabiform cross section 745c,d may be useful during fabrication of the electrosurgical device to secure the diverter 755 between the inner surfaces of the electrodes 145a,b. Cross sectional view G of FIG. 40 illustrates how the diverter 755 may be secured against the inner surfaces of the fabiform cross section 745c,d. The example of end effector 700 depicted in FIGS. 39 and 40 also are distinguished from that depicted in FIGS. 37 and 38 in that the features 757b comprising the protruding fluid guide-ways comprise straight guide-ways to direct the fluid on the top surface of the diverter 755 to the electrodes 145a,b. Additionally, the electrodes 145a,b may be chamfered to result in oval distal ends 747c,d in which the respective long axes 749a,b are directed towards the inner portion of the end effector 700 and pointing towards the diverter 755. This geometry is depicted in FIG. 40, cross-sectional view H.



FIGS. 41 and 42 illustrate a perspective view and a vertical cross sectional view, respectively, of an example of end effector 800 that comprises three electrodes. The end effector 800 depicted in FIGS. 41 and 42 includes, as disclosed in examples depicted in FIGS. 37-40, a distal end of a shaft 135, a fluid discharge port 150, and an aspirator port 165. Also depicted in FIGS. 41 and 42 are a pair of electrodes 145a,b that are disposed juxtaposed to each other and are separated by a diverter 855. The diverter 855 illustrated in FIGS. 41 and 42 may include a series of protruding feature 857 that may differ from those in examples depicted in FIGS. 37-40. In the example of end effector 800 illustrated by FIGS. 41 and 42, a third electrode 845 may be incorporated on the top surface of the diverter 855. In the examples of end effectors illustrated above, the two electrodes 145a,b are disposed juxtaposed to each other having a spacing between them. As disclosed above, a first electrode 145a may receive electrical energy of a first polarity (such as a positive polarity) from the energy supply 120 and the second electrode 145b may receive electrical energy of a second and opposing polarity (such as a negative polarity) from the energy supply 120. Alternatively, the first electrode 145a may be connected to a ground terminal of the energy supply 120, and the second electrode 145b may be connected to a varying AC voltage terminal of the energy supply 120. The electrodes 145a,b illustrated in FIGS. 41 and 42 may receive electrical energy having the same polarity while additional electrode 845 may receive electrical energy having a second and opposing polarity. Alternatively, electrodes 145a,b may be connected to a varying AC voltage terminal of the energy supply 120 while the third electrode 845 may be connected to a ground terminal of the energy supply 120. In yet another alternative example, electrodes 145a,b may be connected to a ground terminal of the energy supply 120 while the third electrode 845 may be connected to a varying AC voltage terminal of the energy supply 120. It may be understood that an end effector may include any number of electrodes disposed in any appropriate geometry around or about a diverter placed therebetween or thereamong.



FIG. 43 illustrates an alternative example of an end effector 900. End effector 900 includes a pair of electrodes 945a,b that have a fabiform or kidney-shaped cross section. Diverter 955 is positioned between the concave inner surfaces of electrodes 945a,b, and an aspiration tube having a distal aspiration port 965 is positioned below the diverter 955. Unlike many of the end effectors disclosed above, the source fluid path 315 in end effector 900 does not terminate in a discharge port 150 at a distal end of the shaft 135. Instead, as illustrated in FIG. 43, the source fluid path 315 may continue along the length of one or more of the electrodes. For example, the source fluid path 315 may extend as one or more cannulae 915a,b that are positioned, for example, along the inner concave surface of the electrodes 945a,b. The cannulae 915a,b may be placed against or in proximity to the top surface of the diverter 955. The cannulae 915a,b may also include pores or weep-holes 950 that may permit a fluid flowing through the source fluid path 315 and the cannulae 915a,b to flow onto the top surface of the diverter 955. The fluid may flow from the pores or weep-holes 950 onto the top surface of the diverter 955 due to capillary action and/or surface tension. Although two cannulae 915a,b, are illustrated in FIG. 43, it may be understood that a single cannula or multiple cannulae may be used to provide the fluid to flow onto the top surface of the diverter 955.



FIGS. 44-46 illustrate an example of an electrosurgical device 1000. The electrosurgical device 1000 may include an end effector or an electrode tip 1010 removably or replaceably engaged with a shaft 1020 (e.g., shaft 135). The end effector 1010 may include a first electrode 145a, a second electrode 145b, a distal fluid discharge port 150, and a diverter 155. The electrosurgical device 1000 may include an aspiration port 165 that may be in fluid communication with an aspiration tube 160. The aspiration port 165 and the aspiration tube 160 may be part of the end effector 1010 or the shaft 1020. The electrodes 145a,b, the fluid discharge port 150, the diverter 155, the aspirator port 165, and the aspiration tube 160 may be similar to the examples depicted in FIGS. 2 and 35. For example, the distal fluid discharge port 150 is configured to deliver an irrigation fluid to the target treatment zone. The aspiration port 165 may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration tube 160.


The end effector 1010 may also include a body 1020. The first electrode 145a may be located on the right side of the body 1020 and the second electrode 145b may be located on the left side of the body 1020. The body 1020 may also include a first irrigation channel formed inside the body 1020, for example, in a center portion 1030 of the body 1020. As illustrated in FIG. 44, the electrodes 145a,b may extend through the body 1020 and extend distally and protrude from the end of the body 1020. In some examples, a proximal edge of the diverter 155 may form a mechanical communication with an end surface of the body 1020. In this manner, fluid emitted by the distal fluid discharge port 150 may be retained on a first or top surface of the diverter 155.



FIG. 45 illustrates the end effector or the electrode tip 1010 removed from the shaft 1020. FIG. 46 illustrates the shaft 1020 when the end effector 1010 is removed from the shaft 1020. A surface in the distal end of the shaft 1020 may include a first receptacle 1060a and a second receptacle 1060b. The first and second receptacles 1060a,b may be configured to receive the first and second electrodes 145a,b, respectively. Each of the first electrode 145a and the second electrode 145b may include a distal end 1050a and 1050b, respectively. In some examples, the distal ends 1050a,b of the electrodes 145a,b and the receptacles 1060a,b, may include a releasable engaging mechanism configured to engage the electrodes 145a,b with the receptacles 1060a,b. For example, the distal ends 1050a,b of the electrodes 145a,b may be spring-loaded. In this case, the electrodes 145a,b may be engaged with the receptacles 1060a,b when the distal ends 1050a,b of the electrodes 145a,b are pressed against the receptacles 1060a,b. The electrodes 145a,b may be released from the receptacles 1060a,b when the distal ends 1050a,b of the electrodes 145a,b are pressed against the receptacles 1060a,b again while the electrodes 145a,b are engaged with the receptacles 1060a,b. In some examples, any other type of releasable engaging mechanism may be provided to removably or replaceably engage the end effector 1010 with the shaft 1020. In this way, some aspects of the present disclosure may provide an interchangeable electrode tip/end effector.


In some examples, the shaft 1020 may include a second irrigation channel 1040. The second irrigation channel 1040 in the shaft 1020 may be removably engaged with the first irrigation channel in the end effector 1010. For example, a distal portion of the second irrigation channel 1040 may be configured to be connected to a proximal portion of the first irrigation channel. When the electrodes 145a,b are engaged with the receptacles 1060a,b, the second irrigation channel 1040 may also become engaged with the first irrigation channel so that an irrigation fluid from a fluid source port (e.g., fluid source port 115) may be delivered to the first irrigation channel through the second irrigation channel 1040. The second irrigation channel 1040 may be released from the first irrigation channel when the electrodes 145a,b are released from the receptacles 1060a,b. In some examples, the second irrigation channel 1040 may be part of a source fluid path (e.g., source fluid path 315) connected to the fluid source port. In some examples, the irrigation fluid may be water, saline, buffered saline, Ringer's solution, or other electrically conducting fluids such as aqueous fluids containing ionic salts.



FIGS. 47-49 illustrate an example aspiration tube 1100 (e.g., aspiration tube 160). The aspiration tube 1100 may have an aspiration port 1105 (e.g., aspiration port 165) at a distal end thereof. The aspiration tube 1100 may include a clogged tissue remover 1110 inside the aspiration tube 1100. The clogged tissue remover 1110 may be configured to remove a material (e.g., cut tissue 1140) clogged in the aspiration tube 1100. In some examples, the clogged tissue remover 1110 may include a body 1120 and a prong 1130 disposed at a distal end of the hollow body 1120. In some examples, the body 1120 may be hollow so that the clogged tissue remover 1110 does not inhibit the flow of fluid inside the aspiration tube 1100. The body 1120 may be made from steel, plastic, or any other suitable material. In some examples, the body 1120 may be in a tube shape or in any other suitable shape. In some examples, the prong 1130 may be a thin bar having a distal tip bent to facilitate the remover of the clogged material. In some examples, the prong 1130 may be made from steel, plastic, or any other suitable material. In some examples, the aspiration tube 1100 may be made from high-density polyethylene (HDPE) or any other suitable material.


The clogged tissue remover 1110 may be extendable in a distal direction with respect to the aspiration tube 1100. In FIG. 47, the clogged tissue remover 1110 is in a retracted position. The entire clogged tissue remover 1110 may be placed in the aspiration tube 1100 when the clogged tissue remover is in the retracted position. In FIG. 48, the clogged tissue remover 1110 is in an extended position. In some examples, a distal portion of the clogged tissue remover 1110 may extend distally beyond the aspiration port 1105 when the clogged tissue remover 1110 is in the extended position. In other examples, when the clogged tissue remover 1110 is in the extended position, the clogged tissue remover 1110 may be extended, but the entire clogged tissue remover 1110 may still stay in the aspiration tube 1100. The clogged tissue remover 1110 may assume any position between the retracted position and the extended position.


In some examples, the aspiration tube 1100 may be extendable in a distal direction with respect to a shaft (e.g., shaft 135) and the clogged tissue remover 1110 may be stationary with respect to the shaft. For example, extension of the extendable aspiration tube 1110 may be controlled by means of an aspiration tube control device as discussed above with respect to FIGS. 1-8. As one non-limiting example, the aspiration tube control device may comprise a slide switch (e.g., slid switch 130). The slide switch, in a first position (e.g., in a proximal position), may cause the aspiration tube 1100 to remain in a first or retracted position. The slide switch in a second position (e.g., in a distal position), may cause the aspiration tube 1100 to extend in a distal direction to a fully extended position. In one example, the slide switch may preferentially position the aspiration tube 1100 in one of two positions, such as the retracted position and the fully extended position.


In other examples, the aspiration tube control device may comprise a detent mechanism 1150 as illustrated in FIG. 49. The detent mechanism 1150 may be configured to releasably hold the aspiration tube 1100 between a first (retracted) position and a second (extended) position. The detent mechanism 1150 may include a detent body 1155 coupled to the aspiration tube 1100. The detent body 1155 may include a first compliant detent leg 1170a and a second compliant detent leg 1170b. The first and second detent legs 1170a,b may be spring-loaded with a first spring 1180a and a second spring 1180b, respectively. The first and second detent legs may be placed in a proximal portion of the detent body 1155 and face each other in an internally open empty space 1157 within the detent body 1155. The clogged tissue remover 1110 may be coupled to a rib body 1160. Some portions of the rib body 1160 may enter and exit the internally open empty space 1157 as the detent body 1155 moves back and forth. The rib body 1160 may include a first rib 1162 at a distal portion of the rib body 1160 and a second rib 1164 at a proximal portion of the rib body 1160. The width of the ribs 1162 and 1164 may be greater than the distance between the first and second detent legs 1170a,b so that application of a certain amount of force is required to extend and retract the detent body 1155 over the ribs 1162 and 1164.


In some examples, when the aspiration tube 1110 and/or detent body 1155 are in a retracted position, the first rib 1162 may be located distally from the detent legs 1170a,b as illustrated in FIG. 49. When the aspiration tube 1110 and/or detent body 1155 are in an extended position, the first rib 1162 may be located between the first detent leg 1170a and the second detent leg 1170b, or located proximally from the detent legs 1170a,b. When the first rib 1162 is located between the detent legs 1170a,b, the detent legs 1170a,b may be spring-biased against the first rib 1162 to hold the first rib 1162. In this way, the first rib 1162, together with the detent legs 1170a,b, may be configured to releasably lock the detent body 1155 in a retracted position or an extended position. The second rib 1164 may be configured to prevent the detent body 1155 from colliding with a distal end of the rib body 1160.


When the aspiration tube 1100 is retracted, the clogged tissue remover 1110 may be extended with respect to the aspiration tube 1100. For example, when the aspiration tube 1100 and/or the detent body 1155 are in the retracted position, the clogged tissue remover 1110 may be caused to be exposed outside the aspiration port 1105. The clogged tissue remover 1110 may be retracted with respect to the aspiration tube 1100 when the aspiration tube 1100 and/or the detent body 1155 are in the extended position. In some examples, the aspiration tube 1100 may be stationary, for example, with respect to a shaft (e.g., shaft 135) and the clogged tissue remover 1110 may be moveable/extendable in a distal direction with respect to the shaft and the aspiration tube 1100.



FIGS. 50-53 illustrate an example of an electrosurgical device 1200. The electrosurgical device 1200 may include an end effector 1210 and a flexible shaft 1250. The end effector 1210 may include a first electrode 1220a, a second electrode 1220b, a distal fluid discharge port 1230 in fluid communication with an irrigation channel 1235 (e.g., source fluid path 315), an aspiration port 1240 in fluid communication with an aspiration channel 1245, and a diverter 1225. The electrodes 1220a,b, the fluid discharge port 1230, the aspiration port 1240 and the aspiration channel 1245, and the diverter 1225 may be similar to the examples (e.g., electrodes 145a,b, fluid discharge port 150, aspirator port 165, aspiration tube 160, diverter 155) depicted in FIGS. 2 and 35. The aspiration port 1240 and the aspiration channel 1245 may be part of the end effector 1210 and/or the flexible shaft 1250. The aspiration port 1240 may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channel 1245.


In some examples, the flexible shaft 1250 may be similar to the shaft 135. The flexible shaft 1250 may be made from any appropriate flexible/deformable materials, such as rubber, plastic, a memory foam material, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material. In some examples, the flexible shaft 1250 may be coupled to a housing (e.g., housing 105). In other examples, the flexible shaft 1250 may be coupled to the housing through a rigid shaft 1255. The rigid shaft 1255 may be made from any appropriate stiff material, such as metal, plastic, and/or wood.


In some examples, the electrosurgical device 1200 may include a first articulation band 1260a and a second articulation band 1260b. The articulation bands 1260a,b may extend from a housing (e.g., housing 105) through the flexible shaft 1250 and extend distally and protrude from the distal end of flexible shaft 1250. Alternatively, the articulation bands 1260a,b may extend only through the shaft 1250 and extend distally and protrude from the distal end of the flexible shaft 1250. In some examples, the first articulation band 1260a may be placed on the right side of the flexible shaft 1250 and the second articulation band 1260b may be placed on the left side of the flexible shaft 1250. The first articulation band 1260a may include a first flange 1270a at a distal portion thereof. Similarly, the second articulation band 1260b may include a second flange 1270b at a distal portion thereof. The first and second flanges 1270a,b may be anchored to the end effector 1210 as illustrated in FIG. 50 and the articulation bands 1260a,b may be kept in tension.


The articulation bands 1260a,b may be configured to articulate the end effector 1210 by retracting/pulling proximally at least one of the articulation bands 1260a,b. For example, when the first articulation band 1260a on the right side of the flexible shaft 1250 is retracted/pulled, the flexible shaft 1250 and/or the end effector 1210 may be articulated to the right. When the second articulation band 1260b on the left side of the flexible shaft 1250 is retracted/pulled, the flexible shaft 1250 and/or the end effector 1210 may be articulated to the left. In some examples, the articulation bands 1260a,b may be placed on the upper portion of the flexible shaft 1250 as illustrated in FIG. 52. In this case, if the first and second articulation bands 1260a,b are retracted/pulled together, the flexible shaft 1250 and/or the end effector 1210 may be articulated in an upward direction. In other examples, the articulation bands 1260a,b may be placed on the lower portion of the flexible shaft 1250. In this case, if the first and second articulation bands 1260a,b are retracted/pulled together, the flexible shaft 1250 and/or the end effector 1210 may be articulated in an downward direction. In some examples, the distal end of the flexible shaft 1250 and/or the end effector 1210 also may be made from flexible materials, which may enable the distal end of the flexible shaft 1250 and/or the end effector 1210 to be flexed when the articulation bands 1260a,b are retracted/pulled. In this way, some aspects of the present disclosure may enable the end effector to access target structures that may be difficult to reach with conventional surgical instruments.



FIGS. 54-57 illustrate an example of an electrosurgical device 1300. The electrosurgical device 1300 may include an end effector 1310 and a flexible shaft 1350. The end effector 1310 may include a first electrode 1320a, a second electrode 1320b, a distal fluid discharge port 1330 in fluid communication with an irrigation channel 1335 (e.g., source fluid path 315), an aspiration port 1340 in fluid communication with an aspiration channel 1345, and a diverter 1325. The electrodes 1320a,b, the fluid discharge port 1330, the aspiration port 1340, the aspiration channel 1345, and the diverter 1325 may be similar to the examples (e.g., electrodes 145a,b, fluid discharge port 150, aspirator port 165, aspiration tube 160, diverter 155) depicted in FIGS. 2 and 35. The aspiration port 1340 and the aspiration channel 1345 may be part of the end effector 1310 and/or the flexible shaft 1350. The aspiration port 1340 may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channel 1345.


In some examples, the flexible shaft 1350 may be similar to the shaft 135. The flexible shaft 1350 may be made from any appropriate flexible/deformable materials, such as rubber, plastic, a memory foam material, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material. In some examples, the flexible shaft 1350 may be coupled to a housing (e.g., housing 105). In other examples, the flexible shaft 1350 may be coupled to the housing through a rigid shaft 1355. In some examples, the rigid shaft 1355 may be placed inside the flexible shaft 1350 at a proximal portion of the flexible shaft 1350 as illustrated in FIGS. 55 and 57. The rigid shaft 1355 may be made from any appropriate stiff material, such as metal, plastic, and/or wood.


In some examples, the electrosurgical device 1300 may include an articulation wire 1360. The articulation wire 1360 may extend from a housing (e.g., housing 105) through the flexible shaft 1350/rigid shaft 1355. In some examples, the articulation wire 1360 may be placed inside the irrigation channel 1335. In other examples, the articulation wire 1360 may be placed in any other suitable place in the shafts 1350, 1355. The articulation wire 1360 may be curved or include a bend as illustrated in FIGS. 55 and 56.


The articulation wire 1360 may be extendable in a distal direction with respect to the flexible shaft 1350 and/or the rigid shaft 1355. In some examples, as the articulation wire 1360 extends distally passing beyond a certain point (e.g., a boundary 1352 between the flexible shaft 1350 and the rigid shaft 1355), the flexible shaft 1350 may be articulated along the shape of the articulation wire 1360. When the articulation wire 1360 is retracted, for example, back into the rigid shaft 1355, the flexible shaft 1350 may return to its normal shape (e.g., straight).


In some examples, the articulation wire 1360 may be made from any appropriate stiff materials, such as metal, plastic, or wood. In some examples, the bending angle of the articulation wire 1360 may be in the range of about 0 to 180 degrees, preferably in the range of about 0 to 120 degrees, more preferably in the range of about 0 to 90 degrees. In some examples, the flexible shaft 1350 and/or the rigid shaft 1355 may be rotatable up to 360 degrees, which may allow full articulation to any anatomical structure nearby in the operating field. In some examples, one or more stiffening rings may be attached to the articulation wire 1360 to add stiffness to the flexible shaft 1350.



FIG. 57 shows a cross-sectional view of the flexible shaft 1350 with the rigid shaft 1355 inside thereof. The rigid shaft 1355 may include a second aspiration channel 1380. The second aspiration channel 1380 may be connected to the aspiration channel 1345 at a distal end of the second aspiration channel 1380 and an evacuation port (e.g., evacuation port 110) at a proximal end of the second aspiration channel 1380. The first and second electrodes 1320a,b may be connected to first and second electrode wires 1370a,b, respectively. The electrode wires 1370a,b may be in electrical communication with an energy source (e.g., energy source 120).



FIGS. 58-59 illustrate an alternative example of an electrosurgical device 1400. The electrosurgical device 1400 may include an end effector 1410 and a flexible shaft 1450. The end effector 1410 may include a first electrode 1420a, a second electrode 1420b, a distal fluid discharge port 1430 in fluid communication with an irrigation channel 1435 (e.g., source fluid path 315), an aspiration port 1440 in fluid communication with an aspiration channel (e.g., aspiration channel 1345), and a diverter 1425. The electrodes 1420a,b, the fluid discharge port 1430, the aspiration port 1440, the aspiration channel 1445, and the diverter 1425 may be similar to the examples (e.g., electrodes 145a,b, 1320a,b, fluid discharge port 150, 1330, aspirator port 165, 1340, aspiration tube 160, aspirator channel 1345, diverter 155, 1325) depicted in FIGS. 2, 35, and 54-57. The aspiration port 1440 and the aspiration channel may be part of the end effector 1410 and/or the flexible shaft 1450. The aspiration port 1440 may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channel 1445.


In some examples, the flexible shaft 1450 may be similar to the shaft 1350. The flexible shaft 1450 may be made from any appropriate flexible/deformable materials, such as rubber, plastic, a memory foam material, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material. In some examples, the flexible shaft 1450 may be coupled to a housing (e.g., housing 105). In other examples, the flexible shaft 1450 may be coupled to the housing through a rigid shaft 1455. In some examples, the rigid shaft 1455 may be placed inside the flexible shaft 1450. The rigid shaft 1455 may be made from any appropriate stiff material, such as metal, plastic, and/or wood.


In some examples, the electrosurgical device 1400 may include an articulation wire 1460. The articulation wire 1460 may extend from a housing (e.g., housing 105) through the flexible shaft 1450/rigid shaft 1455. In some examples, the articulation wire 1460 may be conductive and coupled to the second electrode 1420b at a distal end of the articulation wire 1460 as illustrated in FIG. 58. A return wire 1470 may be coupled to the first electrode 1420a at a distal end of the return wire 1470. The articulation wire 1460 and/or the return wire 1470 may be in electrical communication with an energy source (e.g., energy source 120). The articulation wire 1460 may receive electrical energy of a first polarity (such as a positive polarity) from the energy source and the return wire 1470 may receive electrical energy of a second and opposing polarity (such as a negative polarity) from the energy source. Alternatively, the return wire 1470 may be connected to a ground terminal of the energy source, and the articulation wire 1460 may be connected to a varying AC voltage terminal of the energy source.


The articulation wire 1460 may be curved or include a bend as articulation wire 1360. Therefore, the flexible shaft 1450 may be curved or bent along the shape of the articulation wire 1460. In some examples, the rigid shaft 1455 inside the flexible shaft 1450 may be extendable in a distal direction with respect to the flexible shaft 1450. The rigid shaft 1455 may extends distally with respect to the flexible shaft 1450 to remove the curve or bend from the articulation wire 1460, straitening the flexible shaft 1450. When the rigid shaft 1455 is retracted proximally with respect to the flexible shaft 1450, the flexible shaft 1450 may be curved or bent along the shape of the articulation wire 1460 again.


In some examples, the articulation wire 1460 may be made from any appropriate deformable stiff material, such as metal or plastic. In some examples, the bending angle of the articulation wire 1460 may be in the range of 0 to 180 degrees, preferably in the range of about 0 to 120 degrees, more preferably in the range of 0 to 90 degrees. In some examples, the flexible shaft 1450 and/or the rigid shaft 1455 may be rotatable up to 360 degrees, which may allow full articulation to any anatomical structure nearby in the operating field.



FIG. 59 shows a cross-sectional view of the flexible shaft 1450 with the rigid shaft 1455 inside thereof. The rigid shaft 1455 may include a second aspiration channel 1480. The second aspiration channel 1480 may be connected to the aspiration channel at a distal end of the second aspiration channel 1480 and an evacuation port (e.g., evacuation port 110) at a proximal end of the second aspiration channel 1480.



FIGS. 60-63 illustrate an example of an end effector 1500 coupled to a shaft 1510. The end effector 1500 may include a body 1520. The body 1520 may include a first electrode 1530a, a second electrode 1530b, and an aspiration port 1535 in fluid communication with an aspiration channel inside the end effector 1500 and/or the shaft 1510. The aspiration port 1535 may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channel. The body 1520 may be made of any appropriate flexible low durometer material. Examples of the low durometer material include latex, polyurethane, and silicone material. In some examples, the body 1520 may be molded out of a lower durometer material in a single tool.


The electrodes 1530a,b may be in electrical communication with an energy source (e.g., energy source 120), for example, through conductive wires. For example, the second electrode 1530b may be connected to the energy source through a conductive wire 1565. In some examples, the first electrode 1530a may receive electrical energy of a first polarity (such as a positive polarity) from the energy source and the second electrode 1530b may receive electrical energy of a second and opposing polarity (such as a negative polarity) from the energy source. Alternatively, the first electrode 1530a may be connected to a ground terminal of the energy source, and the second electrode 1530b may be connected to a varying AC voltage terminal of the energy source. The first and second electrodes 1530a,b may be configured to receive electrosurgical energy to treat tissue in a target treatment zone.


In some examples, the first electrode 1530a may be placed on the right side of the body 1520 and the second electrode 1530b may be placed on the left side of the body 1520 as illustrated in FIG. 60. In some examples, the first and second electrodes 1530a,b may comprise a thin conductive material (e.g., metal strip or thin metal layers deposited on the body 1520), which may allow the electrodes 1530a,b to deform along the shape of the body 1520 as the body 1520 deforms. The thin conductive electrodes 1530a,b may be attached on the body 1520. The first and second electrodes 1530a,b may be insert-molded into the body 1520. In some examples, the electrodes 1550a,b may be attached on the top surface, bottom surface, and/or a distal end surface of the body 1520.


In some examples, the body 1520 may include a cavity or hole 1540 disposed between the first electrode 1530a and the second electrode 1530b. The aspiration port 1535 may be disposed at a proximal end of the cavity 1540 and face in a distal direction, which may allow the aspiration port 1535 to face the target treatment zone, removing materials (e.g., cut tissue or fluid) near the target treatment zone during operation. In other examples, the aspiration port 1535 may be disposed at any other suitable place of the end effector 1500. The aspiration port 1535 may be in fluid communication with an aspiration channel (e.g., aspiration channels 1345, 1445) and coupled to an evacuation port (e.g., evacuation port 110) through the aspiration channel.


In some examples, the body 1520 may include one or more fluid discharge ports 1550a, 1550b, 1555a,b, 1570 in fluid communication with one or more irrigation channels 1560. In some examples, one or more fluid discharge ports 1550a,b may be formed in the first and/or second electrodes 1550a,b on the top surface of the body 1520. One or more fluid discharge ports 1555a,b also may be formed on the distal end of the body 1520. Some fluid discharge ports 1570 may be formed on the bottom surface of the body 1520.


In some examples, the body 1520 may include a first irrigation channel and a second irrigation channel 1560. The first and second irrigation channels may be formed inside the body 1520, for example, under the first and second electrodes 1550a,b, respectively. In some examples, the irrigation channels 1560 may be molded into the body 1520. The fluid discharge ports 1550a,b, 1555a,b, and/or 1570 formed in the electrodes 1530a,b, and/or the irrigations channels 1560 formed under the electrodes 1530a,b may facilitate the provision of the irrigation fluid (e.g., saline fluid, water) to metal contacts and target treatment region. In other examples, the irrigation channels may be formed in any other suitable place of the body 1520. The fluid irrigation channels 1560 may be in fluid communication with a fluid path (e.g., source fluid path 315) in the shaft 1510. In some examples, the fluid irrigation channels 1560 may be part of the fluid path in the shaft 1510. The fluid path may be coupled to a fluid source port (e.g., fluid source port 115).


As illustrated in FIGS. 62 and 63, the body 1520 of the end effector 1500 may flex, for example, when forced against a tissue (T) in a target treatment zone, and this may allow more areas of the electrodes 1530a,b to come into contact with the target tissue. This feature would be particularly advantageous for surgeons working in confined open procedures. Thus, some aspects of the present disclosure may enable a surgeon to approach tissue planes at various angles while achieving a more uniform coagulation effect when compared to a rigid end effector configuration.



FIGS. 64-67 illustrate an example of an end effector 1600 coupled to a shaft 1610. The end effector 1600 may include a body 1620. The body 1620 may include a first electrode 1630a, a second electrode 1630b, and an aspiration port 1655 in fluid communication with an aspiration channel 1660 inside the end effector 1600. The aspiration port 1655 may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channel 1660. The body 1620 may be made of any appropriate flexible low durometer material. Examples of the low durometer material include latex, polyurethane, and silicone material. In some examples, the body 1620 may be molded out of a lower durometer material in a single tool. In some examples, the body 1620 may be molded onto a shafted lumen. In some examples, the body 1620 may be in a non-geometric or organic shape (e.g., trumpet or flared shape where a diameter/width (W) is increased toward a distal end of the body 1620). In some examples, the height (H) of the body 1620 may be substantially the same from the distal end to the proximal end or only have a subtle change (either decreasing or increasing).


The electrodes 1630a,b may be in electrical communication with an energy source (e.g., energy source 120), for example, through conductive wires. In some examples, the first electrode 1630a may receive electrical energy of a first polarity (such as a negative polarity) from the energy source and the second electrode 1630b may receive electrical energy of a second and opposing polarity (such as a positive polarity) from the energy source. Alternatively, the first electrode 1630a may be connected to a ground terminal of the energy source, and the second electrode 1630b may be connected to a varying AC voltage terminal of the energy source. The first and second electrodes 1630a,b may be configured to receive electrosurgical energy to treat tissue in a target treatment zone.


In some examples, the first electrode 1630a may be placed on the right side of the body 1620 and the second electrode 1630b may be placed on the left side of the body 1620 as illustrated in FIG. 64. In some examples, the first and second electrodes 1630a,b may comprise a thin conductive wire, which may allow the electrodes 1630a,b to deform as the body 1620 deforms. The first and second electrodes 1630a,b may be insert-molded into the body 1620. In some examples, the first and second electrodes 1630a,b may be disposed in the body 1620.


The body 1620 may define a surface 1640 at a distal end of the body 1620. A distal end 1650a of the first electrode 1630a may be exposed on the distal end surface 1640. Similarly, a distal end 1650b of the second electrode 1630b may be exposed on the distal end surface 1640. In some examples, the distal end surface 1640 may have an oval convex shape or any other suitable shape, such as oval concave, flat, etc. As illustrated in FIGS. 65 and 66, the width (W) of the distal end surface 1640 of the body 1620 may be greater than the height (H) of the distal end surface 1640. In some examples, the ratio between the width (W) and the height (H) may be in the range of about 10:1 to 2:1, preferably in the range of about 7:1 to 2.5:1, more preferably in the range of about 5:1 to 3:1.


In some examples, the aspiration port 1655 may be disposed at the distal end surface 1640 of the body 1620. The aspiration port 1655 may be disposed in a center portion of the distal end surface 1640 or in any other suitable portion (e.g., left, right) of the distal end surface 1640. The aspiration channel 1660 may be molded into the body 1620. In some examples, the aspiration channel 1660 may comprise a first lumen 1662 and a second lumen 1664. The first lumen 1662 may be in the distal portion of the body 1620 and the second lumen may be in the proximal portion of the body 1620. The first lumen 1662 may be in a non-geometric or organic shape (e.g., trumpet or flared shape where a diameter/width is increased toward a distal end of the first lumen 1662). In some examples, the height of the first lumen 1662 may be substantially the same from the distal end to the proximal end of the first lumen or only have a subtle change (either decreasing or increasing). The aspiration port 1655 may be disposed at the distal end of the first lumen 1662.


The second lumen 1664 may have a tube shape. In some examples, a diameter (both width and height) of the second lumen 1664 may be increased toward a proximal end thereof. A proximal end of the first lumen 1662 may be coupled to the distal end of the second lumen at 1670a. The aspiration channel 1660 (the first lumen 1662 and/or the second lumen 1664) may be configured to deform as the body 1620 deforms. The second lumen 1664 may be coupled to a second aspiration channel 1680 of the shaft 1610. In some examples, the shaft 1610 and the second aspiration channel 1680 may be made from stiff materials, such as metal, plastic, wood. In other examples, the shaft 1610 and the second aspiration channel 1680 may be made from flexible materials.


In some examples, the body 1620 may include a fluid discharge port (e.g., fluid discharge port 150) in fluid communication with an irrigation channel (e.g., source fluid path 315). In some examples, the aspiration port 1655 may also act as the fluid discharge port and the aspiration channel 1660 may also act as the irrigation channel. In this case, the aspiration port 1655 may be also configured to deliver an irrigation fluid to the target treatment zone through the aspiration channel 1660.


The flexible body 1620 molded out of low durometer materials and having an organic shape may flex and allow surgeons to approach fragile tissue (e.g., liver parenchyma) in a novel way that could be less traumatic than traditional, rigid end effectors. Also, the flat shape of the distal portion of the body 1620 where the distal end surface 1640 has a width (W) much greater than the height (H), may allow the end effector 1600 to be well suited into a cavity during a liver resection. Also, the molded lumens 1662, 1664 may transition from a fine, small opening distally (e.g. first lumen 1662 with a shorter height than the second lumen 1664) to a larger, circular opening proximally (e.g., second lumen 1664 having a diameter increasing toward the proximal end of the second lumen 1664), which may reduce clogging during suction and/or irrigation significantly. Also, some aspects of the present disclosure may advantageously form a body and/or an aspiration channel with a non-geometric/organic shape using a molding process, which would be difficult to manufacture using conventional suction/irrigation device manufacturing approaches.



FIGS. 68-71 illustrate an example of an end effector 1700. The end effector 1700 may include a first body 1710 and a second body 1720. As illustrated in FIG. 68, the first body 1710 may extend through the second body 1720 and extend distally and protrude from the second body 1720. The first body 1710 may include a first electrode 1730a and a second electrode 1730b. The first body 1710 may include a first portion 1715a on the right side of the first body 1710, a second portion 1715b on the left side of the first body 1710, and a third portion 1715c disposed between the first portion and the second portion. The first portion 1715a may cover the side of the first electrode 1730a and the second portion 1715b may cover the side of the second electrode 1730b. In some examples, a distal portion of the first electrode 1730a and/or a distal portion of the second electrode 1730b may extend beyond the distal end of the first body 1710 (e.g., first portion 1715a and/or second portion 1715b). In some examples, the first electrode 1730a, the second electrode 1730b, the first body 1710, and/or the second body 1720 may be formed by a co-extrusion process altogether. In some examples, the first body 1710 and/or the second body 1720 may be made from a PolyEther Ether Ketone (PEEK) plastic material or a Polytetrafluoroethylene (PTFE) material.


The electrodes 1730a,b may be in electrical communication with an energy source (e.g., energy source 120), for example, through conductive wires. In some examples, the first electrode 1730a may be placed on the right side of the first body 1710 and the second electrode 1730b may be placed on the left side of the first body 1710 as illustrated in FIG. 68. In some examples, the first electrode 1730a may receive electrical energy of a first polarity (such as a negative polarity) from the energy source and the second electrode 1730b may receive electrical energy of a second and opposing polarity (such as a positive polarity) from the energy source. Alternatively, the first electrode 1730a may be connected to a ground terminal of the energy source, and the second electrode 1730b may be connected to a varying AC voltage terminal of the energy source. The first and second electrodes 1730a,b may be configured to receive electrosurgical energy to treat tissue in a target treatment zone.


In some examples, the height (H1) of the first portion 1715a and/or the second portion 1715b is greater than the height (H2) of the third portion 1715c. Therefore, one or more cavities or holes may be formed between the second body 1720 and the first body 1710 (e.g., the third portion 1715c). For example, a first aspiration port 1740a in fluid communication with a first aspiration channel may be formed above the first body 1710 (e.g., between a top surface of the third portion 1715c and the second body 1720). The first aspiration channel may extend through the first and second bodies 1710, 1720. In some examples, the first aspiration channel may extend from an evacuation port (e.g., evacuation port 110) through a housing (e.g., housing 105) and through a shaft (e.g., shaft 135) and/or a first/second bodies 1710,1720 to the first aspiration port 1740a. Similarly, a second aspiration port 1740b in fluid communication with a second aspiration channel may be formed below the first body 1710 (e.g., between a bottom surface of the third portion 1715c and the second body 1720). The second aspiration channel may extend through the first and second bodies 1710, 1720. In some examples, the second aspiration channel may extend from an evacuation port (e.g., evacuation port 110) through a housing (e.g., housing 105) and through a shaft (e.g., shaft 135) and/or a first/second bodies 1710,1720 to the second aspiration port 1740b. The aspiration ports 1740a,b may be configured to remove a material (e.g., fluid and/or tissue remnants) from a target treatment zone through the aspiration channels.


In some examples, at least one of the first and second aspiration ports 1740a,b may act as a fluid discharge port (e.g., fluid discharge port 150) configured to deliver an irrigation fluid to the target treatment zone through a fluid path (e.g., first or second aspiration channels). For example, when the second port 1740b acts as an aspiration port, the first port 1740a may act as a fluid discharge port.


In some examples, the first body 1710 may include one or more fluid discharge ports 1750a, 1750b, 1760. The fluid discharge ports 1750a, 1750b, 1760 may be formed on a distal end surface of the first body 1710 (e.g., distal end surfaces of the first, second, and/or third portions 1715a,b,c). In some examples, the fluid discharge ports 1750a, 1750b may be formed on a distal end surface of the first portion 1715a and/or the second portion 1715b above the first electrode 1730a and/or the second electrode 1730b as shown in FIGS. 68-70. In other examples, the fluid discharge port 1760 may be formed on a distal end surface of the third portion 1715c as shown in FIG. 71. These fluid discharge ports 1750a, 1750b, 1760 may be in fluid communication with an irrigation channel. This irrigation channel may extend from a fluid source port (e.g., fluid source port 115) through a housing (e.g., housing 105) and through a shaft (e.g., shaft 135) and/or the first body 1710 to the fluid discharge ports 1750a, 1750b, 1760. In some examples, these fluid discharge ports 1750a, 1750b, 1760 may be molded into the first body 1710, for example, during the co-extrusion process.



FIG. 72 illustrates an alternative example of an end effector 1800. In this alternative example, the end effector 1800 may not have a second body (e.g., second body 1720). In this example, an aspiration port 1840 may be formed at a distal end surface of the third portion 1715c. The aspiration port 1840 may be in fluid communication with an aspiration channel. The aspiration channel may extend through the first body 1710. In some examples, the aspiration channel may extend from an evacuation port (e.g., evacuation port 110) through a housing (e.g., housing 105) and through a shaft (e.g., shaft 135) and/or the first body 1710 to the aspiration port 1840.


Remaining features and characteristics of the end effector 1800 illustrated and described with respect to FIG. 72 in which the electrodes 1730a,b and the aspiration ports 1750a,b, 1760 are disposed within the first body 1710 can otherwise be similar or the same as those described with the embodiments depicted in FIGS. 68-71.


As discussed above, in some aspects of the present disclosure, the first and second electrodes 1730a,b, the first body 1710, and/or the second body 1720 may be formed altogether through a co-extrusion process. Also, both the aspiration ports/channels and fluid discharge ports/channels may be formed during the co-extrusion process. Since the aspiration ports/channels and the fluid discharge ports/channels do not need to be formed separately, this may reduce the number of manufacturing steps and consequently reduce manufacturing costs significantly. Therefore, some aspects of the present disclosure may advantageously enable the manufacturing of an end effector with electrodes and aspiration/fluid discharge ports with less cost than conventional manufacturing processes.



FIG. 73 illustrates an example of an electrosurgical device 1900. The electrosurgical device 1900 may include a mesh end effector 1910, a shaft 1920, and a handle 1930. In some examples, the mesh end effector 1910 may include one or more weft wires 1940a-d, warp wires 1950a,b, and a mesh frame 1915. In some examples, the one or more weft wires 1940a-d may be in a straight shape. The weft wires 1940a-d may be spaced apart from each other, for example, by a certain distance. The weft wires 1940a-d may be aligned (e.g., in parallel) on the mesh frame 1915 from the top to the bottom of the mesh frame 1915 in one direction (e.g., horizontally). Similarly, the warp wires 1950a,b may be spaced apart from each other, for example, by a certain distance. The warp wires 1950a,b may be aligned (e.g., in parallel) on the mesh frame 1915 from the left side to the right side of the mesh frame 1915 in another direction (e.g., vertically). In some examples, the mesh frame 1915 may have a rectangular shape. In other examples, the mesh frame 1915 may have any other suitable shape, such as circle, triangle, square, etc.


The warp wires 1950a,b may be alternately woven above and below the weft wires 1940a-d. In some example, the weaving sequence of the warp wires 1950a,b may be opposite to the weaving sequence of an adjacent warp wire. For example, 1st, 3rd, 5th, . . . , (2n−1)st warp wires may be woven up-down-up-down- . . . while 2nd, 4th, 6th, . . . , (2n)th warp wires may be woven down-up-down-up . . . as shown in FIGS. 73 and 75. The weft wires 1940a-d and/or the warp wires 1950a,b may be conductive and insulated with a non-conductive cover layer. In some examples, the warp wires 1950a,b may be alternating polarities. That is, the polarity of the warp wires 1950a,b may be opposite to an adjacent warp wire. For example, (2n−1)st warp wires may receive electrical energy of a first polarity (such as a positive polarity) while (2n)th warp wires may receive electrical energy of a second polarity (such as a negative polarity). In some examples, the weft wires 1940a-d may be electrically neutral.


In some examples, each of the warp wires 1950a,b may define one or more high points 1960a-d where a warp wire is woven above the weft wire. For example, high points 1960a,c may be formed where the warp wire 1950a is woven above the weft wires 1940a,c, respectively. Similarly, high points 1960b,d may be formed where the warp wire 1950b is woven above the weft wires 1940b,d, respectively. The high points 1960a-d may not be insulated and, thus, conductive to provide electrosurgical energy to a target tissue. That is, the conductive wire portion of the warp wires 1950a,b inside the insulation cover layer may be exposed to outside in the high points 1960a-d of the warp wires 1950a,b. In some examples, the insulation cover of the warp wires 1950a,b on the high points 1960a-d may be removed mechanically or chemically to expose the conductive wires under the insulation cover. Since the high points 1960a-d are protruding from other area, it would be easier to remove the insulated cover only from those points using chemicals, sandpaper, etc. This would yield a pattern of conductive sites (e.g., high point conductive sites 1960) in an alternating array as shown in FIG. 74. In this way, some aspects of the present disclosure may be capable of effectively providing multiple sealing sites in a single end effector.


In some examples, there may be a single weft wire 2040 having straight portions 2045a-f and curved portions 2042a-e as shown in FIG. 75. The warp wires 2050a-i may be alternately woven above and below the straight portions 2045a-f of the weft wire 2040. In some examples, the mesh end effector 1910 may be removably or replaceably engaged with the shaft 1920 as shown in FIG. 76. In some examples, the mesh end effector 1910 and/or the shaft 1920 may have a snap feature to electrically and mechanically connect the mesh end effector 1910 with the shaft 1920. The mesh end effector 1910 may be disposable and the handle 1930 and/or the shaft 1920 may be reusable.


The shaft 1920 may include conductive wires coupled to the warp wires 1950a,b. The warp wires 1950a,b may be in electrical communication with an energy source (e.g., energy source 120) through the conductive wires. The housing 1930 may include a button 1935 that may be activated by a user. The button 1935 may have a push-button activation function to permit current to flow from the energy source to the warp wires 1950a,b upon depression of the push-button by a user. In some examples, the energy source may be located outside the housing 1930 and connected through a cord 1937. In some examples, the mesh end effector 1910 may have various geometries, such as flat, dome, rod/pencil shapes as shown in FIGS. 77-79.


In some examples, the mesh end effector 1910 may include a fluid discharge port configured to deliver an irrigation fluid (e.g., water, saline, etc.) through a fluid irrigation channel. The fluid discharge port may be located on the inner wall of the mesh frame 1915 or any other suitable place in the mesh end effector 1910 (e.g., back of the mesh wires 1940a-d, 1950b,a). In some examples, the fluid discharge port may be located inside the shaft 1920, for example, near the distal portion thereof. In some examples, the electrosurgical device 1900 may include an irrigation fluid flow rate controller, for example, in the handle 1930 to control the rate of the irrigation fluid delivered to the wires and target treatment zone.



FIG. 80 shows a flowchart of an example method 2100 to manufacture a mesh end effector (e.g., mesh end effector 1910). Although the example method 2100 is described with reference to the flowchart illustrated in FIG. 80, it will be appreciated that many other methods of performing the acts associated with the method may be used. For example, the order of some of the blocks may be changed, certain blocks may be combined with other blocks, and some of the blocks described are optional.


In the illustrated example, at least one weft wire may be provided, where the at least one weft wire is insulated (block 2110). In some examples, there is a single weft wire having curved portions and straight portions. In other examples, there are multiple straight weft wires. Then, a plurality of warp wires may be woven above and below the at least one weft wire alternately, where each of the plurality of warp wires is conductive and insulated with a cover insulation layer, and where each of the plurality of warp wires defines at least one high point in which each of the plurality of warp wires is woven above the at least one weft wire (block 2120). Then, the cover insulation layer on the at least one high point in each of the plurality of warp wires may be removed (block 2130). For example, the cover insulation layer on the high points may be removed chemically or mechanically as discussed above.


Then, a first group of warp wires may be connected to a conductive wire configured to provide electrical energy of a first polarity (block 2140). For example, (2n−1)st warp wires may be electrically connected to a conductive wire configured to provide electrical energy of a positive polarity. Then, a second group of warp wires may be connected to a conductive wire configured to provide electrical energy of a second polarity (block 2150). For example, (2n)th warp wires may be electrically connected to another conductive wire configured to provide electrical energy of a negative polarity.



FIG. 81 shows a flowchart of an example method 2200 to manufacture an array of electrode dots on a single surface. Although the example method 2200 is described with reference to the flowchart illustrated in FIG. 81, it will be appreciated that many other methods of performing the acts associated with the method may be used. For example, the order of some of the blocks may be changed, certain blocks may be combined with other blocks, and some of the blocks described are optional. The method 2200 will be explained in connection with FIGS. 82-88.


In the illustrated example, a plurality of layers may be provided, where each of the plurality of layers includes a signal wire disposed in a top portion of each of the plurality of layers and a plurality of dot wires extending down from the signal wire, where the signal wire is configured to deliver electrosurgical energy to the plurality of dot wires (block 2210). For example, a layer 2300 may include a signal wire 2310 in a top portion thereof as shown in FIG. 82. The signal wire 2310 may comprise a first end 2312 and a second end 2314. The first end 2312 of the signal wire 2310 may be electrically coupled to an energy source (e.g., energy source 120), for example, through a conductive wire 2362, 2364. The layer 2300 also may include a plurality of dot wires 2320 electrically coupled to the signal wire 2310 and/or extending down from the signal wire 2310. The top portion of the dot wires 2320 may be connected to the signal wire 2310. The dot wires 2320 may be spaced apart from each other. In some examples, a portion of the signal wire 2310 may be bent as shown in FIG. 83. In some examples, the signal wire 2310 and/or the dot wires 2320 may be insulated with an insulating cover layer.


Then, the plurality of layers may be arranged (block 2230). For example, the plurality of layers may be arranged in parallel to each other as shown in FIGS. 84 and 85. In other examples, the plurality of layers may be arranged in any other suitable manner (e.g., spaced apart from each other but not in parallel). In some examples, some of the layers may overlap each other. The distance between the layers may be in the range of about 0.005 inches to about 0.1 inches, preferably about 0.01 inches to about 0.08 inches, more preferably about 0.02 inches to about 0.06 inches. In some examples, the layers may be arranged using a jig machine 2330.


In some examples, a first group of layers (e.g., (2n−1)st layers) may be connected to a conductive wire 2362 configured to provide electrical energy of a first polarity (e.g., positive polarity) and a second group of layers (e.g., (2n)th layers) may be connected to another conductive wire 2364 configured to provide electrical energy of a second polarity (e.g., negative polarity) as shown in FIG. 86. In this way, the polarity of the layers may alternate so that the polarity of each of the layers may be opposite to an adjacent layer. In some examples, the first end 2312 of the signal wire 2310 in the first group of layers may face toward a first direction (e.g., left) while the first end 2312 of the signal wire 2310 in the second group of layers may face toward a second direction (e.g., right) as shown in FIG. 84 to facilitate the connection with the conductive wires 2362, 2364.


Then, a molding material may be overmolded onto the arranged plurality layers (block 2230). Examples of the molding material may include rubber, plastic, a protein-based polymer (e.g., collagen, elastin), a silicone-based polymer, or any other biocompatible and/non-allergenic elastic polymeric material.


The overmolded plurality of layers may be cut to expose a cut end of each of the plurality of dot wires, where the overmolded plurality of layers define a bottom surface that is formed after the cutting and where the bottom surface of the overmolded plurality of layers forms an array of the cut ends of the plurality of dot wires (block 2240). For example, a bottom portion of the overmolded layers may be cut/truncated to expose a cut end 2345 of each of the plurality of dot wires 2420. In some examples, the overmolded layers may be cut/truncated by grinding or polishing the bottom surface of the overmolded layers that is formed after the overmolding but before the cutting. The truncated overmolded layers may define a bottom surface 2340 that is formed after the cutting and the bottom surface 2340 may form an array of the cut ends 2345 of the dot wires 2320. The cut ends 2345 of the dot wires 2320 may be configured to deliver electrosurgical energy to the target treatment zone. In some examples, the truncated overmolded layers with the bottom surface 2340 may become a component of an end effector 2350.


In some examples, the diameter of the cut ends 2345 may be in the range of about 0.005 inches to about 0.05 inches, preferably in the range of about 0.008 inches to about 0.03 inches, more preferably in the range of about 0.01 inches to about 0.02 inches. In other examples, the cut ends 2345 may have any other suitable diameter. In some examples, the distance 2347 between the cut ends 2345 may be in the range of about 0.005 inches to about 0.1 inches, preferably about 0.01 inches to about 0.08 inches, more preferably about 0.02 inches to about 0.06 inches. In other examples, the cut ends 2345 may have any other suitable distance. In some examples, the overmolded layers may include a fluid discharge port configured to deliver an irrigation fluid (e.g., water, saline, etc.) though a fluid irrigation channel. The fluid discharge port and the fluid irrigation channel may be molded into the overmolded layer during the overmolding process.



FIG. 89 illustrates an example of an electrode 2410 (e.g., electrodes 145a,b, 945a,b, 1220a,b, 1320a,b, 1420a,b, 1730a,b) coupled to a body 2440 of an end effector (e.g., end effectors 140, 600, 700, 800, 900, 1010, 1210, 1310, 1410, 1700). The electrode 2410 may comprise a thin conductive layer 2420 coated over a flexible material 2430. This may allow the electrode 2410 to deform to conform to a shape of tissue in direct contact with the electrode 2410 when the electrode 2410 is forced against the tissue, providing optimal tissue contact and current density for desired tissue effects. Examples of the flexible material may include latex, polyurethane, memory foam, and silicone, or any other suitable low durometer material.



FIGS. 90 and 91 illustrate an alternative example of an electrode 2510 (e.g., electrodes 145a,b, 945a,b, 1220a,b, 1320a,b, 1420a,b, 1730a,b) coupled to a body 2540 of an end effector (e.g., end effectors 140, 600, 700, 800, 900, 1010, 1210, 1310, 1410, 1700). The electrode 2510 may comprise a thin conductive layer 2520 coated over an electrode body 2530. In some examples, inside of the electrode body 2530 may be hollow. In some examples, the electrode body 2530 may comprise a flexible portion and stiff portion. For example, a distal tip portion/surface 2570 of the electrode body 2530 may be made from a flexible/deformable material, such as rubber, silicon or any other suitable low durometer material. The distal tip portion/surface 2570 may be coupled to a linkage 2560 movable between a first (e.g., extended) position and a second (e.g., retracted) position. When the linkage 2560 is in the extended position, the distal tip portion/surface 2570 may have a convex shape as shown in FIG. 90. When the linkage 2560 is in the retracted position, the distal tip portion/surface 2570 may have a concave shape as shown in FIG. 91. In some examples, the linkage 2560 may extend though the electrode 2510 to a handle. The linkage 2560 may be actuated by a user with a button in the handle.


It will be appreciated that the terms “proximal” and “distal” are used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will further be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” or “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting or absolute.


Various aspects of surgical instruments are described herein. It will be understood by those skilled in the art that the various aspects described herein may be used with the described surgical instruments. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed examples are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.


Reference throughout the specification to “various aspects,” “some aspects,” “one example,” or “one aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one example. Thus, appearances of the phrases “in various aspects,” “in some aspects,” “in one example,” or “in one aspect” in places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example may be combined, in whole or in part, with features, structures, or characteristics of one or more other aspects without limitation.


While various aspects herein have been illustrated by description of several aspects and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, it is generally accepted that endoscopic procedures are more common than laparoscopic procedures. Accordingly, the present invention has been discussed in terms of endoscopic procedures and apparatus. However, use herein of terms such as “endoscopic”, should not be construed to limit the present invention to an instrument for use only in conjunction with an endoscopic tube (e.g., trocar). On the contrary, it is believed that the present invention may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.


It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosure, a discussion of such elements is not provided herein.


While several aspects have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various aspects, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosure as defined by the appended claims.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


Various aspects of the subject matter described herein are set out in the following numbered clauses:


Example 1

An electrosurgical instrument comprising: an end effector comprising: a first body; a first electrode on the left side of the first body; a second electrode on the right side of the first body, wherein the first and second electrodes are configured to receive electrosurgical energy to treat tissue in a target treatment zone; and a fluid aspiration port in fluid communication with a fluid path, wherein the fluid aspiration port is configured to remove a material from the target treatment zone.


Example 2

The electrosurgical instrument of Example 1, wherein the end effector further comprising: a cavity disposed between the first electrode and the second electrode; a first irrigation channel on the left side of the first body; a second irrigation channel on the right side of the first body; a first fluid discharge port on the first electrode, wherein the first fluid discharge port is in fluid communication with the first irrigation channel; and a second fluid discharge port on the second electrode, wherein the second fluid discharge port is in fluid communication with the second irrigation channel, wherein the fluid aspiration port is disposed at the proximal end of the cavity between the first electrode and the second electrode, wherein the first body is made of a flexible low durometer material.


Example 3

The electrosurgical instrument of Example 2, wherein each of the first and second electrodes comprises a thin conductive material that is insert-molded into the first body.


Example 4

The electrosurgical instrument of one or more of Examples 2-3, wherein each of the first and second irrigation channels is formed inside the first body.


Example 5

The electrosurgical instrument of one or more of Examples 1-4, wherein the first body is made of a flexible low durometer material, wherein the first body defines a surface at a distal end of the first body and the fluid aspiration port is disposed in a center portion of the surface at the distal end of the first body.


Example 6

The electrosurgical instrument of Example 5, wherein the first and second electrodes are disposed in the first body, wherein a distal end of each of the first and second electrodes is exposed on the surface at the distal end of the first body.


Example 7

The electrosurgical instrument of one or more of Examples 5-6, wherein the fluid aspiration port is further configured to deliver an irrigation fluid to the target treatment zone through the fluid path.


Example 8

The electrosurgical instrument of one or more of Examples 5-7, wherein the first body has an organic shape.


Example 9

The electrosurgical instrument of one or more of Examples 1-8, wherein the first body comprises: a first portion covering the first electrode on the left side of the first body; a second portion covering the second electrode on the right side of the first body; and a third portion disposed between the first portion and the second portion, wherein a distal portion of the first electrode and a distal portion of the second electrode extend beyond a distal end of the first body; wherein the first electrode, the second electrode, and the first body are formed by a co-extrusion process.


Example 10

The electrosurgical instrument of Example 9, wherein the end effector further comprises a second body, wherein the first body is included in the second body, wherein the fluid aspiration port is formed between the second body and the third portion of the first body.


Example 11

The electrosurgical instrument of one or more of Examples 9-10, wherein the fluid aspiration port is formed on a surface at a distal end of the third portion of the first body.


Example 12

The electrosurgical instrument of one or more of Examples 9-11, wherein the first body comprises a PEEK plastic material or a PTFE material.


Example 13

The electrosurgical instrument of one or more of Examples 1-12, wherein the fluid path includes a clogged tissue remover having a hollow body and a prong disposed at a distal end of the hollow body.


Example 14

The electrosurgical instrument of Example 13, wherein the clogged tissue remover is extendable with respect to the fluid path.


Example 15

The electrosurgical instrument of one or more Examples 13-14, wherein the fluid path is extendable with respect to a shaft in the electrosurgical instrument and the clogged tissue remover is stationary with respect to the shaft, wherein when the fluid path is retracted with respect to the shaft, the clogged tissue remover is extended with respect to the fluid path, which allows the clogged tissue remover to remove clogged tissue in the fluid path.


Example 16

The electrosurgical instrument of Example 15, wherein the fluid path is coupled to a detent mechanism configured to releasably hold the fluid path between a first position and a second position, wherein the clogged tissue remover is extended with respect to the fluid path to remove clogged tissue in the fluid path when the detent mechanism is in the first position and the clogged tissue remover is retracted with respect to the fluid path when the detent mechanism is in the second position.


Example 17

The electrosurgical instrument of one or more if Examples 1-16, further comprising a shaft, wherein the end effector is removably engaged with the shaft.


Example 18

The electrosurgical instrument of Example 17, wherein the shaft comprises a first receptacle and a second receptacle that are configured to receive the first and second electrodes, respectively, wherein the first and second electrodes are spring-loaded.


Example 19

The electrosurgical instrument of one or more of Examples 17-18, further comprising a fluid discharge port formed on the first body and in fluid communication with a first irrigation channel in the end effector, wherein the fluid discharge port is configured to deliver an irrigation fluid to the target treatment zone, wherein a second irrigation channel in the shaft is removably engaged with the first irrigation channel.


Example 20

The electrosurgical instrument of one or more of Examples 1-19, wherein at least one of the first and second electrodes comprises a thin conductive material coated over a flexible material, which allows the at least one of the first and second electrodes to deform to conform to a shape of tissue in direct contact with the at least one of the first and second electrodes.


Example 21

The electrosurgical instrument of one or more of Examples 1-20, wherein a distal portion of the at least one of the first and second electrodes is coupled to a linkage moveable between a first position and a second position, wherein the distal portion of the at least one of the first and second electrodes forms a convex shape when the linkage is in the first position and the distal tip portion of the at least one of the first and second electrodes forms a concave shape when the linkage is in the second position.


Example 22

An electrosurgical instrument comprising: a shaft; and a mesh end effector comprising: at least one insulated weft wire; and a plurality of insulated warp wires, wherein each of the plurality of insulated warp wires is alternately woven above and below the at least one insulated weft wire, wherein each of the plurality of insulated warp wires defines at least one high point where each of the plurality of insulated warp wires is woven above the at least one insulated weft wire, wherein the at least one high point in each of the plurality of insulated warp wires exposes a non-insulated conductive site to provide electrosurgical energy to a target tissue.


Example 23

The electrosurgical instrument of Example 22, wherein a polarity of each of the plurality of insulated warp wires alternates so that the polarity of each of the plurality of insulated warp wires is opposite to an adjacent insulated warp wire.


Example 24

The electrosurgical instrument of one or more Examples 22-23, wherein the mesh end effector is in a shape selected from the group consisting of a flat, a dome, and a rod.


Example 25

A method comprising: providing a plurality of layers, wherein each of the plurality of layers includes a signal wire disposed in a top portion of each of the plurality of layers and a plurality of dot wires extending down from the signal wire, wherein the signal wire is configured to deliver electrosurgical energy to the plurality of dot wires; arranging the plurality of layers; overmolding a molding material onto the arranged plurality of layers; and cutting a bottom portion of the overmolded plurality of layers to expose a cut end of each of the plurality of dot wires, wherein the overmolded plurality of layers define a first bottom surface that is formed after the cutting, wherein the first bottom surface of the overmolded plurality of layers forms an array of the cut ends of the plurality of dot wires.


Example 26

The method of Example 25, wherein a polarity of each of the plurality of layers alternates so that the polarity of each of the plurality of layers is opposite to an adjacent layer.


Example 27

The method of one or more of Examples 25-26, wherein the overmolded plurality of layers define a second bottom surface that is formed after the overmolding but before the cutting, wherein cutting the bottom portion of the overmolded plurality of layers comprises grinding the second bottom surface of the overmolded plurality of layers to expose the cut end of each of the plurality of dot wires.

Claims
  • 1. An electrosurgical instrument comprising: an end effector comprising: a first body;a first cylindrical electrode on a left side of the first body;a second cylindrical electrode on a right side of the first body, wherein the first cylindrical electrode and the second cylindrical electrode are configured to receive electrosurgical energy to treat tissue in a target treatment zone,and wherein each of the first cylindrical electrode and the second cylindrical electrode comprises a conductive layer coated over a flexible material;a deformable diverter disposed between the first cylindrical electrode and the second cylindrical electrode, comprising: a planar top surface;a planar bottom surface in opposition to the planar top surface;a first terminal lateral side in direct physical contact with an inner side of an exposed longitudinal extent of the first cylindrical electrode; anda second terminal lateral side in direct physical contact with an inner side of an exposed longitudinal extent of the second cylindrical electrode,wherein the first cylindrical electrode and the second cylindrical electrode are disposed in a plane parallel to the planar top surface, parallel to the planar bottom surface, and disposed therebetween; anda fluid aspiration port in fluid communication with a first fluid path, wherein the fluid aspiration port is configured to remove a material from the target treatment zone.
  • 2. The electrosurgical instrument of claim 1, wherein the first cylindrical electrode and the second cylindrical electrode are disposed in the first body, wherein a distal end of each of the first cylindrical electrode and the second cylindrical electrode is exposed on a surface at a distal end of the first body.
  • 3. The electrosurgical instrument of claim 1, further comprising one or more fluid discharge ports configured to deliver an irrigation fluid to the target treatment zone through a second fluid path.
  • 4. The electrosurgical instrument of claim 1, wherein the first fluid path includes a clogged tissue remover having a hollow body and a prong disposed at a distal end of the hollow body.
  • 5. The electrosurgical instrument of claim 4, wherein the clogged tissue remover is extendable with respect to the first fluid path.
  • 6. The electrosurgical instrument of claim 4, wherein the first fluid path is extendable with respect to a shaft of the electrosurgical instrument and the clogged tissue remover is stationary with respect to the shaft, wherein when the first fluid path is retracted with respect to the shaft, the clogged tissue remover is extended with respect to the first fluid path, which allows the clogged tissue remover to remove clogged tissue in the first fluid path.
  • 7. The electrosurgical instrument of claim 6, wherein the first fluid path is coupled to a detent mechanism configured to releasably hold the first fluid path between a first position and a second position, wherein the clogged tissue remover is extended with respect to the first fluid path to remove clogged tissue in the first fluid path when the detent mechanism is in the first position and the clogged tissue remover is retracted with respect to the first fluid path when the detent mechanism is in the second position.
US Referenced Citations (1721)
Number Name Date Kind
2366274 Luth et al. Jan 1945 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2736960 Armstrong Mar 1956 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
3015961 Roney Jan 1962 A
3043309 McCarthy Jul 1962 A
3166971 Stoecker Jan 1965 A
3358676 Frei et al. Dec 1967 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3580841 Cadotte et al. May 1971 A
3614484 Shoh Oct 1971 A
3636943 Balamuth Jan 1972 A
3703651 Blowers Nov 1972 A
3710399 Hurst Jan 1973 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3862630 Balamuth Jan 1975 A
3900823 Sokal et al. Aug 1975 A
3906217 Lackore Sep 1975 A
3918442 Nikolaev et al. Nov 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3988535 Hickman et al. Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4034762 Cosens et al. Jul 1977 A
4047136 Satto Sep 1977 A
4058126 Leveen Nov 1977 A
4063561 McKenna Dec 1977 A
4099192 Aizawa et al. Jul 1978 A
4156187 Murry et al. May 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4278077 Mizumoto Jul 1981 A
4281785 Brooks Aug 1981 A
4304987 van Konynenburg Dec 1981 A
4314559 Allen Feb 1982 A
4384584 Chen May 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4535773 Yoon Aug 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4582236 Hirose Apr 1986 A
4585282 Bosley Apr 1986 A
4597390 Mulhollan et al. Jul 1986 A
4617927 Manes Oct 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4655746 Daniels et al. Apr 1987 A
4671287 Fiddian-Green Jun 1987 A
4708127 Abdelghani Nov 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4797803 Carroll Jan 1989 A
4798588 Aillon Jan 1989 A
4802461 Cho Feb 1989 A
4803506 Diehl et al. Feb 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4838853 Parisi Jun 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 Mcgurk-Burleson et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4865159 Jamison Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4896009 Pawlowski Jan 1990 A
4910389 Sherman et al. Mar 1990 A
4910633 Quinn Mar 1990 A
4911148 Sosnowski et al. Mar 1990 A
4919129 Weber, Jr. et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4961738 Mackin Oct 1990 A
4967670 Morishita et al. Nov 1990 A
4981756 Rhandhawa Jan 1991 A
5007919 Silva et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5020514 Heckele Jun 1991 A
5026387 Thomas Jun 1991 A
5061269 Muller Oct 1991 A
5093754 Kawashima Mar 1992 A
5099216 Pelrine Mar 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5112300 Ureche May 1992 A
5123903 Quaid et al. Jun 1992 A
5150102 Takashima Sep 1992 A
5150272 Danley et al. Sep 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5167725 Clark et al. Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5217460 Knoepfler Jun 1993 A
5221282 Wuchinich Jun 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5253647 Takahashi et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5267091 Chen Nov 1993 A
5282800 Foshee et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5313306 Kuban et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318565 Kuriloff et al. Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5333624 Tovey Aug 1994 A
5339723 Huitema Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5352219 Reddy Oct 1994 A
5359992 Hori et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5370640 Kolff Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395331 O'Neill et al. Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5413575 Haenggi May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5428504 Bhatia Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5431640 Gabriel Jul 1995 A
5443463 Stern et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5477788 Morishita Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496317 Goble et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5542938 Avellanet et al. Aug 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562657 Griffin Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573534 Stone Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5599350 Schulze et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
D381077 Hunt Jul 1997 S
5643175 Adair Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653713 Michelson Aug 1997 A
5657697 Murai Aug 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5681260 Ueda et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5700243 Narciso, Jr. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704900 Dobrovolny et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722326 Post Mar 1998 A
5722426 Kolff Mar 1998 A
5732636 Wang et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5738652 Boyd et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5741305 Vincent et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810718 Akiba et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5836867 Speier et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883454 Hones et al. Mar 1999 A
5887018 Bayazitoglu et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5902239 Buurman May 1999 A
5904147 Conlan et al. May 1999 A
5906579 Vander Salm et al. May 1999 A
5906625 Bito et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944298 Koike Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957849 Munro Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
D416089 Barton et al. Nov 1999 S
5984938 Yoon Nov 1999 A
5989182 Hori et al. Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6007484 Thompson Dec 1999 A
6013052 Durman et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6039734 Goble Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080152 Nardella et al. Jun 2000 A
6083151 Renner et al. Jul 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093186 Goble Jul 2000 A
6099483 Palmer et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6123466 Persson et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6127757 Swinbanks Oct 2000 A
6132368 Cooper Oct 2000 A
6139320 Hahn Oct 2000 A
6144402 Norsworthy et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6219572 Young Apr 2001 B1
6221007 Green Apr 2001 B1
6228080 Gines May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6309400 Beaupre Oct 2001 B2
6315789 Cragg Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6340878 Oglesbee Jan 2002 B1
6352532 Kramer et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464703 Bartel Oct 2002 B2
6471172 Lemke et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475216 Muller et al. Nov 2002 B2
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6520960 Blocher et al. Feb 2003 B2
6522909 Garibaldi et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6540693 Burbank et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562037 Paton et al. May 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6594517 Nevo Jul 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6610060 Muller et al. Aug 2003 B2
6616450 Mossle et al. Sep 2003 B2
6616600 Pauker Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620129 Stecker et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623501 Heller et al. Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6648817 Schara et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6669690 Okada et al. Dec 2003 B1
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6695840 Schulze Feb 2004 B2
6696844 Wong et al. Feb 2004 B2
6716215 David et al. Apr 2004 B1
6719684 Kim et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723094 Desinger Apr 2004 B1
6726686 Buysse et al. Apr 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776165 Jin Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6806317 Morishita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6860880 Treat et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6893435 Goble May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
D509589 Wells Sep 2005 S
6939347 Thompson Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6959852 Shelton, IV et al. Nov 2005 B2
6974462 Safer Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984220 Wuchinich Jan 2006 B2
6986738 Glukhovsky et al. Jan 2006 B2
6986780 Rudnick et al. Jan 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7029435 Nakao Apr 2006 B2
7039453 Mullick et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044937 Kirwan et al. May 2006 B1
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083579 Yokoi et al. Aug 2006 B2
7083617 Kortenbach et al. Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7096560 Oddsen, Jr. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7120498 Imran et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7153315 Miller Dec 2006 B2
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Ratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169104 Ueda et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7170823 Fabricius et al. Jan 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199545 Oleynikov et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211094 Gannoe et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241290 Doyle et al. Jul 2007 B2
7241294 Reschke Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7276065 Morley et al. Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7282773 Li et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297145 Woloszko et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7344533 Pearson et al. Mar 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckai et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367973 Manzo et al. May 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7422139 Shelton, IV et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7422592 Morley et al. Sep 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7439732 LaPlaca Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7448993 Yokoi et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7450998 Zilberman et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520877 Lee, Jr. et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7534243 Chin et al. May 2009 B1
D594983 Price et al. Jun 2009 S
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7608083 Lee et al. Oct 2009 B2
7611512 Ein-Gal Nov 2009 B2
7617961 Viola Nov 2009 B2
7621910 Sugi Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7640447 Qiu Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7725214 Diolaiti May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789283 Shah Sep 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7850688 Hafner Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7896878 Johnson et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7922953 Guerra Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7942303 Shah May 2011 B2
7942868 Cooper May 2011 B2
7947039 Sartor May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7988567 Kim et al. Aug 2011 B2
7997278 Utley et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038612 Paz Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8062211 Duval et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070748 Hixson et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8092475 Cotter et al. Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8114119 Spivey et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8128657 Shiono et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162940 Johnson et al. Apr 2012 B2
8177784 Van Wyk et al. May 2012 B2
8177794 Cabrera et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8187166 Kuth et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8192433 Johnson et al. Jun 2012 B2
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197494 Jaggi et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8206212 Iddings et al. Jun 2012 B2
8221415 Francischelli Jul 2012 B2
8221416 Townsend Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8244368 Sherman Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8257352 Lawes et al. Sep 2012 B2
8257377 Wiener et al. Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267854 Asada et al. Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273085 Park et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298228 Buysse et al. Oct 2012 B2
8298232 Unger Oct 2012 B2
8303583 Hosier et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8377053 Orszulak Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382754 Odom et al. Feb 2013 B2
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8394094 Edwards et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398633 Mueller Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409076 Pang et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439911 Mueller May 2013 B2
8439939 Deville et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469956 McKenna et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8475361 Barlow et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
8512336 Couture Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8523889 Stulen et al. Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8542501 Kyono Sep 2013 B2
8553430 Melanson et al. Oct 2013 B2
8562516 Saadat et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8574187 Marion Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
D695407 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597182 Stein et al. Dec 2013 B2
8597297 Couture et al. Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8636648 Gazdzinski Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636761 Cunningham et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641712 Couture Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8685056 Evans et al. Apr 2014 B2
8696662 Eder et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8764747 Cummings et al. Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814865 Reschke Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8887373 Brandt et al. Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8906012 Conley et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8929888 Rao et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8939287 Markovitch Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8939975 Twomey et al. Jan 2015 B2
8944997 Fernandez et al. Feb 2015 B2
8945125 Schechter et al. Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Horner et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968332 Farritor et al. Mar 2015 B2
8974453 Wang Mar 2015 B2
8978845 Kim Mar 2015 B2
8979838 Woloszko et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992520 Van Wyk et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023035 Allen, IV et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033983 Takashino et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050113 Bloom et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078664 Palmer et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9094006 Gravati et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107672 Tetzlaff et al. Aug 2015 B2
9113889 Reschke Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9119630 Townsend et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9138289 Conley et al. Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9155585 Bales, Jr. et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168082 Evans et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9187758 Cai et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198716 Masuda et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204919 Brandt et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265571 Twomey et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9271784 Evans et al. Mar 2016 B2
9274988 Hsu et al. Mar 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9308014 Fischer Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9344042 Mao May 2016 B2
9345481 Hall et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9358061 Plascencia, Jr. et al. Jun 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364225 Sniffin et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9381060 Artale et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9456876 Hagn Oct 2016 B2
9468490 Twomey et al. Oct 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9549663 Larkin Jan 2017 B2
9554845 Arts Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9585709 Krapohl Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9622810 Hart et al. Apr 2017 B2
9627120 Scott et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9642669 Takashino et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649144 Aluru et al. May 2017 B2
9649151 Goodman et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9687295 Joseph Jun 2017 B2
9700339 Nield Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713489 Woloszko et al. Jul 2017 B2
9713491 Roy et al. Jul 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horiie et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9757128 Baber et al. Sep 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9775665 Ellman Oct 2017 B2
9775669 Marczyk et al. Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9782220 Mark et al. Oct 2017 B2
9788891 Christian et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808244 Leimbach et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9833239 Yates et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9848939 Mayer et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9877782 Voegele et al. Jan 2018 B2
9888954 Van Wyk et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9901390 Allen, IV et al. Feb 2018 B2
9901754 Yamada Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9918773 Ishikawa et al. Mar 2018 B2
9931157 Strobl et al. Apr 2018 B2
9937001 Nakamura Apr 2018 B2
9943357 Cunningham et al. Apr 2018 B2
9949620 Duval et al. Apr 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9974539 Yates et al. May 2018 B2
9993289 Sobajima et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10034707 Papaioannou et al. Jul 2018 B2
10041822 Zemlok Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10058376 Horner et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080606 Kappus et al. Sep 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105174 Krapohl Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10117702 Danziger et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130414 Weiler et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10194911 Miller et al. Feb 2019 B2
10194972 Yates et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10211586 Adams et al. Feb 2019 B2
10231776 Artale et al. Mar 2019 B2
10238387 Yates et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10258404 Wang Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10307203 Wyatt Jun 2019 B2
10314638 Gee et al. Jun 2019 B2
10321950 Yates et al. Jun 2019 B2
10342602 Strobl et al. Jul 2019 B2
10413352 Thomas et al. Sep 2019 B2
10420601 Marion et al. Sep 2019 B2
10420607 Woloszko et al. Sep 2019 B2
10426873 Schultz Oct 2019 B2
10433900 Harris et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10463421 Boudreaux et al. Nov 2019 B2
10478243 Couture et al. Nov 2019 B2
10485607 Strobl et al. Nov 2019 B2
10524852 Cagle et al. Jan 2020 B1
10524854 Woodruff et al. Jan 2020 B2
10575868 Hall et al. Mar 2020 B2
10675082 Shelton, IV et al. Jun 2020 B2
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020133149 Bessette Sep 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030066938 Zimmerman Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212395 Woloszko Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093039 Schumert May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040102804 Chin May 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050090817 Phan Apr 2005 A1
20050096502 Khalili May 2005 A1
20050119640 Sverduk et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050215858 Vail Sep 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050272972 Iddan Dec 2005 A1
20050273139 Krauss et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060211943 Beaupre Sep 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070008744 Heo et al. Jan 2007 A1
20070010709 Reinschke Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070020065 Kirby Jan 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070032785 Diederich et al. Feb 2007 A1
20070051766 Spencer Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123748 Meglan May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070182842 Sonnenschein et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070270651 Gilad et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070276424 Mikkaichi et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080015413 Barlow et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080103495 Mihori et al. May 2008 A1
20080114355 Whayne et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080228179 Eder et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080281200 Vole et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080300588 Groth et al. Dec 2008 A1
20080312502 Swain et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090248021 McKenna Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090264879 McClurken et al. Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20100022824 Cybulski et al. Jan 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204802 Wilson et al. Aug 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20110009857 Subramaniam et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110087224 Cadeddu et al. Apr 2011 A1
20110118601 Barnes et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110178515 Bloom Jul 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080334 Shelton, IV et al. Apr 2012 A1
20120085358 Cadeddu et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140039493 Conley et al. Feb 2014 A1
20140194864 Martin et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140350540 Kitagawa et al. Nov 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150250531 Dycus et al. Sep 2015 A1
20150257819 Dycus et al. Sep 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150327918 Sobajima et al. Nov 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160066980 Schall et al. Mar 2016 A1
20160100747 Nitsan Apr 2016 A1
20160143687 Hart et al. May 2016 A1
20160157923 Ding Jun 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160199124 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20170056097 Monson et al. Mar 2017 A1
20170105787 Witt et al. Apr 2017 A1
20170105789 Boudreaux et al. Apr 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164972 Johnson et al. Jun 2017 A1
20170189102 Hibner et al. Jul 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170325878 Messerly et al. Nov 2017 A1
20170325886 Graham Nov 2017 A1
20170367751 Ruddenklau et al. Dec 2017 A1
20180085156 Witt et al. Mar 2018 A1
20180125571 Witt et al. May 2018 A1
20180228530 Yates et al. Aug 2018 A1
20180263683 Renner et al. Sep 2018 A1
20180280075 Nott et al. Oct 2018 A1
20180368906 Yates et al. Dec 2018 A1
20190000468 Adams et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000555 Schings et al. Jan 2019 A1
20190059980 Shelton, IV et al. Feb 2019 A1
20190099209 Witt et al. Apr 2019 A1
20190099212 Davison et al. Apr 2019 A1
20190099213 Witt et al. Apr 2019 A1
20200375651 Witt et al. Dec 2020 A1
20210100605 Renner et al. Apr 2021 A1
20210338309 Witt et al. Nov 2021 A1
Foreign Referenced Citations (40)
Number Date Country
1634601 Jul 2005 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
10201569 Jul 2003 DE
102005032371 Jan 2007 DE
0171967 Feb 1986 EP
0705571 Apr 1996 EP
1862133 Dec 2007 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2419159 Aug 2013 ES
2032221 Apr 1980 GB
S537994 Jan 1978 JP
H08229050 Sep 1996 JP
2002186627 Jul 2002 JP
2009213878 Sep 2009 JP
2010057926 Mar 2010 JP
WO-8103272 Nov 1981 WO
WO-9314708 Aug 1993 WO
WO-9800069 Jan 1998 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0128444 Apr 2001 WO
WO-02080794 Oct 2002 WO
WO-2004078051 Sep 2004 WO
WO-2008130793 Oct 2008 WO
WO-2009067649 May 2009 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011144911 Nov 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2013131823 Sep 2013 WO
WO-2016088017 Jun 2016 WO
Non-Patent Literature Citations (72)
Entry
Abbott, et al. Proceedings of the 2007 IEEEIRDJ International Conference on Intelligent Robots and Systems. 410-416, 2007.
Cadeddu et al., “Magnetic positioning system for trocarless laparoscopic instruments,” American College of Surgeons Poster, 2004.
Cadeddu et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single site surgery: initial human experience,” Surgical Endoscopy, SAGES Oral Manuscript, 2009.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” American Urological Association Poster, 2002.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” Journal of Urology Abstract, 2002.
Castellvi et al., “Completely transvaginal NOTES cholecystectomy in a porcine model using novel endoscopic instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Castellvi et al., “Hybrid transgastric NOTES cholecystectomy in a porcine model using a magnetically anchored cautery and novel instrumentation,” Submitted for Presentation, ASGE, 2009.
Castellvi et al., “Hybrid transvaginal NOTES sleeve gastrectomy in a porcine model using a magnetically anchored camera and novel instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Duchene et al., “Magnetic positioning system for trocarless laparoscopic instruments,” Engineering and Urology Society Poster, 2004.
Fernandez et al., “Development of a transabdominal anchoring system for trocar-less laparoscopic surgery,” ASME Proceedings of/MECE, 2003.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” Submittedfor Presentation, Poster, SAGES Annual Meeting, 2008.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” SAGES Annual Meeting Poster, 2008.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-Abdominal Camera and Retractor”, Annals of Surgery, vol. 245, No. 3, pp. 379-384, Mar. 2007.
Peirs et al., “A miniature manipulator for integration in self-propelling endoscope,” Sensors and Actuators, 92:343-9, 2001.
Raman et al., “Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation,” Journal of Endourology, 23(3):, 2009.367-371,2009.
Rapaccini et al., “Gastric Wall Thickness in Normal and Neoplastic Subjects: A Prospective Study Performed by Abdominal Ultrasound”, Gastrointestinal Radiology, vol. 13, pp. 197-199. 1988.
Scott et al., “A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Scott et al., “Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Surg. Endosc., 21:2308-2316, 2007.
Scott et al., “Evaluation of a novel air seal access port for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Magnetically anchored instruments for transgastric endoscopic surgery,” Oral Presentation for SAGES Annual Meeting, Emerging Technology Oral Abstract ET005, 2006.
Scott et al., “Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Oral Presentation, ASGE Annual Meeting/DDW, 2007.
Scott et al., “Trans gastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments,” SAGES Annual Meeting Poster, 2007.
Scott et al., “Transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Abstract for Video Submission, ASGE II1h Annual Video Forum, 2007.
Scott et al., “Transvaginal single access ‘pure’ NOTES sleeve gastrectomy using a deployable magnetically anchored video camera,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Poster, 2008.
Swain et al., “Linear stapler formation of ileo-rectal, entero-enteral and gastrojejunal anastomoses during dual and single access ‘pure’ NOTES procedures: Methods, magnets and stapler modifications,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Swain et al., “Wireless endosurgery for NOTES,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Tang et al., “Live video manipulator for endoscopy and natural orifice transluminal endoscopic surgery (with videos),” Gastrointestinal Endoscopy, 68:559-564, 2008.
Zeltser et al., “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, 178:288-291, 2007.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Meeh. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Campbell et al., “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008], Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Hormann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Related Publications (1)
Number Date Country
20190099217 A1 Apr 2019 US