This invention relates in general to the field of medical devices, more particularly, this invention relates to a flexible elongate member such as a medical guide wire or catheter having one or more electrical contacts.
Flexible elongate members used in medical applications such as guide wires, catheters, etc., which have electrical devices (e.g., pressure sensors, ultrasound transducers, pressure flow measurement devices, etc.) need to have one or more electrical contacts typically close to the proximal end of the member. The electrical contacts allow for the electrical interconnection of the electrical device found on the flexible elongate member, for example, a pressure sensor, to an external monitoring apparatus.
Currently there is some difficulty in manufacturing small electrical contacts on flexible elongate members such as guide wires having a diameter in the order of 0.018 inch or less. In
The pressure guide wire 100 further includes a shaft also referred to as a hypotube 106 typically formed of stainless steel, a flexible coil member 108 located on one side of the pressure sensor 110, a radiopaque coil 112 located on the other side of pressure sensor 110, and a tip 114. The pressure sensor 110 is electrically interconnected to contacts 104 via a plurality of electrical conductors (not shown), which run through the inside of the flexible coil 108 and shaft 106.
The cylindrical guide wire connector formed by contacts 104 is interconnected to a female connector 200 shown in
One problem with pressure guide wire 100 is that the individual electrical contacts are very difficult and expensive to integrate into the guide wire. Contacts 104 are individual metal bands, which are separated by non-electrically conductive spacers 116. During manufacture, each of the individual contacts 104 have to be soldered to the appropriate electrical conductor (not shown, e.g., electrical wire), which is attached to pressure sensor 110.
After the appropriate electrical conductor is soldered or welded to its corresponding contact 104, each individual contact has to be adhesively bonded to the rest of the guide wire 100. The spacers 116 also have to be individually inserted and bonded to the adjacent contact(s) 104. The bonding of the spacers 116 and contacts 104 causes further problems in that the adhesive which bonds them together tends to seep between the joints and has to be removed from the exterior portions of the proximal end of the guide wire 100. Given the small size of the guide wire 100, all of these time consuming steps have to be performed by assembly workers using microscopes which further increase the opportunity for manufacturing mistakes to occur.
Problems can also occur with the contacts 104 or spacers 116 becoming separated from the rest of the assembly due to bad bonding of a particular contact 104 or spacer 116. Another manufacturing problem occurs with the solder joints, which interconnect the electrical conductors coming from pressure sensor 110 to the individual contacts 104. Given that the electrical conductors have to be soldered to the inside surface of the contacts 104, there is very little room in which to solder the contact with a soldering tool, thus some bad solder joints can occur during production.
A need thus exists in the art for a contact assembly, which can overcome the problems associated with the prior art mentioned above.
Referring now to the drawings and in particular to
The flexible substrate 302 preferably includes an extension portion 310, which provides termination points for parallel runners 312, 314 and 316 which are interconnected to bands 304, 306 and 308. Runners 312, 314 and 316 have a pitch in the order of 0.002 to 0.004 inch. This pitch is required in order to interface the circuit to the group of electrical wires that travel along the length of the flexible elongate member to the electrical device (e.g., pressure sensor, etc.). Since the guide wire has a small cross-sectional diameter, the wires have to be small, and are therefore close together. Ideally, the pitch of the runners 312, 314 and 316 matches the pitch of the wires so that when the wires are bonded to the flex circuit, there is no need to spread the wires, and the assembly fits within the profile of the flexible elongate member. The wires may be stripped of insulation and attached with conventional means such as soldering or welding.
In
In
In
In
An alternate embodiment of the electrical connector of the present invention is shown in
In
In an alternate embodiment of the present invention, a tubular member or substrate 1100 is used as the starting point in place of a flexible flat substrate 302 as shown in
A non-metallized area 1214 is left along the length of the tubular member. The non-metallized area is the area in which the tubular member is cut along its entire length. Once cut, the ends of the tubular member are overlapped in order to cross over the three runners 108, 1210 and 1212. Once overlapped as shown in
An electrical connector cable 1302 is attached to the runners 1208, 1210 and 1212 at extension 1102. Tubular member 1100 can be formed from a number of materials, which are amenable to metallization such as a polymide tube. Although the embodiment shown in
The present invention accomplishes a completely new way of forming an electrical connector on a flexible elongate member such as a cardiovascular guide wire 1000. The invention accomplishes this with a single member that forms the multiple connection requirements. The simplicity of the design also enables rapid and effective assembly techniques, and is compatible with automatic processes that can be performed by machines. The component cost is also reduced compared to the prior art.
The single substrate design can be mass produced using standard photo-lithographic techniques in the case where the flat substrate 302 is used, and standard metallization techniques such as sputtering in the case where the tubular substrate 1100 is utilized as the starting point. The present invention also eliminates a number of previously complicated assembly steps. In addition, the invention allows the electrical device (e.g., pressure sensor, flow sensor, etc.) and electrical conductor 300 to be attached and tested prior to completion of the guide wire 1000.
While the intention has been described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations and variations will become apparent to those skilled in the art in light of the foregoing description. For example, although in the present invention the preferred embodiment has been described as a pressure guide wire, other flexible elongate members such as those used to diagnose or treat coronary vascular areas can take advantage of the present invention.
This application is a continuation of application Ser. No. 09/789,281 entitled “Flexible Elongate Member Having One or More Electrical Contacts,” filed on Feb. 20, 2001 now U.S. Pat. No. 6,779,257, allowed, which is a continuation of application Ser. No. 09/261,935, entitled “Flexible Elongate Member Having One or More Electrical Contacts,” filed on Mar. 3, 1999, issued as U.S. Pat. No. 6,210,339, the disclosures of which are expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2892131 | MacDonnell | Jun 1959 | A |
3724274 | Millar | Apr 1973 | A |
4722348 | Ligtenberg | Feb 1988 | A |
4958642 | Christian | Sep 1990 | A |
4961433 | Christian | Oct 1990 | A |
4967753 | Corl et al. | Nov 1990 | A |
5059851 | Corl et al. | Oct 1991 | A |
5105818 | Christian | Apr 1992 | A |
5109851 | Jadvar et al. | May 1992 | A |
5163445 | Christian | Nov 1992 | A |
5174295 | Christian | Dec 1992 | A |
5178159 | Christian | Jan 1993 | A |
5179952 | Buinevicius | Jan 1993 | A |
5240437 | Christian | Aug 1993 | A |
5348481 | Ortiz | Sep 1994 | A |
5358409 | Obara | Oct 1994 | A |
5413508 | Obara | May 1995 | A |
5517989 | Frisbie | May 1996 | A |
RE35648 | Tenerz | Nov 1997 | E |
5701905 | Easch | Dec 1997 | A |
5715827 | Corl et al. | Feb 1998 | A |
5795299 | Eaton | Aug 1998 | A |
5797848 | Marian et al. | Aug 1998 | A |
5797856 | Frisbie | Aug 1998 | A |
RE35924 | Winkler | Oct 1998 | E |
5846205 | Curley | Dec 1998 | A |
5991650 | Swanson | Nov 1999 | A |
6090052 | Akerfeldt | Jul 2000 | A |
6223429 | Kaneda | May 2001 | B1 |
6357111 | Uchiyama | Mar 2002 | B1 |
Number | Date | Country |
---|---|---|
2662458 | May 1989 | FR |
Number | Date | Country | |
---|---|---|---|
20050091833 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09789281 | Feb 2001 | US |
Child | 10924429 | US | |
Parent | 09261935 | Mar 1999 | US |
Child | 09789281 | US |