Technical Field
The present disclosure relates to electrosurgical instruments and, more particularly, to flexible endoscopic bipolar electrosurgical forceps for sealing and/or cutting tissue.
Discussion of Related Art
Electrosurgical forceps utilize both mechanical clamping action and electrical energy to affect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
Many surgical procedures may be completed through intra-luminal techniques, where a flexible endoscope is accessed through a puncture into a vascular branch or through one end of the gastrointestinal tract (e.g., the mouth or the rectum). These flexible endoscopes may contain lumens for purposes of irrigation, suction or passage or surgical instruments (e.g., snares, organ catheters, biopsy devices, etc.).
Many other surgical procedures utilize endoscopic instruments which are often inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who attempt to find ways to make endoscopic instruments that fit through the smaller cannulas.
Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations and accessibility of the indoluminal sight, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.
It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.
In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters are accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a typical fused vessel wall is optimum between 0.001 and 0.006 inches. Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.
With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as vessels become smaller.
As mentioned above, in order to properly and effectively seal larger vessels or tissue, a greater closure force between opposing jaw members is required. It is known that a large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a design challenge because the jaw members are typically affixed with pins which are positioned to have small moment arms with respect to the pivot of each jaw member. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the pins. As a result, designers compensate for these large closure forces by either designing instruments with metal pins and/or by designing instruments which at least partially offload these closure forces to reduce the chances of mechanical failure. As can be appreciated, if metal pivot pins are employed, the metal pins should be insulated to avoid the pin acting as an alternate current path between the jaw members which may prove detrimental to effective sealing.
Increasing the closure forces between electrodes may have other undesirable effects, e.g., it may cause the opposing electrodes to come into close contact with one another which may result in a short circuit and a small closure force may cause pre-mature movement of the tissue during compression and prior to activation. As a result thereof, providing an instrument which consistently provides the appropriate closure force between opposing electrode within a preferred pressure range will enhance the chances of a successful seal. As can be appreciated, relying on a surgeon to manually provide the appropriate closure force within the appropriate range on a consistent basis would be difficult and the resultant effectiveness and quality of the seal may vary. Moreover, the overall success of creating an effective tissue seal is greatly reliant upon the user's expertise, vision, dexterity, and experience in judging the appropriate closure force to uniformly, consistently and effectively seal the vessel. In other words, the success of the seal would greatly depend upon the ultimate skill of the surgeon rather than the efficiency of the instrument.
It has been found that the pressure range for assuring a consistent and effective seal is between about 3 kg/cm2 to about 16 kg/cm2 and, desirably, within a working range of 7 kg/cm2 to 13 kg/cm2. Manufacturing an instrument which is capable of providing a closure pressure within this working range has been shown to be effective for sealing arteries, tissues and other vascular bundles.
Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to affect vessel sealing. For example, one such actuating assembly has been developed by Valleylab, Inc. of Boulder, Colo., a division of Tyco Healthcare LP, for use with Valleylab's vessel sealing and dividing instrument commonly sold under the trademark LIGASURE ATLAS®. This assembly includes a four-bar mechanical linkage, a spring and a drive assembly which cooperate to consistently provide and maintain tissue pressures within the above working ranges. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bilateral jaw closure mechanism which is activated by a foot switch. A trigger assembly extends a knife distally to separate the tissue along the tissue seal. A rotating mechanism is associated with distal end of the handle to allow a surgeon to selectively rotate the jaw members to facilitate grasping tissue. Co-pending U.S. application Ser. Nos. 10/179,863 and 10/116,944 and PCT Application Serial Nos. PCT/US01/01890 and PCT/7201/11340 describe in detail the operating features of the LIGASURE ATLAS® and various methods relating thereto. The contents of all of these applications are hereby incorporated by reference herein.
Electrosurgical snares are used in endoscopic electrosurgical procedures of the removal of intestinal polyps and the like. Electrosurgical snares are predominantly monopolar, are used typically without any feedback to the electrosurgical generator, and typically lack control over the amount of cauterization of tissue. During a poly removal procedure, power applied to a stem of the polyp must be carried away through the wall of the underlying tissue (i.e., intestinal wall or other body lumen).
It would be desirous to develop an endoscopic vessel sealing instrument which reduces the overall amount of mechanical force necessary to close the jaw members and to clamp tissue therebetween. It would also be desirous for the instrument to provide a variable-ratio mechanical advantage for manipulating the jaw members and clamping tissue, such that, for example, the jaw members can be closed on tissue, easier, quicker and with less user force than previously envisioned to clamp the tissue.
Additionally, it would be desirous for the instrument to include a blade for cutting tissue following electrosurgical sealing.
Additionally, it would be desirous for the instrument to be a bipolar instrument capable of reducing or limiting the effect to tissue captured between the jaw members.
Additionally, one must consider the ability to manipulate the position of the surgical end effector. Controls are available to bend the flexible endoscope to position the view angle and the ports relative to the surgical target. It is then additionally desirable to manipulate the surgical effector within the view field of the endoscope. This may be accomplished by any number of means, such as, for example, pull wires, thermally active memory wire, or micro-machines.
The present disclosure relates to flexible endoscopic bipolar electrosurgical forceps for sealing and/or cutting tissue.
According to an aspect of the present disclosure, an endoscopic forceps for vessel sealing is provided. The endoscopic forceps includes a housing; a shaft extending from the housing and including a distal end configured and adapted to support an end effector assembly; and an end effector assembly operatively supported on the distal end of the shaft.
The end effector assembly includes two jaw members movable from a first position in spaced relation relative to one another to at least a second position closer to one another for grasping tissue therebetween. Each of the jaw members is adapted to connect to an electrosurgical energy source such that the jaw members are capable of conducting energy through tissue held therebetween to affect a tissue seal. The end effector assembly further includes an outer sleeve translatably disposed about the shaft. The sleeve has a first position in which the sleeve does not cover the jaw members, and a plurality of second positions in which the sleeve covers at least a portion of the two jaws to approximate the jaws at least partially toward one another. The end effector assembly includes a linkage operatively connected to at least one of the jaw members for pivoting both jaw members about a common pivot axis.
The endoscopic forceps includes a movable handle operatively associated with the housing. Accordingly, actuation of the movable handle relative to the housing results in movement of the outer sleeve relative the jaw members to actuate the end effector assembly between the first and second positions.
The jaw members may be biased to the first position. The jaw members are either unilateral or bilateral. The end effector assembly includes at least one stop member disposed on an inner facing surface of at least one of the jaw members. The end effector assembly may deliver a working pressure of about 3 kg/cm2 to about 16 kg/cm2, preferably of about 7 kg/cm2 to about 13 kg/cm2.
In an embodiment, the jaw members are pivotable to a substantially orthogonal orientation relative to a longitudinal axis of the shaft. The linkage desirably actuates the jaw members from the first position to a second position. The linkage may be operatively connected to one of the jaw members.
The shaft and outer sleeve may be at least partially flexible.
According to another aspect of the present disclosure, the endoscopic forceps includes a housing; a shaft extending from the housing and including a distal end configured and adapted to support an end effector assembly; and an end effector assembly operatively supported on the distal end of the shaft. The end effector assembly includes two jaw members movable from a first position in spaced relation relative to one another to at least a second position closer to one another for grasping tissue therebetween. Each of the jaw members is adapted to connect to an electrosurgical energy source such that the jaw members are capable of conducting energy through tissue held therebetween to affect a tissue seal. The jaw members are biased to the first position. The end effector assembly of the endoscopic forceps further includes a wire having a proximal end connectable to an electrosurgical energy source and a distal end translatably extending out of one of the jaw members and operatively associated with the other of the jaw members. Accordingly, in use, withdrawal of the proximal end of the wire results in movement of the jaw members from the first position to a second position and cinching of the wire onto and/or around the tissue.
The jaw members may be unilateral or bilateral.
The distal end of the wire may translatably extend through the other of the jaw members and may be secured to itself. The wire may be fabricated from shape-memory alloys.
It is envisioned that at least a portion of the shaft is flexible. In an embodiment, a distal most end of the shaft is rigid.
The end effector assembly may further include a scissor blade operatively supported on a distal end of the shaft and movable from a first position in which the scissor blade is substantially aligned with one of said jaw members and a plurality of second positions in which the scissor blade is out of alignment with the one jaw member and extends across to the other of the jaw members thereby severing tissue grasped between the jaw members.
In an embodiment, the end effector assembly may still further include a scissor blade linkage operatively connected to the scissor blade. Accordingly, in use, movement of the scissor linkage results in actuation of the scissor blade between the first position and any number of second positions.
According to still a further aspect of the present disclosure, the endoscopic forceps includes a housing; a shaft extending from the housing and including a distal end configured and adapted to support an end effector assembly; and an end effector assembly operatively supported on the distal end of the shaft. The end effector assembly includes a cutting blade supported on the distal end of the shaft, the cutting blade including a cutting edge extending in a distal direction; a movable jaw member translatably supported on the shaft, the movable jaw member including a tissue contacting portion extending across a longitudinal axis of the shaft; and an anvil member slidably supported on the movable jaw member between the tissue contacting portion of the movable jaw member and the cutting blade, the anvil member defining a blade slot formed therein for selectively receiving the cutting blade therethrough. The endoscopic forceps further includes a movable handle operatively associated with the housing, wherein actuation of the movable handle relative to the housing results in movement of the movable jaw member relative to the shaft.
The end effector assembly may further include a biasing member disposed between the anvil member and the cutting blade for maintaining the anvil member biased a distance away from the cutting blade such that the cutting blade does not extend through the anvil member.
The end effector assembly may include a first position wherein the tissue contacting portion of the movable jaw member is spaced a distance from the anvil member for receiving a target tissue therein, and the anvil member is spaced a distance from the cutting blade such that the cutting blade does not extend through the blade slot formed therein. The end effector assembly may further include a second position wherein the tissue contacting portion of the movable jaw member is approximated toward the anvil member to grasp the tissue therebetween, and the anvil member is spaced a distance from the cutting blade such that the cutting blade does not extend through the blade slot formed therein. The end effector assembly may include a third position wherein the tissue contacting portion of the movable jaw member is approximated toward the anvil member to grasp the tissue therebetween, and the anvil member is approximated toward the cutting blade such that the cutting edge of the cutting blade extends through the blade slot formed therein severs the tissue extending thereacross.
For a better understanding of the present disclosure and to show how it may be carried into effect, reference will now be made by way of example to the accompanying drawings.
Various embodiments of the subject instrument are described herein with reference to the drawings wherein:
Turning now to
In the drawings and in the descriptions that follow, the term “proximal,” as is traditional, will refer to the end of the forceps 10 which is closer to the user, while the term “distal” will refer to the end that is farther from the user.
Forceps 10 includes a shaft 12 that has a distal end 16 dimensioned to mechanically engage end effector assembly 100 and a proximal end 14 that mechanically engages the housing 20. Proximal end 14 of shaft 12 is received within housing 20 and appropriate mechanical and electrical connections relating thereto are established.
As best seen in
In one embodiment, the generator includes various safety and performance features including isolated output, independent activation of accessories. It is envisioned that the electrosurgical generator includes Valleylab's Instant Response™ technology features that provides an advanced feedback system to sense changes in tissue 200 times per second and adjust voltage and current to maintain appropriate power. The Instant Response™ technology is believed to provide one or more of the following benefits to surgical procedure:
Consistent clinical effect through all tissue types;
Reduced thermal spread and risk of collateral tissue damage;
Less need to “turn up the generator”; and
Designed for the minimally invasive environment.
Cable 310 is internally divided into several cable leads (not shown) which each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100.
Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50. In one embodiment, rotating assembly 80 is integrally associated with housing 20 and is rotatable approximately 180 degrees about a longitudinal axis.
As mentioned above, end effector assembly 100 is attached at distal end 16 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Movable handle 40 of handle assembly 30 is ultimately connected to a drive assembly (not shown) which, together, mechanically cooperate to impart movement of jaw members 110 and 120 from an open position wherein jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein jaw members 110 and 120 cooperate to grasp tissue therebetween.
It is envisioned that forceps 10 may be designed such that it is fully or partially disposable depending upon a particular purpose or to achieve a particular result. For example, end effector assembly 100 may be selectively and releasably engageable with distal end 16 of the shaft 12 and/or the proximal end 14 of shaft 12 may be selectively and releasably engageable with the housing 20 and the handle assembly 30. In either of these two instances, the forceps 10 would be considered “partially disposable” or “reposable”, i.e., a new or different end effector assembly 100 (or end effector assembly 100 and shaft 12) selectively replaces the old end effector assembly 100 as needed. As can be appreciated, the presently disclosed electrical connections would have to be altered to modify the instrument to a reposable forceps.
As shown best in
More particularly, and with respect to the particular embodiments shown in
As illustrated in
With continued reference to
Desirably, jaw member 110 has an electrically conducive sealing surface 112 which is substantially surrounded by an insulating substrate 114. Insulating substrate 114, electrically conductive sealing surface 112 and the outer, non-conductive jaw housing 116 can be dimensioned to limit and/or reduce many of the known undesirable effects related to tissue sealing, e.g., flashover, thermal spread and stray current dissipation. Alternatively, it is envisioned that jaw members 110 and 120 may be manufactured from a ceramic-like material and the electrically conducive sealing surface(s) 112 thereof may be coated onto the ceramic-like jaw members 110 and 120.
It is envisioned that the electrically conductive sealing surface 112 may also include an outer peripheral edge that has a pre-defined radius and the insulating substrate 114 meets the electrically conductive sealing surface 112 along an adjoining edge of the sealing surface 112 in a generally tangential position. In one embodiment, at the interface, the electrically conducive sealing surface 112 is raised relative to the insulating substrate 114. These and other envisioned embodiments are discussed in co-pending, commonly assigned Application Serial No. PCT/US01/11412 entitled “ELECTROSURGICAL INSTRUMENT WHICH REDUCES COLLATERAL DAMAGE TO ADJACENT TISSUE” by Johnson et al. and co-pending, commonly assigned Application Serial No. PCT/US01/11411 entitled “ELECTROSURGICAL INSTRUMENT WHICH IS DESIGNED TO REDUCE THE INCIDENCE OF FLASHOVER” by Johnson et al.
In one embodiment, the electrically conducive sealing surface 112 and the insulating substrate 114, when assembled, form a longitudinally-oriented slot (not shown) defined therethrough for reciprocation of the knife blade. It is envisioned that knife channel (not shown) of jaw member 110 cooperates with a corresponding knife channel 115b defined in stationary jaw member 120 to facilitate longitudinal extension of the knife blade along a preferred cutting plane to effectively and accurately separate the tissue.
Jaw member 120 includes similar elements to jaw member 110 such as a jaw housing having an insulating substrate 124 and an electrically conductive sealing surface 122 which is dimensioned to securely engage the insulating substrate 124. Likewise, the electrically conductive surface 122 and the insulating substrate 124, when assembled, include a longitudinally-oriented channel 115a defined therethrough for reciprocation of the knife blade. As mentioned above, when the jaw members 110 and 120 are closed about tissue, the knife channels of jaw members 110, 120 form a complete knife channel to allow longitudinal extension of the knife blade in a distal fashion to sever tissue. It is also envisioned that the knife channel may be completely disposed in one of the two jaw members, e.g., jaw member 120, depending upon a particular purpose.
As best seen in
Jaw members 110 and/or 120 may be designed to be fixed to the end of a tube 60 (see
Turning now to
As seen in
End effector assembly 300 further includes an outer catheter sleeve 304 defining a front or distal edge 304a and a lumen 306 therethrough. Lumen 306 of outer sleeve 304 is configured and dimensioned to translatably receive central shaft 302 and jaw members 320, 310 therein.
In operation, as central shaft 302 is withdrawn into outer sleeve 304, as indicated by arrow “A” in
It is envisioned and within the scope of the present disclosure for central shaft 302 and/or outer sleeve 304 to be fabricated from a flexible material or the like. Central shaft 302 and/or outer sleeve 304 may be fabricated from any one of or a combination of materials including and not limited to, NITINOL (e.g., nickel-titanium alloys), polyurethane, polyester, and/or polymethylsiloxane material (PDMS), fluorinated ethylene-propylene (FEP), polytetrafluoroethylene (PTFE), nylon, etc.
Turning now to
End effector assembly 300a includes a pair of jaw members 310a, 320a each pivotably supported at a distal end of a central shaft 302a via a pivot pin 103. End effector assembly 300a further includes an outer catheter sleeve 304a defining a lumen 306a therethrough. Lumen 306a of outer sleeve 304a is configured and dimensioned to translatably receive central shaft 302a and jaw members 310a, 320a therein.
As seen in
In use, with jaw members 310a, 320a in a closed condition, jaw members 310a, 320a are advanced through lumen 306a of outer sleeve 304, as indicated by arrow “B” of
With jaw members 310a, 320a oriented in an orthogonal direction, jaw members 310a, 320a may be opened and closed by moving linkage 330 in a distal or proximal direction. For example, by moving linkage 330 in a distal direction, second jaw member 310a is rotated about pivot pin 103 thereby spacing second jaw member 310a from first jaw member 320a. In so doing, end effector assembly 300a is configured to an open condition and the tissue contacting surface of first jaw member 320a is oriented approximately 90° relative to a longitudinal axis of outer sleeve 304a. With end effector assembly 300a in an open condition, tissue may be placed between jaw members 310a, 320a or jaw members 310a, 320a may be placed over the tissue.
Following placement of tissue between jaw members 310a, 320a, linkage 330 may be moved in a proximal direction thereby rotating second jaw member 310a about pivot pin 103 to approximate second jaw member 310a toward first jaw member 320a. In so doing, end effector assembly 300a is moved to a closed condition to grasp the tissue interposed between first and second jaw members 320a, 310a. Since jaw members 310b, 320b are in an orthogonal configuration, retraction of linkage 330 in a proximal direction results in application of the clamping force in a substantially linear direction relative to central shaft 302b.
Following treatment of the tissue, linkage 330 may be reactuated to release the treated tissue from between first and second jaw members 320a, 310a. With the treated tissue released from between first and second jaw members 320a, 310a, central shaft 302a is withdrawn through outer sleeve 304a. In so doing, first and second jaw members 320a, 310a are re-oriented to an axially aligned orientation due to a camming action between the distal edge of outer sleeve 304a and first jaw member 320a.
It is envisioned and within the scope of the present disclosure for central shaft 302a and/or outer sleeve 304a to be fabricated from a flexible material or the like.
Turning now to
As seen in
As seen in
As disclosed above, it is envisioned and within the scope of the present disclosure that central shaft 302b may be fabricated from a flexible material or the like.
Turning now to
As seen in
As seen in
It is envisioned that wire 340 may be fabricated from a shape memory alloy, such as, for example, NITINOL, or the like. Accordingly, as seen in
In use, in order to close end effector assembly 300c, wire 340 is withdrawn in a proximal direction thereby approximating the distal tip of movable jaw member 310c toward the distal tip of fixed jaw member 320c. In so doing jaw members 310c, 320c are approximated toward one another and desirably clamp onto tissue “T”.
In one mode of operation, with end effector assembly 300c in an open condition and with wire 340 in an expanded condition, as seen in
Wire 340 is withdrawn an amount sufficient to tightly close end effector assembly 300c onto and/or about tissue “T” and to apply pressure to tissue “T” between the jaw members 310c, 320c. At such a time, electrical current or electrical energy is transmitted through wire 340 and/or to the electrically conducive sealing surface(s) of jaw members 310c, 320c. The electrical current or energy is transmitted at a level and for a time sufficient to heat wire 340 to cut through tissue “T” and remove tissue “T” from the underlying or remaining tissue.
It is envisioned that wire 340 may or may not be insulated. Additionally, distal portion 301c of central shaft 300c may be fabricated from a rigid, electrically conductive material. In so doing, an electrical lead 311c may extend through flexible proximal portion 303c of central shaft 302c and electrically connect to a proximal end of rigid portion 301c.
In another mode of operation, with end effector assembly 300c in an open condition and with wire 340 in an expanded condition, end effector assembly 300c is placed over tissue “T” to be excised, e.g., a polyp or the like, such that tissue “T” is interposed and/or disposed between jaw members 310c, 320c. With tissue “T” so positioned, the proximal end of wire 340 is drawn in a proximal direction thereby cinching wire 340 and closing end effector assembly 300c (e.g., approximating jaw members 310c, 320c) onto tissue “T”.
Wire 340 is withdrawn an amount sufficient to tightly close end effector assembly 300c onto tissue “T” and to apply pressure to tissue “T” between the jaw members 310c, 320c. It is envisioned that in the current mode of operation, further withdrawal of wire 340 may result in pivoting of end effector assembly 300c about pivot pin 103 to improve the visibility at the surgical site.
Turning now to
As seen in
While end effector assembly 300d is shown as having bilateral jaw member arrangement, it is envisioned and within the scope of the present disclosure for end effector assembly 300d to have a unilateral jaw member arrangement. It is envisioned that when end effector assembly 300d is in the open condition, wire 340 has a substantially arcuate shape or configuration. Wire 340 includes a nipple region 340b formed along a length thereof. In use, when cinching wire 340 it is desired for tissue “T” to be positioned within nipple region 340b of wire 340.
In use, in order to close end effector assembly 300d, wire 340 is withdrawn in a proximal direction, by pulling on the proximal end of wire 340, thereby approximating the distal tips of jaw members 310d, 320d toward one another. Since distal end 340a of wire 340 is secured to itself by junction block 342, by pulling on the proximal end of wire 340, distal end 340a of wire 340 is drawn into both jaw members 310d, 320d substantially equally.
In operation, with end effector assembly 300d in an open condition and with wire 340 in an expanded condition, as seen in
Wire 340 is withdrawn an amount sufficient to tightly close end effector assembly 300d onto and/or about tissue “T” and to apply pressure to tissue “T” between jaw members 310d, 320d. At such a time, electrical current or electrical energy is transmitted through wire 340 and/or to the electrically conducive sealing surface(s) of jaw members 310d, 320d. The electrical current or energy is transmitted at a level and for a time sufficient to heat wire 340 to cut through tissue “T” and remove tissue “T” from the underlying or remaining tissue.
In accordance with the present disclosure, the rigid nature of jaw members 310, 320 provides greater support and/or control of wire 340 as compared to conventional wire snare instruments and the like.
Turning now to
End effector assembly 300e further includes a knife or scissor blade 350 pivotably connected to a distal end of central shaft 302e. Scissor blade 350 may be pivotably connected to the distal end of central shaft 302e via pivot pin 103. Scissor blade 350 defines a cutting edge 350a or the like.
As seen in
As seen in
End effector assembly 300e may further include a wire 340 extending out of one of jaw members 310e, 320e and anchored to the other of jaw members 310e, 320e. In particular, wire 340 is disposed within central body portion 302e and includes a proximal end (not shown) which connects to an electrosurgical energy source, and a distal end 340a which extends out through fixed jaw member 320e and attaches to a distal end or tip of movable jaw member 310e.
In operation, either prior to, during or following severing of tissue “T” with wire 340, as described above with regard to end effector assemblies 300c or 300d, linkage 352 is actuated (e.g., moved in a proximal direction) to pivot scissor blade 350 about pivot pin 103 and severing tissue “T” along the sides of jaw members 310e, 320e.
Desirably, scissor blade 350 has a length substantially equal to the length of jaw members 310e, 320e. However, it is envisioned that scissor blade 350 may have any length necessary or desired in order to perform the operative procedure.
It is envisioned and within the scope of the present disclosure for the proximal portions of any of the jaw members disclosed above and the distal end of the respective central shafts to be covered by a resilient or flexible insulating material or boot (not shown) to reduce stray current concentrations during electrosurgical activation especially in a monopolar activation mode. As can be appreciated, when jaw members 310, 320 are opened, the boot flexes or expands in certain areas in order to accommodate the movement of jaw members 310, 320. Further details relating to one envisioned insulating boot are described in commonly-owned and concurrently-filed U.S. Provisional Patent Application Ser. No. 60/722,213, filed on Sep. 30, 2005, entitled “INSULATING BOOT FOR ELECTROSURGICAL FORCEPS”, the entire contents of which being incorporated by reference herein.
Turning now to
Cutting blade 404 includes a cutting edge 404a extending in a substantially distal direction. Desirably, cutting edge 404a of cutting blade 404 lies along the central longitudinal axis of central shaft 402.
End effector assembly 400 includes a jaw member 406 movably associated with central shaft 402. In an embodiment, movable jaw member 406 is configured and adapted to translate longitudinally along and/or relative to central shaft 402. Movable jaw member 406 includes a leg portion 406a extending substantially longitudinally along central shaft 402 and a tissue contacting portion 406b extending in a substantially orthogonal direction from a distal end of leg portion 406a. In particular, tissue contacting portion 406b of movable jaw member 406 extends across the central longitudinal axis of central shaft 402 and, more particularly, across cutting blade 404. Reference may be made to commonly-owned and concurrently-filed U.S. Pat. No. 6,267,761; and U.S. patent application Ser. No. 09/591,328, filed Jun. 9, 2000; and U.S. patent application Ser. No. 11/170,616, filed on Jun. 29, 2005, the entire contents of which being incorporated by reference herein, for exemplary embodiments and modes of operation of end effector assembly 400.
Jaw member 406 is movable from a position in which tissue contact portion 406b is spaced a distance from cutting edge 404a of cutting blade 404 to a position in which tissue contacting portion 406b is in contact with cutting edge 404a of cutting blade 404.
End effector assembly 400 further includes a floating anvil member 408 interposed between cutting blade 404 and tissue contacting portion 406b of jaw member 406. Anvil member 408 is slidably supported on leg portion 406a of jaw member 406 so that anvil member 408 is translatable along leg portion 406a. In one embodiment, anvil member 408 include a first slot 408a configured and dimensioned to slidably receive leg portion 406a of jaw member 406 therethrough. Anvil member 408 further includes a second or blade slot 408b formed therein that is configured and dimensioned to permit reciprocal movement of cutting blade 404 into and out of blade slot 408b (i.e., through anvil member 408).
End effector assembly 400 further includes a biasing member or spring 410 interposed between cutting blade 404 and anvil member 408. Biasing member 410 is configured so as to maintain anvil member 408 spaced a distance from cutting blade 404. Desirably, biasing member 408 maintains anvil member 408 spaced from cutting blade 404 by an amount sufficient that cutting edge 404a of cutting blade 404 does not extend through blade slot 408b of anvil member 408.
It is envisioned that each of tissue contacting portion 406b and anvil member 408 may be electrically connected to an electrosurgical energy source (not shown) and are provided with elements (not shown) for delivering and/or receiving electrosurgical energy.
With continued reference to
As seen in
With tissue “T” clamped between tissue contacting portion 406b of jaw member 406 and anvil member 408, an effective amount of electrosurgical energy (e.g., for an effective time period at an effective energy level) is delivered to tissue contacting portion 406b of jaw member 406 and/or anvil member 408 to achieve a desired effect in tissue “T”. Desirably, bipolar current is applied to seal the base of the tissue.
As seen in
In accordance with the present disclosure, any of the end effectors disclosed herein may be configured and adapted to deliver a working pressure of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, of about 7 kg/cm2 to about 13 kg/cm2, to the tissue. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue by the end effector assemblies, the user can cauterize, coagulate/desiccate, seal and/or simply reduce or slow bleeding.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same.
It is also contemplated that the forceps 10 (and/or the electrosurgical generator used in connection with the forceps 10) may include a sensor or feedback mechanism (not shown) that automatically selects the appropriate amount of electrosurgical energy to effectively seal the particularly-sized tissue grasped between the jaw members. The sensor or feedback mechanism may also measure the impedance across the tissue during sealing and provide an indicator (visual and/or audible) that an effective seal has been created between the jaw members. Examples of such sensor systems are described in commonly-owned U.S. patent application Ser. No. 10/427,832 entitled “METHOD AND SYSTEM FOR CONTROLLING OUTPUT OF RF MEDICAL GENERATOR”, the entire contents of which being incorporated by reference herein.
It is envisioned that the outer surface of any of the end effector assemblies disclosed herein may include a nickel-based material, coating, stamping, metal injection molding which is designed to reduce adhesion between the jaw members with the surrounding tissue during activation and sealing. Moreover, it is also contemplated that the conductive surfaces of the jaw members may be manufactured from one (or a combination of one or more) of the following materials: nickel-chrome, chromium nitride, MedCoat 2000 manufactured by The Electrolizing Corporation of OHIO, inconel 600 and tin-nickel. The tissue conductive surfaces may also be coated with one or more of the above materials to achieve the same result, i.e., a “non-stick surface”. As can be appreciated, reducing the amount that the tissue “sticks” during sealing improves the overall efficacy of the instrument.
One particular class of materials disclosed herein has demonstrated superior non-stick properties and, in some instances, superior seal quality. For example, nitride coatings which include, but not are not limited to: TiN, ZrN, TiAlN, and CrN are preferred materials used for non-stick purposes. CrN has been found to be particularly useful for non-stick purposes due to its overall surface properties and optimal performance. Other classes of materials have also been found to reducing overall sticking. For example, high nickel/chrome alloys with a Ni/Cr ratio of approximately 5:1 have been found to significantly reduce sticking in bipolar instrumentation. One particularly useful non-stick material in this class is Inconel 600. Bipolar instrumentation having sealing surfaces 112 and 122 made from or coated with Ni200, Ni201 (˜100% Ni) also showed improved non-stick performance over typical bipolar stainless steel electrodes.
Any of the above-described endoscopic forceps and/or end effector assemblies may be incorporated into a catheter-type configuration or other technology suitable for sealing/cutting, such as, for example, E-cutting technology (electrosurgical-cutting technology). Accordingly, any of the above-described endoscopic forceps and/or end effector assemblies may be incorporated into systems, instruments, devices and the like disclosed in U.S. patent application Ser. No. 11/418,876, filed on May 5, 2006, entitled “VESSEL SEALING INSTRUMENT WITH ELECTRICAL CUTTING MECHANISM”; U.S. patent application Ser. No. 10/932,612, filed on Sep. 2, 2004, entitled “VESSEL SEALING INSTRUMENT WITH ELECTRICAL CUTTING MECHANISM”; International Application Ser. No. PCT/US03/28539, filed on Sep. 11, 2003, entitled “ELECTRODE ASSEMBLY FOR SEALING AND CUTTING TISSUE AND METHOD FOR PERFORMING SAME”, the entire contents of each of which is herein incorporated by reference.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a Continuation Application that claims the benefit of and priority to U.S. application Ser. No. 12/882,304, filed on Sep. 15, 2010, now U.S. Pat. No. 8,641,713, which is a Divisional Application that claims the benefit of and priority to U.S. application Ser. No. 11/540,779, filed on Sep. 29, 2006, now U.S. Pat. No. 7,819,872 which claims the benefit of and priority to each of U.S. Provisional Application No. 60/722,359, filed on Sep. 30, 2005; U.S. Provisional Application No. 60/722,213, filed on Sep. 30, 2005; and U.S. Provisional Application No. 60/722,186, filed on Sep. 30, 2005, the entire contents of each application being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
1586645 | Bierman | Jun 1926 | A |
1813902 | Bovie | Jul 1931 | A |
1822330 | Ainslie | Sep 1931 | A |
1852542 | Sovatkin | Apr 1932 | A |
1908201 | Welch et al. | May 1933 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2054149 | Wappler | Sep 1936 | A |
2176479 | Willis | Oct 1939 | A |
2305156 | Grubel | Apr 1941 | A |
2279753 | Knopp | Apr 1942 | A |
2327353 | Karle | Aug 1943 | A |
2632661 | Cristofv | Aug 1948 | A |
2668538 | Baker | Feb 1954 | A |
2796065 | Kapp | Jun 1957 | A |
3073311 | Tibbs et al. | Jan 1963 | A |
3100489 | Bagley | Aug 1963 | A |
3372288 | Wigington | Mar 1968 | A |
3459187 | Pallotta | Aug 1969 | A |
3643663 | Sutter | Feb 1972 | A |
3648001 | Anderson et al. | Mar 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3678229 | Osika | Jul 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3763726 | Hildebrand | Oct 1973 | A |
3779918 | Ikeda et al. | Dec 1973 | A |
3801766 | Morrison, Jr. | Apr 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3863339 | Reaney et al. | Feb 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3875945 | Friedman | Apr 1975 | A |
3897786 | Garnett et al. | Aug 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4016881 | Rioux et al. | Apr 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4076028 | Simmons | Feb 1978 | A |
4080820 | Allen | Mar 1978 | A |
4088134 | Mazzariello | May 1978 | A |
D249549 | Pike | Sep 1978 | S |
4112950 | Pike | Sep 1978 | A |
4127222 | Adams | Nov 1978 | A |
4128099 | Bauer | Dec 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4187420 | Piber | Feb 1980 | A |
4200104 | Harris | Apr 1980 | A |
4233734 | Bies | Nov 1980 | A |
4236470 | Stenson | Dec 1980 | A |
4274413 | Hahn et al. | Jun 1981 | A |
4300564 | Furihata | Nov 1981 | A |
4311145 | Esty et al. | Jan 1982 | A |
D263020 | Rau, III | Feb 1982 | S |
4315510 | Kihn | Feb 1982 | A |
4370980 | Lottick | Feb 1983 | A |
4375218 | DiGeronimo | Mar 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4418692 | Guay | Dec 1983 | A |
4443935 | Zamba et al. | Apr 1984 | A |
4452246 | Bader et al. | Jun 1984 | A |
4470786 | Sano et al. | Sep 1984 | A |
4492231 | Auth | Jan 1985 | A |
4493320 | Treat | Jan 1985 | A |
4503855 | Maslanka | Mar 1985 | A |
4506669 | Blake, III | Mar 1985 | A |
4509518 | McGarry et al. | Apr 1985 | A |
4513271 | Reisem | Apr 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4619258 | Pool | Oct 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4644950 | Valli | Feb 1987 | A |
4655215 | Pike | Apr 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4674499 | Pao | Jun 1987 | A |
4685459 | Xoch et al. | Aug 1987 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4754892 | Retief | Jul 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
4805616 | Pao | Feb 1989 | A |
4827929 | Hodge | May 1989 | A |
4829313 | Taggart | May 1989 | A |
4846171 | Kauphusman et al. | Jul 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4890610 | Kirwan, Sr. et al. | Jan 1990 | A |
4938761 | Ensslin | Jul 1990 | A |
4947009 | Osika et al. | Aug 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5026371 | Rydell et al. | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047046 | Bodoia | Sep 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5085659 | Rydell | Feb 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5100430 | Avellanet et al. | Mar 1992 | A |
5108392 | Spingler | Apr 1992 | A |
5112343 | Thornton | May 1992 | A |
5116332 | Lottick | May 1992 | A |
5122139 | Sutter | Jun 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5151978 | Bronikowski et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250063 | Abidin et al. | Oct 1993 | A |
5258001 | Corman | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5269804 | Bales et al. | Dec 1993 | A |
D343453 | Noda | Jan 1994 | S |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281220 | Blake, III | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
5336220 | Ryan et al. | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344424 | Roberts et al. | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5359993 | Slater et al. | Nov 1994 | A |
5366476 | Noda | Nov 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
D354564 | Medema | Jan 1995 | S |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5395360 | Manoukian | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5409763 | Serizawa et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5449480 | Kuriya et al. | Sep 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5454809 | Janssen | Oct 1995 | A |
5454823 | Richardson et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain | Oct 1995 | A |
5461765 | Linden et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480406 | Nolan et al. | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5493899 | Beck et al. | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Sharpe et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5512721 | Young et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5528833 | Sakuma | Jun 1996 | A |
5529067 | Larsen et al. | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5549604 | Sutcu et al. | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569241 | Edwardds | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5575806 | Nakao et al. | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579781 | Cooke | Dec 1996 | A |
5582611 | Tsukagoshi et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5591181 | Stone et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5638003 | Hall | Jun 1997 | A |
5639403 | Ida et al. | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5655650 | Naitou | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5662667 | Knodel | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5674229 | Tovey et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690652 | Wurster et al. | Nov 1997 | A |
5690653 | Richardson et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5693920 | Maeda | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5759188 | Yoon | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762609 | Benaron et al. | Jun 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766196 | Griffiths | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5772655 | Bauer et al. | Jun 1998 | A |
5772670 | Brosa | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5776156 | Shikhman | Jul 1998 | A |
5779646 | Koblish et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5779727 | Orejola | Jul 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5792137 | Carr et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5810805 | Sutcu et al. | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5814054 | Kortenbach et al. | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5824978 | Karasik et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5827548 | Lavallee et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5851214 | Larsen et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5859527 | Cook | Jan 1999 | A |
5860976 | Billings et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5876412 | Piraka | Mar 1999 | A |
5882567 | Cavallaro et al. | Mar 1999 | A |
D408018 | McNaughton | Apr 1999 | S |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5897563 | Yoon et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908432 | Pan | Jun 1999 | A |
5911719 | Eggers | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921916 | Aeikens et al. | Jul 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5925043 | Kumar et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5938589 | Wako et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5944718 | Dafforn et al. | Aug 1999 | A |
5951545 | Schilling et al. | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5954733 | Yoon | Sep 1999 | A |
5957923 | Hahnen et al. | Sep 1999 | A |
5957937 | Yoon | Sep 1999 | A |
5960544 | Beyers | Oct 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5964758 | Dresden | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5976132 | Morris | Nov 1999 | A |
5984932 | Yoon | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5993467 | Yoon | Nov 1999 | A |
5997565 | Inoue | Dec 1999 | A |
6004332 | Yoon et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6021693 | Feng-Sing | Feb 2000 | A |
6024741 | Williamson et al. | Feb 2000 | A |
6024743 | Edwards | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6059782 | Novak et al. | May 2000 | A |
6066139 | Ryan et al. | May 2000 | A |
6071283 | Nardella et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6077287 | Taylor et al. | Jun 2000 | A |
6080180 | Yoon et al. | Jun 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6086601 | Yoon | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6106542 | Toybin et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6122549 | Sharkey et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6126665 | Yoon | Oct 2000 | A |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6143005 | Yoon et al. | Nov 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6171316 | Kovac et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174310 | Kirwan, Jr. | Jan 2001 | B1 |
6178628 | Clemens et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6190400 | Vandemoer et al. | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6217602 | Redmon | Apr 2001 | B1 |
6217615 | Sioshansi et al. | Apr 2001 | B1 |
6221039 | Durgin et al. | Apr 2001 | B1 |
6221069 | Daikuzono | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6224614 | Yoon | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6248124 | Pedros et al. | Jun 2001 | B1 |
6248944 | Ito | Jun 2001 | B1 |
6261307 | Yoon et al. | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6298550 | Kirwan | Oct 2001 | B1 |
6302424 | Gisinger et al. | Oct 2001 | B1 |
6309404 | Krzyzanowski | Oct 2001 | B1 |
6319262 | Bates et al. | Nov 2001 | B1 |
6319451 | Brune | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6322580 | Kanner | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
D453923 | Olson | Feb 2002 | S |
6345532 | Coudray et al. | Feb 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
D454951 | Bon | Mar 2002 | S |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6358259 | Swain et al. | Mar 2002 | B1 |
6358268 | Hunt et al. | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6387094 | Eitenmuller | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458125 | Cosmescu | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458129 | Scarfi | Oct 2002 | B2 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6471696 | Berube et al. | Oct 2002 | B1 |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6506196 | Laufer | Jan 2003 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514215 | Ouchi | Feb 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517539 | Smith et al. | Feb 2003 | B1 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6545239 | Spedale et al. | Apr 2003 | B2 |
6558385 | McClurken | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6569105 | Kortenbach et al. | May 2003 | B1 |
6582450 | Ouchi | Jun 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6605790 | Yoshida | Aug 2003 | B2 |
6616654 | Mollenauer | Sep 2003 | B2 |
6616658 | Ineson | Sep 2003 | B2 |
6616661 | Wellman et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6620184 | De Laforcade et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6638287 | Danitz et al. | Oct 2003 | B2 |
6641595 | Moran et al. | Nov 2003 | B1 |
6652514 | Ellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660072 | Chatterjee | Dec 2003 | B2 |
6663639 | Laufer et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6673092 | Bacher | Jan 2004 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6676676 | Danitz et al. | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6693246 | Rudolph et al. | Feb 2004 | B1 |
6695840 | Schulze | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6723092 | Brown et al. | Apr 2004 | B2 |
6726068 | Miller | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6726694 | Blatter et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6733501 | Levine | May 2004 | B2 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6756553 | Yamaguchi et al. | Jun 2004 | B1 |
6757977 | Dambal et al. | Jul 2004 | B2 |
D493888 | Reschke | Aug 2004 | S |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773432 | Clayman et al. | Aug 2004 | B1 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6773441 | Laufer et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6786905 | Swanson et al. | Sep 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6800825 | Sasaki et al. | Oct 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6818000 | Muller et al. | Nov 2004 | B2 |
6818007 | Dampney et al. | Nov 2004 | B1 |
6821285 | Laufer et al. | Nov 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6835200 | Laufer et al. | Dec 2004 | B2 |
6857357 | Fujii | Feb 2005 | B2 |
D502994 | Blake, III | Mar 2005 | S |
6860880 | Treat et al. | Mar 2005 | B2 |
6887240 | Lands et al. | May 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6914201 | Van Vooren et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6934134 | Mori et al. | Aug 2005 | B2 |
6936061 | Sasaki | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
6942662 | Goble et al. | Sep 2005 | B2 |
6943311 | Miyako | Sep 2005 | B2 |
6951559 | Greep | Oct 2005 | B1 |
6953430 | Kodooka | Oct 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6976492 | Ingle et al. | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979786 | Aukland et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6987244 | Bauer | Jan 2006 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7001381 | Harano et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7022126 | De Canniere | Apr 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087051 | Bourne et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090689 | Nagase et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7107124 | Green | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
7145757 | Shea et al. | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7156842 | Sartor et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7166106 | Bartel et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
D538932 | Malik | Mar 2007 | S |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7207990 | Lands et al. | Apr 2007 | B2 |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al | May 2007 | S |
7223264 | Daniel et al. | May 2007 | B2 |
7223265 | Keppel | May 2007 | B2 |
D545432 | Watanabe | Jun 2007 | S |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
D547154 | Lee | Jul 2007 | S |
7238184 | Megerman et al. | Jul 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7244257 | Podjahsky et al. | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7248944 | Green | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7291161 | Hooven | Nov 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7314471 | Holman | Jan 2008 | B2 |
7318823 | Sharps et al. | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7338526 | Steinberg | Mar 2008 | B2 |
7342754 | Fitzgerald et al. | Mar 2008 | B2 |
7344268 | Jhigamian | Mar 2008 | B2 |
D567943 | Moses et al. | Apr 2008 | S |
7354440 | Truckal et al. | Apr 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
7377920 | Buysse et al. | May 2008 | B2 |
7384420 | Dycus et al. | Jun 2008 | B2 |
7384421 | Hushka | Jun 2008 | B2 |
7396265 | Darley et al. | Jul 2008 | B2 |
7396336 | Orszulak et al. | Jul 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7425835 | Eisele | Sep 2008 | B2 |
7431721 | Paton et al. | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7442193 | Shields et al. | Oct 2008 | B2 |
7442194 | Dumbauld et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
D582038 | Swoyer et al. | Dec 2008 | S |
7458972 | Keppel | Dec 2008 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7481810 | Dumbauld et al. | Jan 2009 | B2 |
7487780 | Hooven | Feb 2009 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7491202 | Odom et al. | Feb 2009 | B2 |
7500975 | Cunningham et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513898 | Johnson et al. | Apr 2009 | B2 |
7517351 | Culp et al. | Apr 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7549995 | Schultz | Jun 2009 | B2 |
7553312 | Tetzlaff et al. | Jun 2009 | B2 |
7556633 | Lindsay | Jul 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7588565 | Marchitto et al. | Sep 2009 | B2 |
7594916 | Weinberg | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7621910 | Sugi | Nov 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
7651493 | Arts et al. | Jan 2010 | B2 |
7651494 | McClurken et al. | Jan 2010 | B2 |
7655007 | Baily | Feb 2010 | B2 |
7668597 | Engmark et al. | Feb 2010 | B2 |
7678111 | Mulier et al. | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7686827 | Hushka | Mar 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
7717115 | Barrett et al. | May 2010 | B2 |
7717904 | Suzuki et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
7731717 | Odom et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7749217 | Podhajsky | Jul 2010 | B2 |
7753908 | Swanson | Jul 2010 | B2 |
7753909 | Chapman et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766910 | Hixson et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7776036 | Schechter et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780662 | Bahney | Aug 2010 | B2 |
7789878 | Dumbauld et al. | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7799028 | Schechter et al. | Sep 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
8092451 | Schechter et al. | Jan 2012 | B2 |
8133254 | Dumbauld et al. | Mar 2012 | B2 |
8162965 | Reschke et al. | Apr 2012 | B2 |
8187273 | Kerr et al. | May 2012 | B2 |
D661394 | Romero et al. | Jun 2012 | S |
8215182 | Artale | Jul 2012 | B2 |
8257352 | Lawes et al. | Sep 2012 | B2 |
8266783 | Brandt et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8287536 | Mueller et al. | Oct 2012 | B2 |
8292067 | Chowaniec et al. | Oct 2012 | B2 |
8292886 | Kerr | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8343150 | Artale | Jan 2013 | B2 |
8343151 | Siebrecht et al. | Jan 2013 | B2 |
8348948 | Bahney | Jan 2013 | B2 |
8357159 | Romero | Jan 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8409246 | Kerr et al. | Apr 2013 | B2 |
8409247 | Garrison et al. | Apr 2013 | B2 |
8425511 | Olson | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8430877 | Kerr et al. | Apr 2013 | B2 |
8439911 | Mueller | May 2013 | B2 |
8439913 | Horner et al. | May 2013 | B2 |
8469991 | Kerr | Jun 2013 | B2 |
8469992 | Roy et al. | Jun 2013 | B2 |
8480671 | Mueller | Jul 2013 | B2 |
8491624 | Kerr et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8491626 | Roy et al. | Jul 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8512371 | Kerr et al. | Aug 2013 | B2 |
8641712 | Couture | Feb 2014 | B2 |
8641713 | Johnson et al. | Feb 2014 | B2 |
8652135 | Nau | Feb 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
20010037109 | Yamauchi et al. | Nov 2001 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130653 | Sixto, Jr. et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030171747 | Kanehira et al. | Sep 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236325 | Bonora | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040073238 | Makower | Apr 2004 | A1 |
20040073256 | Marchitto et al. | Apr 2004 | A1 |
20040115296 | Duffin | Jun 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040210282 | Flock et al. | Oct 2004 | A1 |
20040224590 | Rawa et al. | Nov 2004 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040249411 | Suzuki | Dec 2004 | A1 |
20040250419 | Sremcich et al. | Dec 2004 | A1 |
20040260281 | Baxter, III et al. | Dec 2004 | A1 |
20050004564 | Wham et al. | Jan 2005 | A1 |
20050004569 | Witt et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050059858 | Frith et al. | Mar 2005 | A1 |
20050059934 | Wenchell et al. | Mar 2005 | A1 |
20050096645 | Wellman et al. | May 2005 | A1 |
20050101952 | Lands et al. | May 2005 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050197659 | Bahney | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050283148 | Janssen et al. | Dec 2005 | A1 |
20060052779 | Hammill | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079891 | Arts et al. | Apr 2006 | A1 |
20060079933 | Hushka et al. | Apr 2006 | A1 |
20060084973 | Hushka | Apr 2006 | A1 |
20060116675 | McClurken et al. | Jun 2006 | A1 |
20060167452 | Moses et al. | Jul 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20060259036 | Tetzlaff et al. | Nov 2006 | A1 |
20060264922 | Sartor et al. | Nov 2006 | A1 |
20060283093 | Petrovic et al. | Dec 2006 | A1 |
20060287641 | Perlin | Dec 2006 | A1 |
20070016182 | Lipson et al. | Jan 2007 | A1 |
20070016187 | Weinberg et al. | Jan 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070060919 | Isaacson et al. | Mar 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070074807 | Guerra | Apr 2007 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070078459 | Johnson et al. | Apr 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070142834 | Dumbauld | Jun 2007 | A1 |
20070173804 | Wham et al. | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070198011 | Sugita | Aug 2007 | A1 |
20070213712 | Buysse et al. | Sep 2007 | A1 |
20070255279 | Buysse et al. | Nov 2007 | A1 |
20070260235 | Podhajsky | Nov 2007 | A1 |
20070260238 | Guerra | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20080004616 | Patrick | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080033428 | Artale et al. | Feb 2008 | A1 |
20080039831 | Odom et al. | Feb 2008 | A1 |
20080039835 | Johnson et al. | Feb 2008 | A1 |
20080045947 | Johnson et al. | Feb 2008 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080082100 | Orton et al. | Apr 2008 | A1 |
20080091189 | Carlton | Apr 2008 | A1 |
20080125767 | Blaha | May 2008 | A1 |
20080125797 | Kelleher | May 2008 | A1 |
20080195093 | Couture et al. | Aug 2008 | A1 |
20080208289 | Darley et al. | Aug 2008 | A1 |
20080215050 | Bakos | Sep 2008 | A1 |
20080215051 | Buysse et al. | Sep 2008 | A1 |
20080234701 | Morales et al. | Sep 2008 | A1 |
20080243120 | Lawes et al. | Oct 2008 | A1 |
20080249527 | Couture | Oct 2008 | A1 |
20080294222 | Schechter | Nov 2008 | A1 |
20080296347 | Shelton, IV et al. | Dec 2008 | A1 |
20080300613 | Shelton, IV et al. | Dec 2008 | A1 |
20080312653 | Arts et al. | Dec 2008 | A1 |
20080319442 | Unger et al. | Dec 2008 | A1 |
20090012520 | Hixson et al. | Jan 2009 | A1 |
20090015832 | Popovic et al. | Jan 2009 | A1 |
20090024126 | Artale et al. | Jan 2009 | A1 |
20090036881 | Artale et al. | Feb 2009 | A1 |
20090036899 | Carlton et al. | Feb 2009 | A1 |
20090043304 | Tetzlaff et al. | Feb 2009 | A1 |
20090048596 | Shields et al. | Feb 2009 | A1 |
20090062794 | Buysse et al. | Mar 2009 | A1 |
20090065565 | Cao | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090082767 | Unger et al. | Mar 2009 | A1 |
20090082769 | Unger et al. | Mar 2009 | A1 |
20090088738 | Guerra et al. | Apr 2009 | A1 |
20090088739 | Hushka et al. | Apr 2009 | A1 |
20090088740 | Guerra et al. | Apr 2009 | A1 |
20090088741 | Hushka et al. | Apr 2009 | A1 |
20090088744 | Townsend | Apr 2009 | A1 |
20090088745 | Hushka et al. | Apr 2009 | A1 |
20090088746 | Hushka et al. | Apr 2009 | A1 |
20090088747 | Hushka et al. | Apr 2009 | A1 |
20090088748 | Guerra et al. | Apr 2009 | A1 |
20090088749 | Hushka et al. | Apr 2009 | A1 |
20090088750 | Hushka et al. | Apr 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090112206 | Dumbauld et al. | Apr 2009 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090149853 | Shields et al. | Jun 2009 | A1 |
20090149854 | Cunningham et al. | Jun 2009 | A1 |
20090157071 | Wham et al. | Jun 2009 | A1 |
20090157072 | Wham et al. | Jun 2009 | A1 |
20090157075 | Wham et al. | Jun 2009 | A1 |
20090171350 | Dycus et al. | Jul 2009 | A1 |
20090171353 | Johnson et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090182329 | Dycus | Jul 2009 | A1 |
20090187188 | Guerra et al. | Jul 2009 | A1 |
20090198233 | Chojin | Aug 2009 | A1 |
20090204114 | Odom | Aug 2009 | A1 |
20090209957 | Schmaltz et al. | Aug 2009 | A1 |
20090209960 | Chojin | Aug 2009 | A1 |
20090234354 | Johnson et al. | Sep 2009 | A1 |
20090248021 | Mckenna | Oct 2009 | A1 |
20090261804 | Mckenna et al. | Oct 2009 | A1 |
20090292282 | Dycus | Nov 2009 | A9 |
20090306660 | Johnson et al. | Dec 2009 | A1 |
20100016857 | Mckenna et al. | Jan 2010 | A1 |
20100023009 | Moses et al. | Jan 2010 | A1 |
20100036375 | Regadas | Feb 2010 | A1 |
20100042100 | Tetzlaff et al. | Feb 2010 | A1 |
20100042140 | Cunningham | Feb 2010 | A1 |
20100042142 | Cunningham | Feb 2010 | A1 |
20100042143 | Cunningham | Feb 2010 | A1 |
20100049187 | Carlton et al. | Feb 2010 | A1 |
20100057081 | Hanna | Mar 2010 | A1 |
20100057082 | Hanna | Mar 2010 | A1 |
20100057083 | Hanna | Mar 2010 | A1 |
20100057084 | Hanna | Mar 2010 | A1 |
20100063500 | Muszala | Mar 2010 | A1 |
20100069903 | Allen, IV et al. | Mar 2010 | A1 |
20100069904 | Cunningham | Mar 2010 | A1 |
20100069953 | Cunningham et al. | Mar 2010 | A1 |
20100076427 | Heard | Mar 2010 | A1 |
20100076430 | Romero | Mar 2010 | A1 |
20100076431 | Allen, IV | Mar 2010 | A1 |
20100076432 | Horner | Mar 2010 | A1 |
20100087816 | Roy | Apr 2010 | A1 |
20100087818 | Cunningham | Apr 2010 | A1 |
20100094271 | Ward et al. | Apr 2010 | A1 |
20100094286 | Chojin | Apr 2010 | A1 |
20100094287 | Cunningham et al. | Apr 2010 | A1 |
20100100122 | Hinton | Apr 2010 | A1 |
20100130971 | Baily | May 2010 | A1 |
20100130977 | Garrison et al. | May 2010 | A1 |
20100145334 | Olson et al. | Jun 2010 | A1 |
20100145335 | Johnson et al. | Jun 2010 | A1 |
20100179539 | Nau, Jr. | Jul 2010 | A1 |
20100179543 | Johnson et al. | Jul 2010 | A1 |
20100179545 | Twomey et al. | Jul 2010 | A1 |
20100179546 | Cunningham | Jul 2010 | A1 |
20100179547 | Cunningham et al. | Jul 2010 | A1 |
20100204697 | Dumbauld et al. | Aug 2010 | A1 |
20100204698 | Chapman et al. | Aug 2010 | A1 |
20100217258 | Floume et al. | Aug 2010 | A1 |
20100249769 | Nau, Jr. et al. | Sep 2010 | A1 |
20100249776 | Kerr | Sep 2010 | A1 |
20100256635 | McKenna et al. | Oct 2010 | A1 |
20100280511 | Rachlin et al. | Nov 2010 | A1 |
20100331839 | Schechter et al. | Dec 2010 | A1 |
20110034918 | Reschke | Feb 2011 | A1 |
20110046623 | Reschke | Feb 2011 | A1 |
20110054468 | Dycus | Mar 2011 | A1 |
20110054471 | Gerhardt et al. | Mar 2011 | A1 |
20110060334 | Brandt et al. | Mar 2011 | A1 |
20110060335 | Harper et al. | Mar 2011 | A1 |
20110071523 | Dickhans | Mar 2011 | A1 |
20110073246 | Brandt et al. | Mar 2011 | A1 |
20110073594 | Bonn | Mar 2011 | A1 |
20110077648 | Lee et al. | Mar 2011 | A1 |
20110118736 | Harper et al. | May 2011 | A1 |
20110190653 | Harper | Aug 2011 | A1 |
20110190765 | Chojin | Aug 2011 | A1 |
20110193608 | Krapohl | Aug 2011 | A1 |
20110218530 | Reschke | Sep 2011 | A1 |
20110230880 | Chojin et al. | Sep 2011 | A1 |
20110251605 | Hoarau et al. | Oct 2011 | A1 |
20110251606 | Kerr | Oct 2011 | A1 |
20110251611 | Horner et al. | Oct 2011 | A1 |
20110270245 | Horner et al. | Nov 2011 | A1 |
20110270250 | Horner et al. | Nov 2011 | A1 |
20110270251 | Horner et al. | Nov 2011 | A1 |
20110276048 | Kerr et al. | Nov 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110295251 | Garrison | Dec 2011 | A1 |
20110295313 | Kerr | Dec 2011 | A1 |
20110301600 | Garrison et al. | Dec 2011 | A1 |
20110301604 | Horner et al. | Dec 2011 | A1 |
20110319886 | Chojin | Dec 2011 | A1 |
20110319888 | Mueller | Dec 2011 | A1 |
20120022532 | Garrison | Jan 2012 | A1 |
20120041438 | Nau et al. | Feb 2012 | A1 |
20120046662 | Gilbert | Feb 2012 | A1 |
20120059372 | Johnson | Mar 2012 | A1 |
20120059374 | Johnson et al. | Mar 2012 | A1 |
20120059375 | Couture et al. | Mar 2012 | A1 |
20120059408 | Mueller | Mar 2012 | A1 |
20120059409 | Reschke et al. | Mar 2012 | A1 |
20120083785 | Roy et al. | Apr 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
2 104 423 | Feb 1994 | CA |
2 520 413 | Mar 2007 | CA |
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
2514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
3423356 | Jan 1986 | DE |
3612646 | Apr 1987 | DE |
3627221 | Feb 1988 | DE |
8712328 | Mar 1988 | DE |
4303882 | Aug 1994 | DE |
4403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
10031773 | Nov 2001 | DE |
19946527 | Dec 2001 | DE |
10045375 | Apr 2002 | DE |
20121161 | Apr 2002 | DE |
10 2004 026179 | Dec 2005 | DE |
20 2007 009318 | Aug 2007 | DE |
20 2007 009165 | Oct 2007 | DE |
20 2007 009317 | Oct 2007 | DE |
20 2007 016233 | Mar 2008 | DE |
19738457 | Jan 2009 | DE |
10 2008 018406 | Jul 2009 | DE |
0364216 | Apr 1990 | EP |
0467501 | Jan 1992 | EP |
0509670 | Oct 1992 | EP |
0518230 | Dec 1992 | EP |
0541930 | May 1993 | EP |
0306123 | Aug 1993 | EP |
0572131 | Dec 1993 | EP |
0584787 | Mar 1994 | EP |
0589453 | Mar 1994 | EP |
0589555 | Mar 1994 | EP |
0623316 | Nov 1994 | EP |
0624348 | Nov 1994 | EP |
0650701 | May 1995 | EP |
0694290 | Mar 1996 | EP |
0717966 | Jun 1996 | EP |
0754437 | Mar 1997 | EP |
0517243 | Sep 1997 | EP |
0853922 | Jul 1998 | EP |
0875209 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0887046 | Jan 1999 | EP |
0923907 | Jun 1999 | EP |
0950378 | Oct 1999 | EP |
0986990 | Mar 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1025807 | Oct 2000 | EP |
1034746 | Oct 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Dec 2001 | EP |
1177771 | Feb 2002 | EP |
1278007 | Jan 2003 | EP |
1301135 | Apr 2003 | EP |
1330991 | Jul 2003 | EP |
1486177 | Jun 2004 | EP |
1472984 | Nov 2004 | EP |
0774232 | Jan 2005 | EP |
1527747 | May 2005 | EP |
1530952 | May 2005 | EP |
1532932 | May 2005 | EP |
1535581 | Jun 2005 | EP |
1281878 | Oct 2005 | EP |
1609430 | Dec 2005 | EP |
1201192 | Feb 2006 | EP |
1632192 | Mar 2006 | EP |
1642543 | Apr 2006 | EP |
1645238 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
1649821 | Apr 2006 | EP |
1707143 | Oct 2006 | EP |
1767163 | Mar 2007 | EP |
1769765 | Apr 2007 | EP |
1769766 | Apr 2007 | EP |
1785097 | May 2007 | EP |
1785098 | May 2007 | EP |
1785101 | May 2007 | EP |
1810625 | Jul 2007 | EP |
1810628 | Jul 2007 | EP |
1842500 | Oct 2007 | EP |
1878400 | Jan 2008 | EP |
1929970 | Jun 2008 | EP |
1990019 | Nov 2008 | EP |
1683496 | Dec 2008 | EP |
1997438 | Dec 2008 | EP |
1997439 | Dec 2008 | EP |
1527744 | Feb 2009 | EP |
2206474 | Jul 2010 | EP |
623316 | May 1949 | GB |
1490585 | Nov 1977 | GB |
2214430 | Jun 1989 | GB |
2213416 | Aug 1989 | GB |
61-501068 | Sep 1984 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
5-40112 | Feb 1993 | JP |
6-030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-511401 | Dec 1994 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
8-317936 | Mar 1996 | JP |
08056955 | Mar 1996 | JP |
8-289895 | May 1996 | JP |
08252263 | Oct 1996 | JP |
8-317934 | Dec 1996 | JP |
9-000538 | Jan 1997 | JP |
09010223 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
10-000195 | Jan 1998 | JP |
10-24051 | Jan 1998 | JP |
11-070124 | May 1998 | JP |
10-155798 | Jun 1998 | JP |
2000-102545 | Sep 1998 | JP |
11-47149 | Feb 1999 | JP |
11-47150 | Feb 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11244298 | Sep 1999 | JP |
2000-135222 | May 2000 | JP |
2000-342599 | Dec 2000 | JP |
2000-350732 | Dec 2000 | JP |
2001-008944 | Jan 2001 | JP |
2001-29355 | Feb 2001 | JP |
2001-029356 | Feb 2001 | JP |
2001-128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2001-3400 | Nov 2001 | JP |
2002-528166 | Mar 2002 | JP |
2002-136525 | May 2002 | JP |
2003-116871 | Apr 2003 | JP |
2003-175052 | Jun 2003 | JP |
2003-245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2005-152663 | Jun 2005 | JP |
2005-253789 | Sep 2005 | JP |
2005-312807 | Oct 2005 | JP |
2006-015078 | Jan 2006 | JP |
2006-501939 | Jan 2006 | JP |
2006-095316 | Apr 2006 | JP |
2011-125195 | Jun 2011 | JP |
401367 | Nov 1974 | SU |
WO 8900757 | Jan 1989 | WO |
WO 9204873 | Apr 1992 | WO |
WO 9206642 | Apr 1992 | WO |
WO 9319681 | Oct 1993 | WO |
WO 9321845 | Nov 1993 | WO |
WO 9408524 | Apr 1994 | WO |
WO 9420025 | Sep 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9507662 | Mar 1995 | WO |
WO 9515124 | Jun 1995 | WO |
WO 9520360 | Aug 1995 | WO |
WO 9605776 | Feb 1996 | WO |
WO 9611635 | Apr 1996 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9613218 | Sep 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9718768 | May 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9814124 | Apr 1998 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9831290 | Jul 1998 | WO |
WO 9843264 | Oct 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9903414 | Jan 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9940857 | Aug 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 9966850 | Dec 1999 | WO |
WO 0024330 | May 2000 | WO |
WO 0024331 | May 2000 | WO |
WO 0033753 | Jun 2000 | WO |
WO 0036986 | Jun 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0047124 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0059392 | Oct 2000 | WO |
WO 0101847 | Jan 2001 | WO |
WO 0115614 | Mar 2001 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0182807 | Apr 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 0207627 | Jan 2002 | WO |
WO 0245589 | Jun 2002 | WO |
WO 02067798 | Sep 2002 | WO |
WO 02080783 | Oct 2002 | WO |
WO 02080784 | Oct 2002 | WO |
WO 02080785 | Oct 2002 | WO |
WO 02080786 | Oct 2002 | WO |
WO 02080793 | Oct 2002 | WO |
WO 02080794 | Oct 2002 | WO |
WO 02080795 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 02080798 | Oct 2002 | WO |
WO 02080799 | Oct 2002 | WO |
WO 02081170 | Oct 2002 | WO |
WO 03061500 | Jul 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03101311 | Dec 2003 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004032776 | Apr 2004 | WO |
WO 2004032777 | Apr 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004073488 | Sep 2004 | WO |
WO 2004073490 | Sep 2004 | WO |
WO 2004073753 | Sep 2004 | WO |
WO 2004082495 | Sep 2004 | WO |
WO 2004098383 | Nov 2004 | WO |
WO 2004103156 | Dec 2004 | WO |
WO 2005004734 | Jan 2005 | WO |
WO 2005004735 | Jan 2005 | WO |
WO 2005009255 | Feb 2005 | WO |
WO 2005048809 | Jun 2005 | WO |
WO 2005050151 | Jun 2005 | WO |
WO 2005110264 | Nov 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2008040483 | Apr 2008 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008045350 | Apr 2008 | WO |
WO 2008112147 | Sep 2008 | WO |
WO 2009005850 | Jan 2009 | WO |
WO 2009039179 | Mar 2009 | WO |
WO 2009039510 | Mar 2009 | WO |
WO 2011018154 | Feb 2011 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher. |
U.S. Appl. No. 13/708,335, filed Dec. 7, 2012, Dumbauld. |
U.S. Appl. No. 13/731,674, filed Dec. 31, 2012, Siebrecht. |
U.S. Appl. No. 13/833,823, filed Mar. 15, 2013, Garrison. |
U.S. Appl. No. 13/838,945, filed Mar. 15, 2013, Stoddard. |
U.S. Appl. No. 13/903,091, filed May 28, 2013, Nau. |
U.S. Appl. No. 13/903,116, filed May 28, 2013, Nau. |
U.S. Appl. No. 13/903,223, filed May 28, 2013, Payne. |
U.S. Appl. No. 14/017,572, filed Sep. 4, 2013, Arya. |
U.S. Appl. No. 14/019,031, filed Sep. 5, 2013, Garrison. |
U.S. Appl. No. 14/019,094, filed Sep. 5, 2013, Garrison. |
U.S. Appl. No. 14/032,486, filed Sep. 20, 2013, Kendrick. |
U.S. Appl. No. 14/035,423, filed Sep. 24, 2013, Garrison. |
U.S. Appl. No. 14/037,772, filed Sep. 26, 2013, Frushour. |
U.S. Appl. No. 14/041,995, filed Sep. 30, 2013, Kendrick. |
U.S. Appl. No. 14/042,947, filed Oct. 1, 2013, Craig. |
U.S. Appl. No. 14/043,039, filed Oct. 1, 2013, Rusin. |
U.S. Appl. No. 14/043,322, filed Oct. 1, 2013, O'Neill. |
U.S. Appl. No. 14/047,474, filed Oct. 7, 2013, Mueller. |
U.S. Appl. No. 14/050,593, filed Oct. 10, 2013, Plaven. |
U.S. Appl. No. 14/052,827, filed Oct. 14, 2013, Nau. |
U.S. Appl. No. 14/052,856, filed Oct. 14, 2013, Latimer. |
U.S. Appl. No. 14/052,871, filed Oct. 14, 2013, Kappus. |
U.S. Appl. No. 14/054,173, filed Oct. 15, 2013, Payne. |
U.S. Appl. No. 14/054,573, filed Oct. 15, 2013, Harper. |
U.S. Appl. No. 14/064,310, filed Oct. 28, 2013, Reschke. |
U.S. Appl. No. 14/064,702, filed Oct. 28, 2013, Townsend. |
U.S. Appl. No. 14/065,644, filed Oct. 29, 2013, Reschke. |
U.S. Appl. No. 14/080,564, filed Nov. 14, 2013, Lawes. |
U.S. Appl. No. 14/080,581, filed Nov. 14, 2013, Kerr. |
U.S. Appl. No. 14/083,696, filed Nov. 19, 2013, Horner. |
U.S. Appl. No. 14/086,399, filed Nov. 21, 2013, Allen. |
U.S. Appl. No. 14/091,505, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/091,521, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/091,532, filed Nov. 27, 2013, Garrison. |
U.S. Appl. No. 14/098,953, filed Dec. 6, 2013, Cunningham. |
U.S. Appl. No. 14/100,237, filed Dec. 9, 2013, Reschke. |
U.S. Appl. No. 14/103,971, filed Dec. 12, 2013, Roy. |
U.S. Appl. No. 14/105,374, filed Dec. 13, 2013, Moua. |
U.S. Appl. No. 14/109,459, filed Dec. 17, 2013, Hoarau. |
U.S. Appl. No. 14/149,343, filed Jan. 7, 2014, Schmaltz. |
U.S. Appl. No. 14/152,618, filed Jan. 10, 2014, Artale. |
U.S. Appl. No. 14/152,690, filed Jan. 10, 2014, Hart. |
U.S. Appl. No. 14/153,346, filed Jan. 13, 2014, Collings. |
U.S. Appl. No. 14/162,192, filed Jan. 23, 2014, Garrison. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000. |
Int'l Search Report EP 98957771 dated Aug. 9, 2001. |
Int'l Search Report EP 98957773 dated Aug. 1, 2001. |
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. |
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005. |
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005. |
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005. |
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005. |
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007. |
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008. |
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009. |
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005. |
Int'l Search Report EP 05013894 dated Feb. 3, 2006. |
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005. |
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006. |
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005. |
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005. |
Int'l Search Report EP 05019429.9 dated May 6, 2008. |
Int'l Search Report EP 05020532 dated Jan. 10, 2006. |
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006. |
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006. |
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006. |
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006. |
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006. |
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006. |
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006. |
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006. |
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006. |
Int'l Search Report EP 06005185.1 dated May 10, 2006. |
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006. |
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009. |
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006. |
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006. |
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007. |
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007. |
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007. |
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007. |
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007. |
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007. |
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007. |
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007. |
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007. |
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007. |
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007. |
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007. |
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007. |
Int'l Search Report EP 07 014016 dated Jan. 28, 2008. |
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008. |
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008. |
Int'l Search Report EP 07 016911 dated May 28, 2010. |
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008. |
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008. |
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008. |
Int'l Search Report EP 07 021647.8 dated May 2, 2008. |
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008. |
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008. |
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008. |
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008. |
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009. |
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009. |
Int'l Search Report EP 09 003677.3 dated May 4, 2009. |
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009. |
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009. |
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009. |
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009. |
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009. |
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010. |
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009. |
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009. |
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009. |
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009. |
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009. |
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009. |
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009. |
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009. |
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009. |
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010. |
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010. |
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009. |
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010. |
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010. |
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010. |
Int'l Search Report EP 10 160870,1 dated Aug. 9, 2010. |
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010. |
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999. |
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999. |
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999. |
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. |
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001. |
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001. |
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001. |
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001. |
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002. |
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002. |
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003. |
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003. |
Int'l Search Report PCT/US03/28534dated Dec. 19, 2003. |
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005. |
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004. |
Int'l Search Report PCT/US04/15311 dated Jan. 12, 2005. |
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008. |
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008. |
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008. |
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008. |
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009. |
Number | Date | Country | |
---|---|---|---|
20140155891 A1 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
60722359 | Sep 2005 | US | |
60722213 | Sep 2005 | US | |
60722186 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11540779 | Sep 2006 | US |
Child | 12882304 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12882304 | Sep 2010 | US |
Child | 14172050 | US |