1. Field of the Invention
The present invention relates to medical instruments and, more particularly, to an endoscope.
2. Brief Description of Prior Developments
U.S. Pat. No. 4,873,965 discloses a flexible endoscope with two articulated lengths. U.K. patent application No. 2130885 discloses a flexible distal end portion for an endoscope. The end portion is made from plastic material with vertebrae connected by an elongate member or spine. U.S. Pat. No. 5,938,588 discloses an endoscope with wire sheaths made as solid tubes from a superelastic alloy material. Endoscopes are also known in the art which comprise an active deflection section and a passive deflection section.
In accordance with one aspect of the present invention, an endoscope is provided including a handle; and a shaft extending from the handle. The shaft has a front end with a first active deflection section and a second active deflection section. The first active deflection section is limited to deflection in a first plane and the second active deflection section is limited to deflection in a second different plane. The first plane is angled to the second plane.
In accordance with another aspect of the present invention, a nephroscope is provided adapted to be inserted through an incision in a renal pelvis of a patient. The nephroscope comprises a handle having a control section; and a shaft extending from the handle. The shaft comprises a front end with a first active deflection section connected in series with a second active deflection section. The control section is adapted to independently deflect the first and second deflection sections. The first and second active deflection sections are adapted to deflect such that a distal end of the nephroscope can be placed in a calyx of a lower pole of a kidney without the need to passively deflect the front end of the shaft against tissue of the kidney of a patient to reach the calyx of the lower pole. The first and second active deflection sections are each limited to deflection in a single common plane relative to each other.
In accordance with one method of the present invention, a method is provided for viewing an area inside a patient with an endoscope. The method comprises steps of a) moving a second user actuated control of the endoscope to move a second active deflection section at a front end of a shaft of the endoscope, the second active deflection section being limited to movement along a single plane, the step of moving the second user actuated control moving a distal tip of the shaft of the endoscope along a first path limited to the plane without moving a first user actuated control of the endoscope; b) moving the first user actuated control to move a first active deflection section at the front end of the shaft to move the distal tip in a second path orthogonal to the first path without moving the second user actuated control; and c) repeating steps a) and b) for methodically scanning the area inside the patient by a series of adjacent parallel ones of the first paths.
The foregoing aspects and other features of the present invention are explained in the following description, taken in connection with the accompanying drawings, wherein:
Referring to
The endoscope 10, in this embodiment, is a flexible cystoscope. However, in alternate embodiments, the endoscope could be a nephroscope, a cysto-nephroscope, or any other suitable type of endoscope. The endoscope 10 generally comprises a handle 12, a flexible shaft 14 connected to the handle 12, and a front end 18 of the shaft which has an active deflection capability. In an alternate embodiment, the shaft 14 could be rigid except at its front end.
The handle 12 is part of a control system to control the active deflection capability of the front end 18. The control system generally comprises the handle 12, two actuators 16, 17, a brake or lock actuator 22, and four control wires 23, 24, 25, 26 (see
The three actuators 16, 17, 22 are movably attached to the handle 12. Proximal ends of the wires 23, 24, 25, 26 are connected to the two control actuators 16, 17. The brake actuator 22 is connected to a braking mechanism for locking the second control actuator 17 at a fixed position. However, in an alternate embodiment, any suitable type of brake or locking mechanism could be provided. In one type of alternate embodiment, the endoscope might not comprise a control actuator brake.
In the embodiment shown, the first control actuator 16 does not comprise a brake. In an alternate embodiment the endoscope could comprise two brakes. However, a brake could be provided for the first control actuator 16. In an alternate embodiment, the control could comprise a joystick type of control device.
The handle 12 also comprises a light source post 28, a connection section 30 for connecting the output to a display devise (not shown), and working instrument/irrigation inlets 32. However, in alternate embodiments, the handle 12 could comprise additional or alternative components. The instrument includes two fiber-optic illumination bundles 86 which extends through the shaft 14 between the light post 28 and the distal end 20. In an alternate embodiment, a fiber optic image bundle could extend through the shaft 14 between the distal end 20 and an eyepiece (not shown) which would replace the output connection section 30. A working channel 84 extends through the shaft 14 between the working instrument inlet 32 and the distal end 20.
The flexible shaft 14 behind the front end 18 could comprise any suitable type of flexible shaft, such as the shaft disclosed in U.S. patent application Ser. No. 09/547,686 which is hereby incorporated by reference in its entirety. The front end 18 comprises a first active deflection section 34 and a second active deflection section 36. Referring also to
Referring also to
The first frame 40 generally comprises ring members 44, pivot bearings 46 (see
As seen best in
The connecting members 47 extend through the connecting member channels 50 and channels 60 in the pivot bearings 46. The connecting members 47 can comprise a wire or cable. In a preferred embodiment, the first frame 40 comprises two of the connecting members 47; one through the left side and one through the right side. The ends of the connecting members 47 extend into the coupling 62 and the distal end member 38. In a preferred embodiment, the opposite ends of the connecting members 47 are free to move relative to the coupling 62 and distal end member 38. However, in an alternate embodiment, one of the opposite ends of the connecting members 47 could be fixedly attached.
The second frame 42 generally comprises ring members 64, pivot bearings 46 (see
The pivot bearings used in the second frame 42 are the same as the pivot bearings used in the first frame 40. Similar to that seen in
The connecting members used in the second frame 42 are identical to the connecting members 47 used in the first frame 40 (see
Referring particularly to
Distal ends of a first set of two of the control wires 25, 26 are connected to the distal end member 38. Referring to
Referring to
In the cross sectional views shown in
Referring now also to
As can be seen, the distal end 20 of the endoscope 10 faces an upward and rearward direction.
As noted above, in this embodiment the first active deflection section 34 and the second active deflection section 36 are limited to deflection in single planes of deflection which are generally orthogonal to each other, such as generally horizontal and generally vertical. Referring also to
The interior of the bladder has a general round, oval or global shape. Thus, it is necessary for the user of the endoscope to manipulate the endoscope to view an interior global 360° area. In the past, cystoscopes were provided with omni-directional controls that allowed for their single front end active deflection section to be four way deflectable. However, an attempt to systematically view all of the interior global area inside the bladder by merely using the controls (so that the user was certain that no portion of the area was missed) was virtually impossible because of the complexity and memory that would need to be used. Therefore, users in the past would often scan the interior global area in a systematic pattern by manually axially rotated the entire shaft of the endoscope relative to the urethra 102 and only actively deflecting the front end in one plane. However, because the cystoscope was rotated after each pass of scanning, the user needed to contort his body during the process.
The present invention allows a user to perform a systematic scanning process, but without the need to axially rotate the shaft of the cystoscope relative to the urethra, and without the user having to contort his body during the process. The rear end of the second active deflection section 36 can remain substantially stationary, but the construction of the two active deflection sections 34, 36 and the field of view of the image viewing system at the distal tip 20, still allows a 360° revolute viewing inside a general sphere shape (i.e., inside a bladder). The present invention accomplishes this ability by providing the front end of the cystoscope with two independently movable active deflection sections which are limited to single planes of deflection that are angled or generally orthogonal to each other. Thus, the front tip of the distal end member 38 can be moved in a first plane, such as horizontal, without moving it vertically to perform a first scanning path. The front tip of the distal end member 38 can be moved in a second plane, such as vertically, without moving it horizontally. The front tip can then be moved in a third plane, generally adjacent to the first scanning path, without moving it vertically, to perform a second scanning path adjacent to the first scanning path.
By physically limiting the front end to two orthogonal or angled independent single plane deflectable motions, the user can control the controls 16, 17 very easily without getting confused or, without the distal end member 38 moving in an unintended direction. For example, the user merely moves the control 16 to move the distal end member 38 upwards and downwards and does not have to move the control 17. Then, the user merely moves the control 17 to move the distal end member 38 right and left and does not have to move the control 16. In the prior art, the user had to move both controls at the same time to obtain this single plane type of movement with repeated consistency. Moving both controls at the same time to obtain this single plane type of movement with repeated consistency was just too complicated and time consuming and, thus, users merely reverted to the rotation of shaft relative to the patient as described above.
One of the unique features of the present invention is the ability to allow the user to controllably view an interior surface of a patient in a controlled and methodical manner. More specifically, referring also to
The user can then returned the second active deflection section 36 back to its left bent position shown in
With the present invention, a user can systematically scan adjacent paths to view the entire revolute 360° area inside the bladder. The method can comprise moving a second user actuated control of the endoscope to move a second active deflection section at a front end of a shaft of the endoscope, the second active deflection section being limited to movement along a single plane, the step of moving the second user actuated control moving a distal tip of the shaft of the endoscope along a first path limited to the plane without moving a first user actuated control of the endoscope; moving the first user actuated control to move a first active deflection section at the front end of the shaft to move the distal tip in a second path generally orthogonal to the first path without moving the second user actuated control; and repeating these two steps for methodically scanning the area inside the patient by a series of adjacent ones of the first paths.
In a preferred embodiment, the first active deflection section is adapted to deflect through an angle of about 110° to about 210° and, the second active deflection section is adapted to deflect through an angle of about 110° to about 210°; and preferably about 130° each. However, any suitable angles could be provided. The field of view of the optical lens at the front tip of the endoscope allows viewing 360° when moved through these angles. The endoscope preferably only comprises one brake for one of the controls, such as only for the left and right control. However, in an alternate embodiment the one brake might control only up and down braking control. The present invention forms a means for viewing an inside of a generally spherical shape through a fixed entrance into the generally spherical shape by a camera or an optical lens at the front end of the shaft without axially rotating the shaft.
The present invention provided an advantage of allowing an interior global scanning without substantially any shaft rotation needed. With the present invention of generally orthogonal, serially connected two-way only active deflection sections, the user has better control over movement of the distal tip (and thus the path(s) being viewed). The user can, thus, use a controlled systematic and methodical scanning pattern method to add certainty that an entire interior global area has been observed. The user can scan a path in merely one direction and reposition in an orthogonal direction to subsequently take another adjacent scan path. Thus, a scan-reposition repetition method can be used which can allow a user to limit the two step method to movement of a single one of the controls 16, 17 for each respective step. This provides a clearly defined scanning pattern and stepped movement of the controls 16, 17 for stepped movement of the sections 34, 36.
Referring now to
Referring also to
The first frame member 540 generally comprises a single one-piece generally tubular shaped member. However, in alternate embodiments, the first frame member 540 could be comprised of more than one tube, such as multiple tubes connected in series, and could comprise additional members. The first frame member 540 is preferably comprised of a shape memory alloy material, such as Tinel or Nitinol. However, any suitable type of shape memory alloy material could be used. The shape memory alloy material is used for its superelastic properties exhibited by the material's ability to deflect and resiliently return to its natural or predetermined position even when material strains approach 4%, or an order of magnitude greater than the typical yield strain of 0.4% giving rise to plastic deformation in common metals. Thus, the term “superelastic material” is used to denote this type of material.
The first frame member 540 has a center channel with open front and rear ends 548, 550, and slots 552 therein. The first frame member 540 forms the frame for the first active deflection section 534. The slots 552, in the embodiment shown, extend into the first frame member 540 in two opposite directions. However, in alternate embodiments, the slots 552 could extend into the first frame member in more or less than two directions. The slots 552 extend into the first frame member 540 along a majority of the length of the first frame member, and also extend into the first frame member a distance more than half the diameter. However, in alternate embodiments, the slots 552 could be arranged in any suitable type of array or shape.
The rear end 550 of the first frame member 540 is fixedly attached to the fitting 544. The fitting 544 is comprised of a one-piece member made of a suitable material, such as metal. However, in alternate embodiments, the fitting 544 could be comprised of more than one member, or could be incorporated into one or both of the frame members, and could be comprised of any suitable type of material(s). The rear end 550 of the first frame member 540 is fixedly attached to the exterior of the front of the fitting 544.
The center section 554 forms a raised annular ring around the fitting 544. This raised annular ring forms stop surfaces for the ends 550, 570 of the two frame members. In alternate embodiments, any suitable type of positioning system for positioning the frame members on the fitting could be provided.
The inside of the fitting 544 generally comprises two pass-through holes and a mounting section for mounting an end of a second control cable thereto. The two pass-through holes are sized and shaped to allow the two first control cables to slidably pass therethrough. The fitting 544 has a mounting section which comprises an aperture that is sized and shaped to receive the front end of the second control cable 524, such that the front end can the fixedly mounted therein. However, in alternate embodiments, any suitable means could be used to attach the front end of the second control cable to the fitting 544. In addition, in an alternate embodiment, the fitting 544 could be adapted to have more than one control cable fixedly mounted thereto. In addition, in another alternate embodiment, the fitting 544 could be adapted to have more or less than two control cables pass therethrough.
The second frame member 542 generally comprises a single one-piece generally tubular shaped member. However, in alternate embodiments, the second frame member 542 could be comprised of more than one tube, such as multiple tubes connected in series, and could comprise additional members. The second frame member 542 could also be comprised of a front portion of a member which extends along the length of the shaft 514, similar to that disclosed in U.S. patent application Ser. No. 09/427,164. The second frame member 542 is preferably comprised of a shape memory alloy material, similar to that described above with reference to the first frame member 540.
The second frame member 542 has a center channel with open front and rear ends 570, 572, and slots 574 therein. The second frame member 542 forms the frame for the second active deflection section 536. The slots 574, in the embodiment shown, extend into the second frame member 542 in only one direction. However, in alternate embodiments, the slots 574 could extend into the second frame member in more than one direction. The slots 574 extend into the second frame member 542 along a majority of the length of the second frame member, and also extend into the second frame member a distance of about three-quarters of the diameter. However, in alternate embodiments, the slots 574 could be arranged in any suitable type of array, or shape, or depth of extension into the lateral side of the frame member.
In the embodiment shown, the second frame member 542 comprises a curved pre-shaped home position as shown in
In alternate embodiments, the first frame member 540 and/or the second frame member 542 could be comprised of any suitable material(s) and/or members. For example, the members could be comprised of metal rings connected by flexible members (such as rods of superelastic material or other flexible material), or could merely comprise metal rings pivotably connected to each other. Features of the present invention are not necessarily limited to use of only two tube shaped frame members comprised only of superelastic material. For example, one type of alternate embodiment is shown in
In the embodiment shown, the lateral side of the second frame member 542, which the slots 574 extend into, is aligned with the mounting section of the fitting 544. The second control cable, when set by the actuator 17 to a predetermined position, applies tension to the fitting 544 such that the second frame member 542 is maintained in a substantially straight configuration. When the second control cable is pulled rearward by the actuator 17, the second frame member 542 is adapted to bend inward along the opposite lateral side. When the second control cable is released, internal stresses from the curved pre-shaped of the second frame member 542 cause the second active deflection section 536 to return to its home straight position. In an alternate embodiment, more or less than three control cables could be used.
Referring to
By providing the front end of the nephroscope with two active deflection sections, which are independently deflectable, the front end of the nephroscope is able to locate the distal end 520 in the calyx of a lower pole of a kidney regardless of the size or shape of the kidney. The nephroscope 510 is not dependent upon use of passive deflection against tissue of the kidney in order to properly position the distal end 520 at a desired position. The amount of space or real estate and the small radius turn into the calyx in the lower pole inside the kidney for manipulating the front end of the nephroscope 510 is very limited. The present invention, by using two separate shape memory frame members 540, 542 provides the ability to manipulate the front end 518 in this limited space and sharp turn path environment. The shape memory frame members 540, 542 provide superelastic properties to allow the frame members to deflect in this limited space and sharp turn path environment and be able to resiliently return to their home positions. The ability to independently deflect the two active deflection sections 534, 536 combined with the superelastic properties of the shape memory frame members allow the frame members to navigate a path through this limited space and sharp turn path environment. If only a single active deflection section was provided, it would be too long in length in order to operate properly to reach the calyx in the lower pole.
The first active deflection section 534 can be deflected before the second active deflection section 536, and the second active deflection section 536 can be deflected as it is enters the incision IN. This ability to provide a sequential deflecting of the active deflection sections 534, 536 as they exit the incision IN allows access to the lower pole calyx LPC without the use of passive deflection. The present invention provides the ability to reach previously unavailable areas in a kidney.
In alternate embodiments of the present invention, the front end 518 could comprise more than two active deflections sections. The first active deflection section 534 has been described above as being two-way deflectable in a same plane and in a same plane with the one way deflection of the second active deflection section 546. In another alternate embodiment, the first active deflection section 534 could be deflectable in more or less than two ways. In such an alternate embodiment, the control system could comprise more or less than two control cables for the first active deflection section. The second active deflection section 536 has been described above as being one way deflectable. In another alternate embodiment, the second active deflection section 536 could be deflectable in more than one way in a substantially same plane. In such an alternate embodiment, the control system could comprise more than one control cable for the second active deflection section.
It should be understood that the foregoing description is only illustrative of the invention. Various alternatives and modifications can be devised by those skilled in the art without departing from the invention. Accordingly, the present invention is intended to embrace all such alternatives, modifications and variances which fall within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/09155 | 3/25/2003 | WO | 12/15/2004 |