Flexible expandable electrode and method of intraluminal delivery of pulsed power

Information

  • Patent Grant
  • 10314649
  • Patent Number
    10,314,649
  • Date Filed
    Thursday, August 2, 2012
    12 years ago
  • Date Issued
    Tuesday, June 11, 2019
    5 years ago
Abstract
A surgical instrument, such as an electrical ablation device, includes an elongate member having therealong disposed a first electrode extending along an axis. A first expandable portion extends along the axis and defines a first perimeter of the first electrode and has an associated first diameter with respect to the axis. The first expandable portion includes a first framework selectively expandable to transition the first expandable portion from a contracted state to an expanded state. The first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state. When the first framework is expanded, the first diameter is expanded and the first expandable portion is transitioned from the contracted state to the expanded state. When the first framework is contracted, the first diameter is contracted and the first expandable portion is transitioned from the expanded state to the contracted state.
Description
BACKGROUND

Electrical ablation therapy has been used in medicine for the treatment of undesirable tissue, such as, for example, diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths. Apparatuses, systems, and methods for conventional ablation therapies may include electrical ablation therapies, such as, for example, high temperature thermal therapies including, focused ultrasound ablation, radiofrequency (RF) ablation, and interstitial laser coagulation, chemical therapies in which chemical agents are injected into the undesirable tissue to cause ablation, surgical excision, cryotherapy, radiation, photodynamic therapy, Moh's micrographic surgery, topical treatments with 5-fluorouracil, and laser ablation.


Drawbacks of conventional electrical ablation therapies include risk of permanent damage to healthy tissue surrounding undesirable tissue due to exposure to thermal energy and/or lack of controlled energy generated by an electrical ablation device. As such, when undesirable tissue occurs or originates at or near critical structures and surgical resection presents an increased risk of morbidity associated with damage to that critical structure, conventional electrical ablation therapies may be an unsatisfactory alternative. At times, the ability to apply controlled energy to ablate cells within a target zone may be affected by one or more characteristics of the target zone and/or available application positions provided by ablative electrodes. Solutions to address the above issues are often invasive and conflict with optimal surgical outcomes. Accordingly, minimally invasive electrical ablation therapy capable of accurately targeting ablative electrodes to a target site and delivering controlled energy to ablate cells within a target zone while retaining necessary infrastructure of the surrounding tissue is desirable.


SUMMARY

In one general aspect, the various embodiments are directed to an electrical ablation device. One embodiment of the electrical ablation device includes an elongate member having therealong disposed a first electrode extending along an axis. The first electrode has a proximal end configured to couple to an energy source and a surface configured to couple to a tissue treatment region and delivery ablative energy. A first expandable portion extends along the axis and defines a first perimeter of the first electrode and has an associated first diameter with respect to the axis. The first expandable portion includes a first framework comprising at least one first framework member. The first framework is selectively expandable to transition the first expandable portion from a contracted state to an expanded state. The first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state. When the first framework is expanded, the first diameter is expanded and the first expandable portion is transitioned from the contracted state to the expanded state. When the first framework is contracted, the first diameter is contracted and the first expandable portion is transitioned from the expanded state to the contracted state.


In another general aspect, a method of treating tissue using the electrical ablation devices described herein includes delivering the first electrode to a tissue treatment region that includes a biological lumen and expanding the first electrode. The first electrode is contacted to a wall of the lumen proximal to tissue to be treated. Tissue is treated by applying one or more sequences of electrical pulse to the first electrode to induce cell death in the tissue by irreversible electroporation.





FIGURES

The various embodiments of electrical ablation devices, systems, and methods thereof described herein may be better understood by considering the following description in conjunction with the accompanying drawings.



FIG. 1 illustrates an electrical ablation system according to certain embodiments described herein.



FIG. 2 illustrates an embodiment of the handle and elongate member illustrated in FIG. 1 with the expandable portion of the electrode deployed and in an expanded state according to certain embodiments described herein.



FIG. 3 illustrates an electrode disposed along a distal portion of an elongate member wherein the expandable portion is deployed and in an expanded state according to certain embodiments described herein.



FIG. 4 illustrates two electrodes disposed along a distal portion of an elongate member wherein the respective expandable portions are deployed and in expanded states according to certain embodiments described herein.



FIG. 5 illustrates three electrodes disposed along a distal portion of an elongate member wherein respective expandable portions are deployed and in expanded states according to certain embodiments described herein.



FIG. 6 illustrates a flexible portion of an electrode disposed along a distal portion of an elongate member according to certain embodiments described herein.



FIG. 7 illustrates a deployed expandable portion of an electrode in an expanded state according to certain embodiments described herein.



FIG. 8 illustrates a cutaway view of an expandable portion received within a channel defined within a sheath wherein the expandable portion is in a contracted state according to certain embodiments described herein.



FIG. 9 illustrates the expandable portion illustrated in FIG. 8 deployed from the distal end of the sheath and in an expanded state according to certain embodiments described herein.



FIG. 10 illustrates a deployed expandable portion in an expanded state according to certain embodiments described herein.



FIG. 11 illustrates a deployed expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.



FIG. 12 illustrates an expandable portion in an expanded state according to certain embodiments described herein.



FIG. 13 illustrates an expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.



FIG. 14 illustrates the expandable portion illustrated in FIG. 13 in an expanded state according to certain embodiments described herein.



FIG. 15 illustrates an expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.



FIG. 16 illustrates the expandable portion illustrated in FIG. 15 in an expanded state according to certain embodiments described herein.



FIG. 17 illustrates an expandable portion transitioning from a contracted state to an expanded state according to certain embodiments described herein.



FIG. 18 illustrates a deployed expandable portion in a contracted state according to certain embodiments described herein.



FIG. 19 illustrates the expandable portion illustrated in FIG. 18 in an expanded state according to certain embodiments described herein.



FIG. 20 illustrates an additional embodiment of the expandable portion illustrated in FIG. 18 in an expanded state according to certain embodiments described herein.



FIG. 21 illustrates an expandable portion partially deployed and in a contracted state according to certain embodiments described herein.



FIG. 22 illustrates the expandable portion illustrated in FIG. 21 in an expanded state according to certain embodiments described herein.



FIG. 23 illustrates an additional embodiment of the expandable portion illustrated in FIG. 21 and FIG. 22 in an expanded state according to certain embodiments described herein.



FIG. 24 illustrates an expandable portion in an expanded state according to certain embodiments described herein.



FIG. 25 illustrates the expandable portion illustrated in FIG. 24 in a contracted state according to certain embodiments described herein.



FIG. 26 illustrates an electrical ablation device comprising a handle and an elongate member according to certain embodiments described herein.



FIG. 27 illustrates an electrical ablation device comprising a handle and an elongate member according to certain embodiments described herein.



FIGS. 28A-B includes photographs of porcine liver tissues after receiving electrical ablation according to certain embodiments described herein.



FIG. 29 includes a photograph of porcine heart tissue after receiving electrical ablation according to certain embodiments described herein.



FIG. 30 is a graphical representation of a use of the electrical ablation system according to certain embodiments described herein.





DESCRIPTION

The present disclosure relates generally to the field of electrosurgery. In particular, the present disclosure relates to, although not exclusively, electrosurgical devices. More particularly, the present disclosure relates to, although not exclusively, electrical ablation systems, devices, and methods.


This disclosure describes various elements, features, aspects, and advantages of various embodiments of electrical ablation systems, devices, and methods thereof. It is to be understood that certain descriptions of the various embodiments have been simplified to illustrate only those elements, features and aspects that are relevant to a more clear understanding of the disclosed embodiments, while eliminating, for purposes of brevity or clarity, other elements, features and aspects. Any references to “various embodiments,” “certain embodiments,” “some embodiments,” “one embodiment,” or “an embodiment” generally means that a particular element, feature and/or aspect described in the embodiment is included in at least one embodiment. The phrases “in various embodiments,” “in certain embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment” may not refer to the same embodiment. Furthermore, the phrases “in one such embodiment” or “in certain such embodiments,” while generally referring to and elaborating upon a preceding embodiment, is not intended to suggest that the elements, features, and aspects of the embodiment introduced by the phrase are limited to the preceding embodiment; rather, the phrase is provided to assist the reader in understanding the various elements, features, and aspects disclosed herein and it is to be understood that those having ordinary skill in the art will recognize that such elements, features, and aspects presented in the introduced embodiment may be applied in combination with other various combinations and sub-combinations of the elements, features, and aspects presented in the disclosed embodiments. It is to be appreciated that persons having ordinary skill in the art, upon considering the descriptions herein, will recognize that various combinations or sub-combinations of the various embodiments and other elements, features, and aspects may be desirable in particular implementations or applications. However, because such other elements, features, and aspects may be readily ascertained by persons having ordinary skill in the art upon considering the description herein, and are not necessary for a complete understanding of the disclosed embodiments, a description of such elements, features, and aspects may not be provided. As such, it is to be understood that the description set forth herein is merely exemplary and illustrative of the disclosed embodiments and is not intended to limit the scope of the invention as defined solely by the claims.


All numerical quantities stated herein are approximate unless stated otherwise, meaning that the term “about” may be inferred when not expressly stated. The numerical quantities disclosed herein are to be understood as not being strictly limited to the exact numerical values recited. Instead, unless stated otherwise, each numerical value is intended to mean both the recited value and a functionally equivalent range surrounding that value. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding the approximations of numerical quantities stated herein, the numerical quantities described in specific examples of actual measured values are reported as precisely as possible.


All numerical ranges stated herein include all sub-ranges subsumed therein. For example, a range of “1 to 10” is intended to include all sub-ranges between and including the recited minimum value of 1 and the recited maximum value of 10. Any maximum numerical limitation recited herein is intended to include all lower numerical limitations. Any minimum numerical limitation recited herein is intended to include all higher numerical limitations. Additionally, in some illustrative embodiments, a parameter, measurement, diversion, or range may be given. It is to be understood that any such parameter, measurement, diversion, or range is provided as an illustrative example or instance of an embodiment and is not intended to limit that or other embodiments.


As generally used herein, the terms “proximal” and “distal” generally refer to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” generally refers to the portion of the instrument closest to the clinician. The term “distal” generally refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.


As generally used herein, the term “ablation” generally refers to removal of cells either directly or indirectly by supply of energy within an electric field and may include removal by loss of cell function, cell lysis, necrosis, apoptosis, and/or irreversible electroporation. “Ablation” may similarly refer to creation of a lesion by ablation. Additionally, the terms “undesirable tissue,” “target cells,” “diseased tissue,” “diseased cells,” “tumor,” “cell mass” and the like are generally used throughout to refer to cells removed or to be removed, in whole or in part, by ablation and are not intended to limit application of the systems, devices, or methods described herein. For example, such terms include ablation of both diseased cells and certain surrounding cells, despite no definite indication that such surrounding cells are diseased. The terms similarly include ablation of cells located around a biological lumen such as a vascular, ductal, or tract area, for example, to create a margin for a surgeon to resect additional cells by ablation or other method.


According to certain embodiments, an ablation system generally comprises first and second electrodes coupled to an energy source operative to generate an electric field between the first and second electrodes when such electrodes are contacted to tissue and energized. An electrical current supplied to the electric field is conducted between the first and second electrode through the tissue. Without wishing to be bound to any particular theory, it is believed the electrical current propagates through conductive tissue at least partially via electron and/or electrolytic carriers. Electrical ablation devices may generally comprise one or more electrodes configured to be positioned at or near undesirable tissue (e.g., target cells, target site, treatment site, diseased tissue, diseased cells, tumor, cell mass) in a tissue treatment region (e.g., a target region). In general, the electrodes may comprise an electrically conductive portion (e.g., medical grade stainless steel, gold plated, etc.) and may be configured to electrically couple to an energy source. Once positioned at or near undesirable tissue, an energizing potential may be applied to the electrodes to create an electric field to which the undesirable tissue is exposed. The energizing potential (and the resulting electric field) may be characterized by various parameters, such as, for example, frequency, amplitude, pulse width (duration of a pulse or pulse length), and/or polarity. Depending on the desired application, for example, the diagnostic or therapeutic treatment to be rendered, a particular electrode may be configured either as an anode or a cathode, or a plurality of electrodes may be configured with at least one electrode configured as an anode and at least one other electrode configured as a cathode. Regardless of the initial polarity configuration, the polarity of the electrodes may be reversed by reversing the polarity of the output of the energy source. In some embodiments, an exogenous electrolyte may be applied to tissue prior to ablation to increase conductivity. In certain embodiments, application of an exogenous electrolyte may increase or decrease an effective area or density of an electric field.


In certain embodiments, a suitable energy source may comprise an electrical waveform generator. The energy source generates an electric field having a suitable characteristic waveform output in terms of frequency, amplitude, pulse width, and polarity. Electrodes may be energized with DC voltages and conduct currents at various frequencies, amplitudes, pulse widths, and polarities. The electrodes may also be energized with time-varying voltages and currents at amplitudes and frequencies suitable for rendering the desired therapy. A suitable energy source may comprise an electrical waveform generator adapted to deliver DC and/or time-varying energizing potentials characterized by frequency, amplitude, pulse width, and/or polarity to the electrodes. The electric current flows between the electrodes and through the tissue proportionally to the potential (e.g., voltage) applied to the electrodes. In various embodiments, supplied electric current is provided by the energy source and comprises a pulse sequence applied to tissue. For example, an energy source may supply various waveforms in one or more pulse sequences tailored to the desired application. Commonly owned U.S. patent application Ser. No. 13/036,908, filed Feb. 28, 2011, titled “ELECTRICAL ABLATION DEVICES AND METHODS,” and U.S. patent application Ser. No. 13/352,495, filed Jan. 18, 2012, titled “ELECTRICAL ABLATION DEVICES AND METHODS,” disclose many such waveforms, pulse sequences, and methods of application thereof for electrical ablation treatment, the contents of which are herein incorporated by reference.


In one embodiment, the energy source may be configured to produce RF waveforms at predetermined frequencies, amplitudes, pulse widths, and/or polarities suitable for thermal heating and/or electrical ablation of cells in the tissue treatment region. One example of a suitable RF energy source may be a commercially available conventional, bipolar/monopolar electrosurgical RF generator, such as Model Number ICC 350, available from Erbe, GmbH. In one embodiment, the energy source may comprise a microwave energy source configured to produce microwave waveforms at predetermined frequencies, amplitudes, pulse widths, and/or polarities suitable for thermal heating and/or electrical ablation of cells in the tissue treatment region. The microwave power source, such as MicroThermx, available from Boston Scientific Corp., may be coupled to a microwave antenna providing microwave energy in the frequency range from 915 MHz to 2.45 GHz.


In one embodiment, the energy source may be configured to produce destabilizing electrical potentials (e.g., fields) suitable to induce thermal heating and/or irreversible electroporation. The destabilizing electrical potentials may be in the form of bipolar/monopolar monophasic electric pulses suitable for inducing thermal heating and/or irreversible electroporation. A commercially available energy source suitable for generating thermal heating and/or irreversible electroporation electric field pulses in bipolar or monopolar mode is a pulsed DC generator such as Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, Mass. In bipolar mode, the first electrode may be electrically coupled to a first polarity and the second electrode may be electrically coupled to a second (e.g., opposite) polarity of the energy source. Bipolar/monopolar monophasic electric pulses may be generated at a variety of frequencies, amplitudes, pulse widths, and/or polarities. Unlike RF ablation systems, which may require high power and energy levels delivered into the tissue to heat and thermally destroy the tissue, irreversible electroporation may require very little energy applied to the tissue to heat and kill the cells of the undesirable tissue using electric field potentials rather than heat. Accordingly, irreversible electroporation systems may avoid the detrimental thermal effects caused by RF ablation systems.


Various embodiments of the electrical ablation systems, devices, and methods described herein utilize electroporation or electropermeabilization techniques to apply external electric fields (electric potentials) to cell membranes to significantly increase permeability of the plasma membrane of the cell. Irreversible electroporation (IRE) is the process of killing cells by increasing the electrical potential across the cell membrane for a long period of time. IRE provides an effective method for destroying cells while avoiding some of the negative complications of heat-inducing therapies. Namely, IRE kills cells without raising the temperature of the surrounding tissue to a level at which permanent damage may occur to the support structure or regional vasculature. Large destabilizing IRE electric potentials may be in the range of about several hundred to about several thousand volts applied in the tissue to increase the local electric field. The increase in the electric field will increase the membrane potential over a distance of about several millimeters, for example, for a relatively long period of time. The destabilizing electric potential forms pores in the cell membrane when the potential across the cell membrane reaches a critical level causing the cell to die by processes known as apoptosis and/or necrosis.


Application of IRE pulses to cells may be an effective way for ablating large volumes of undesirable tissue with no or minimal detrimental thermal effects to the surrounding healthy tissue. As such, in some embodiments, IRE may be utilized in conjunction with the various electrodes and/or other electrical ablation devices disclosed herein to perform one or more minimally invasive surgical procedures or treatments. Without wishing to be bound to any particular theory, it is believed that IRE destroys cells with no or minimal heat, and thus, may not destroy the cellular support structure or regional vasculature. A destabilizing irreversible electroporation pulse, suitable to cause cell death without inducing a significant amount of thermal damage to the surrounding healthy tissue, may have amplitude in the range of several hundred to several thousand volts and may be generally applied across biological membranes over a distance of several millimeters, for example, for a relatively long duration of 1 μs to 100 ms. Thus, the undesirable tissue may be ablated in-vivo through the delivery of destabilizing electric fields by quickly causing cell necrosis.


In certain embodiments, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. Those skilled in the art will appreciate that wireless energy transfer or wireless power transmission refers to the process of transmitting electrical energy from an energy source to an electrical load without interconnecting wires. In one embodiment, the energy source may be coupled to first and second electrodes by a wired or a wireless connection. In a wired connection, the energy source may be coupled to the electrodes by way of the electrical conductors. In a wireless connection, the electrical conductors may be replaced with a first antenna coupled the energy source and a second antenna coupled to the electrodes, wherein the second antenna may be remotely located from the first antenna. In one embodiment, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. As previously discussed, wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from the energy source to an electrical load, e.g., the abnormal cells in the tissue treatment region, without using the interconnecting electrical conductors. An electrical transformer is the simplest example of wireless energy transfer. The primary and secondary circuits of a transformer may not be directly connected and the transfer of energy may take place by electromagnetic coupling through a process known as mutual induction. Power also may be transferred wirelessly using RF energy.


As will be appreciated, the electrical ablation devices, systems, and methods may comprise portions that may be inserted into the tissue treatment region percutaneously (e.g., where access to inner organs or other tissue is done via needle-puncture of the skin). Other portions of the electrical ablation devices may be introduced into the tissue treatment region endoscopically (e.g., laparoscopically and/or thoracoscopically) through trocars or channels of the endoscope, through small incisions, or transcutaneously (e.g., where electric pulses are delivered to the tissue treatment region through the skin).


The systems, devices, and methods for electrical ablation therapy may be adapted for use in minimally invasive surgical procedures to access tissue treatment regions in various anatomic locations, such as, for example, the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, and various internal body or biological lumen (e.g., a natural body orifice) defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity. Minimally invasive electrical ablation devices may be introduced to the tissue treatment region though a small opening formed in the patient's body using a trocar or through a natural body orifice such as the mouth, anus, or vagina using translumenal access techniques known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)™ wherein electrical ablation devices may be initially introduced through a natural body orifice and then advanced to the tissue treatment site by puncturing the walls of internal body lumen. In various embodiments, the electrical ablation system may be adapted to treat undesirable tissue in the brain, lung, breast, liver, gall bladder, pancreas, or prostate gland, using one or more electrodes positioned percutaneously, transcutaneously, translumenally, minimally invasively, and/or through open surgical techniques, or any combination thereof.


In certain embodiments, the systems, devices, and methods may be configured for minimally invasive ablation treatment of cell masses, tumors, growths, or other undesirable tissue. Minimally invasive ablation treatment of undesirable tissue may be characterized by the ability to reduce trauma by accurately targeting undesirable tissue through one or more biological lumens (e.g., a natural body orifice, vascular, duct, or tract area) and applying an electric field to ablate undesirable tissue in a controlled and focused manner while at the same time retaining the cellular infrastructure of the surrounding healthy tissue. According to various embodiments, delivering an electrode to a biological lumen and contacting the lumen wall in a controlled manner provides increased electroablative accuracy which may reduce undesirable lesions, increase probability of desirable circumferential ablation zones, and/or retain necessary infrastructure in surrounding tissue. For example, uniformity and/or density of an electric field over particular regions of the electric field established by various electrodes and/or returns may be more precisely focused or controlled. In certain embodiments, contacting a lumen wall in a controlled manner comprises circumferentially contacting the lumen wall at two or more locations about the circumference of the wall at or near a treatment site, for example, at or along two locations about the circumference of the wall separated by 15°, 30°, 90°, or 180°, for example. Such contact may be continuous, such as contact connecting two points, or discontinuous, such as contact at a first point and at a second point without contact along at least an intervening portion of the lumen wall between the first and second points.


When a tissue treatment region is located at or near a biological lumen, such as a vascular, duct, cavity, orifice, or tract area, for example, minimally invasive electrical ablation devices comprising electrodes may be delivered to the tissue treatment region through an artificial lumen (e.g., channel of endoscope, sheath, sleeve, trocar) and/or through one or more biological lumens, as herein described. In various embodiments, an electrical ablation device (e.g., electrode or an electrode disposed along a probe comprising an elongate member) may be fed through the biological lumen within an endoscope, trocar, sheeth, sleeve, or channel, for example. An electrical ablation device may also be configured to be fed through a biological lumen “naked,” that is, without assistance from the above instruments. For example, an electrode may be configured to be flexibly fed or directed through one or more biological lumens to the treatment region. In some embodiments, electrodes may be provided along a distal portion of an elongate member comprising a probe. The elongate member may thereby be configured to deliver one or more electrodes to a tissue region. Portions of the elongate member proximal to an electrode may respond to signals from a clinician directing one or more of such positions along a length of the elongate member to move. For example, an elongate member may be responsive to signals to bend at the one or more positions along its length during delivery to a tissue region. Once electrical ablation devices (e.g., electrodes) are delivered or located at or near undesirable tissue in the treatment region, electrodes may be deployed to contact lumen tissue and apply ablative treatment. Such bending, therefore, may assist in navigation and/or placement of the electrical ablation device through or within a biological lumen during delivery, deployment, or during or after ablative treatment.


In particular embodiments, electrodes may be configured to expand circumferentially, for example, when deployed or once located at or near undesirable tissue within a tissue region. Expansion may be the result of deployment, an electrical, mechanical, chemical, or thermal signal actuating an expansion, or, in some instances, a contraction. In some embodiments, electrodes may be configured to expand in at least one dimension. For example, electrodes may be configured to expand in diameter. Electrodes may further be configured to expand in length, such as extending a length of the electrode. In some embodiments, an extension in length may be independent of an expansion in diameter. For example, electrodes may expand in length without expanding in diameter or may expand in diameter without expanding in length. In other embodiments, however, an expansion in diameter or length may be concomitant with an increase or decrease in diameter or length. In certain embodiments, electrodes may be configured to expand only in diameter or length. In various embodiments, electrodes expandable in one or more dimensions may be similarly configured to contract in one or more dimensions. Such electrodes may be said to be transitionable between an expanded state and a contracted state. In some embodiments, transitions between one or more expanded states and one or more contracted states may be in response to a signal provided by a clinician. Thus, in some embodiments, a clinician may selectively transition an electrode to a desired expanded and/or contracted state to beneficially fit an electrode to a desired application, such as a procedure and/or biological structure. In certain instances, selecting an expanded state may provide increase contact about a circumference of a lumen thereby creating a more precisely defined electric field and increasing controllability of electric field potentials, for example. In various embodiments, an electrode may comprise an antenna, such as a microwave antenna, wherein undesirable tissue positioned adjacent to or near the antenna may be more fully exposed to ablative energy when the electrode is in an expanded state compared to a contracted state. For example, a diameter, length, and/or surface area of an electrode comprising antenna may be increased in the expanded state such undesirable tissue is fully exposed to ablative energy.


An electrical ablation system 10 incorporating an electrical ablation device 12 according to one embodiment is illustrated in FIG. 1 and includes an elongate member 18 having therealong disposed a connector 19 configured to couple to an energy source 11, a handle 14, a first electrode 21 (not shown), and a distal tip 28. The handle 14 is configured to provide a clinician a point of manipulation to, for example, manipulate and/or maneuver the elongate member 18. The elongate member 18 includes a conductive structure comprising a lead wire 17 through which energy may be transmitted between the connector 19 and the first electrode 21. It is to be appreciated, however, that in some embodiments the elongate member 18 or electrode 21 may be wirelessly coupled to the energy source 11 or may be coupled to the energy source 11 by various methods known in the art. The handle 14 includes a sheath 40 extending from a distal end thereof through a protective sleeve 38. In the embodiment illustrated, the handle 14 and sheath 40 define a channel 15 through which the conductive structure extends. The sleeve 38 may comprise an insulative material, such as heat shrink, for example, and may be fixed to the handle 14. As illustrated, the sheath 40 comprises a flexible insulator such as a nonconductive material by which electric current may be insulated. As is to be appreciated, respective lengths of the elongate member 18 and/or the sheath 40 will most generally depend on the desired application; thus, the lengths illustrated herein are not intended to be drawn to scale.


In FIG. 1, the first electrode 21 (not shown) is in a withdrawn or non-deployed position and is received within the sheath 40. In various embodiments, the distal portion of the elongate member 18, including the sheath 40, may be configured as a delivery platform from which the first electrode 21 may be manipulatively delivered to a treatment region and subsequently deployed to a treatment site. Accordingly, the handle 14 may include an actuator configured to deploy the first electrode (not shown). In the illustrated embodiment, the handle 14 includes and actuator comprising a slide member 30 configured to be slidable through an aperture 32 and is coupled to a slide assembly 34 comprising a piston 35, which is translatable through a cylinder 36 defined within the handle 14. The slide assembly 34 is operatively coupled to the elongate member 18 such that movement of the slide member 30 retracts or advances the distal portion of the elongate member 18 relative to the distal end of the handle 14. In this embodiment, the sheath 40 is fixed relative to the distal end of the handle 14. However, in certain embodiments, the sheath 40 may be movable relative to the distal end of the handle 14 using an actuator, such the slide member 30, for example. The distal portion of the elongate member 18 may be deliverable to a tissue treatment region by, for example, physically advancing the elongate member 18, such as feeding the elongate member 18 into a patient within the sheath 40, artificial lumen, natural orifice, or biological lumen. In some embodiments, one of which is illustrated in FIG. 2, the elongate member 18 may be advanced to deploy and expose the first electrode 21 beyond the distal end of the handle 12, sheath 40, endoscope (not shown), or other delivery device (e.g., a channel). In certain embodiments, the elongate member 18 may also be retracted relative to the distal end of the handle 14, sheath 40, endoscope (not shown), or other delivery device. As shown in FIGS. 1 and 2, a clinician may reposition the slide member 30 to selectively extend and retract the elongate member 18 relative to the distal end of the sheath 40. For example, distally positioning the slide member 30 extends the elongate member 18 relative to the distal end of the sheath, exposing the first 21 electrode, and subsequently repositioning the slide member 30 proximally retracts the elongate member 18 relative to the distal end of the sheath, receiving the first electrode 21 within the sheath 40.


The electrical ablation system 10 illustrated in FIG. 1 further comprises a second electrode 22 coupled to the energy source 11. In this particular embodiment, the second electrode 22 comprises a return pad. In various embodiments, the second electrode 22 may be a return pad, needle, clamp, second elongate member, or second electrode disposed along the distal portion of the elongate member 18. Notably, those having ordinary skill in the art will appreciate that the optimal type of second electrode 22 will generally be dependent upon the desired application of the system 10.


In some embodiments, electrodes 21, 22 may deliver electric field pulses to the undesirable tissue. Such electric field pulses may be characterized by various parameters, such as, for example, pulse shape, amplitude, frequency, pulse width, polarity, total number of pulses and duration. In various embodiments, the electric field pulses may be sufficient to induce thermal heating in the undesirable tissue without inducing irreversible electroporation in the undesirable tissue. In certain embodiments, the electric field pulses may be sufficient to induce irreversible electroporation in the undesirable tissue. The effects induced may depend on a variety of conditions, such as, for example, tissue type, cell size, and electrical field pulse parameters. For example, the transmembrane potential of a specific tissue type may primarily depend on the amplitude of the electric field and pulse width.


In one embodiment, the input to the energy source 11 may be connected to a commercial power supply by way of a plug (not shown). The output of the energy source 11 is coupled to electrodes 21, 22, which may be energized using an activation switch (not shown) on the handle 14, or an activation switch mounted on a foot activated pedal (not shown). The energy source 11 may be configured to generate electric pulses at a predetermined frequency, amplitude, pulse width, and/or polarity that are suitable to induce thermal heating in the undesirable tissue in the treatment region or induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. The polarity of the DC pulses may be reversed or inverted from positive-to-negative or negative-to-positive a predetermined number of times to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region.


In some embodiments, one or more series of electric pulses may be applied to induce IRE. In one embodiment, a timing circuit may be coupled to the output of the energy source 11 to generate electric pulses. The timing circuit may comprise one or more suitable switching elements to produce the electric pulses. For example, the energy source 11 may produce a series of m electric pulses (where m is any positive integer) of sufficient amplitude and duration less than the necrotic threshold to induce thermal heating in the undesirable tissue when the m electric pulses are applied and a series of n electric pulses (where n is any positive integer) of sufficient amplitude and duration to induce irreversible electroporation suitable for tissue ablation when the n electric pulses are applied. In various embodiments, the electric pulses may have a fixed or variable pulse width, amplitude, and/or frequency.


The electrical ablation device 12 may be operated either in bipolar mode, e.g., the electrodes are relatively close to one another, or monopolar mode, e.g., the electrodes are far apart and one electrode typically has a much larger surface area. For example, the electrodes 21, 22 may be employed in a bipolar electrical ablation system in which the first electrode 21 has a positive polarity relative to the other electrode 22. In monopolar mode, a grounding pad, as illustrated in FIG. 1, for example, may be substituted for one of the electrodes 21, 22. In some embodiments, the second electrode 22 comprises one of an electrode disposed along the elongate member 18, an electrode disposed along a second elongate member, a needle electrode, or a clamp. In some embodiments, the electrodes 21, 22 may be employed in a biphasic electrical ablation system in which the polarity of each electrode 21, 22 alternates. In biphasic mode, the first electrode 21 may be electrically connected to a first polarity and the second electrode 22 may be electrically connected to the opposite polarity. In monopolar mode, the first electrode 21 may be coupled to a prescribed voltage and the second electrode 22 may be set to ground. The energy source 11 may be configured to operate in either a biphasic or monophasic mode with the electrical ablation system 10. In bipolar mode, the first electrode 21 may be electrically connected to a prescribed voltage of one polarity and the second electrode 22 may be electrically connected to a prescribed voltage of the opposite polarity. When more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes may have either the same or opposite polarities.


Returning to FIG. 2, the first electrode 21 includes an expandable portion 20 expandable in at least one dimension. In particular, the expandable portion 20 illustrated in FIG. 2 includes an expanded diameter compared to the diameter of the expandable portion 20 when received within the sheath 40. When received within the sheath 40, the sheath 40 defines a channel having a diameter greater than that of the received expandable portion 20. However, when deployed from the sheath 40 and expanded, as illustrated in FIG. 2, the expandable portion 20 is expanded such that the diameter of the expandable portion 20 is greater than that of the channel defined within the sheath 40. Thus, when received, the expandable portion 20 is in a contracted state and when deployed and/or expanded the expandable portion 20 is in an expanded state.


In various embodiments, the elongate member 18 may be flexible along all or a portion of its length. Such flexible portions may be bendable, deformable, or elastic, for example. Flexible portions may also be conditionally flexible or conditionally rigid, for example. In some embodiments, the elongate member 18 comprises flexible portions which may be mechanically bendable such that portions of the elongate member 18 are pivotable in response to a signal or otherwise manipulatable. In some embodiments, the elongate member 18 may be proximally and/or distally advanced relative to the handle 14. A distal advance of the elongate member 18 relative to the distal end of the handle 14, for instance, may coincide with a distal advance of the elongate member 18 relative to the proximal end of the handle 14. In certain embodiments, when advancing the elongate member 18 increases a length of the elongate member 18, distal to the distal end of the handle 14, the increase in length coincides with a decrease in length of the elongate member 18 proximal to the proximal end of the handle 14. In various embodiments, a proximal advance of the elongate member 18 relative to the distal end of the handle 14 coincides with a proximal advance of the elongate member 18 relative to the proximal end of the handle 14. In certain embodiments, when advancing the elongate member 18 decreases a length of the elongate member 18 distal to the distal end of the handle 14, the decrease in length coincides with an increase in length of the elongate member 18 proximal to the proximal end of the handle 14. While the elongate member 18 illustrated in FIG. 1 is depicted as having a general cylindrical shape, it is to be appreciated that the elongate member 18 may have any suitable shape or cross-section. For example, cross-sections of the elongate member 18 or portions thereof may be generally defined by circular, triangular, rectangular, pentagonal, hexagonal, or any of the suitable bounded shape, be it a regular geometric shape or irregular, for example.


In some embodiments, one or more portions of the elongate member 18 may be coiled, nested, or otherwise contained within the handle 14 or a distal portion of the elongate member 18. In some such embodiments, a distal advance of the elongate member 18 relative to the distal end of the handle 14 does not coincide with a distal advance of the elongate member 18 relative to the proximal end of the handle 14. In one such embodiment, a proximal advance of the elongate member 18 relative to the distal end of the handle 14 does not coincide with a proximal advance of the elongate member 18 relative to the proximal end of the handle 14. In certain embodiments, when advancing the elongate member 18 increases a length of the elongate member 18 distal to the distal end of the handle 14, the length of the elongate member 18 proximal to the proximal end of the handle 14 remains the same. In one such embodiment, when advancing the elongate member 18 decreases a length of the elongate member 18 distal to the distal end of the handle 14, the length of the elongate member 18 proximal to the proximal end of the handle 14 remains the same.


In certain embodiments, the electrical ablation system 10 comprises a relatively flexible elongate member 18 and may be introduced, directed, and delivered to a tissue treatment region within the sheath 40. The sheath 40 may be a hollow bore, such as a tube, for example. In some embodiments, the sheath 40 is semi-rigid and may be used to accurately deliver the first electrode 21 to a tissue treatment region. The elongate member 18 may be translatable through the hollow bore to alternately withdraw and deploy one or more electrode(s) 21, 22 or a portions thereof. In some embodiments, the elongate member 18 comprises an extendable portion, such as an extendable length. The length may be extendable by, for example, distally extending the elongate member 18 such that the elongate member 18 distally elongates relative to the distal end of the handle 14, thus advancing or deploying the first electrode 21 or a portion thereof. Similarly, an actuator, such as slide assembly 34, may be provided to extend the elongate member 18. For example, the elongate member 18 may advance or deploy the first electrode 21 or a portion thereof by distally feeding an additional length of the elongate member 18. It is to be appreciated that extension of the elongate member 18 is not limited to feeding additional elongate member 18 distally from the handle 14. In some embodiments, a portion of the elongate member 18 may extend by moving a first portion of the elongate member 18 relative to a second portion of the elongate member 18. The first and second portions of the elongate member 18 may flank both sides of a nested portion such that a relative movement between the first and second portions of the elongate member 18 may thereby result from a telescopic extension or retraction of a length of the elongate member 18, increasing or decreasing the overall length of the elongate member 18. The first and second portions of the elongate member 18 may also flank both sides of a folded portion of the elongate member 18 such that a relative movement between the first and second portions of the elongate member 18 may thereby result from a folding or unfolding of the folded portion resulting in an accordion-like extension or retraction of a length of the elongate member 18. Relative movement between first and second portions may be accomplished by any known mechanism, such as pulleys, reciprocating extension members, slide mounts, gears, and/or tracks, for example. In some embodiments, the elongate member 18 may advance or deploy the first electrode 21 by progressive release of a bias within the elongate member 18. In the embodiment illustrated in FIG. 1, an actuator is configured to deploy the first electrode 21 from the distal end of the sheath 40. However, in other embodiments, a sheath 40 may not be provided and the clinician may deploy the first electrode 21 by advancing the first electrode 21 from the distal end of an endoscope, trocar, or other artificial lumen configured to receive the elongate member 18 and deliver the first electrode 21 to the target region. In these and other embodiments, the sheath 40 or artificial lumen may be configured to deploy or withdraw the first electrode 21 or portion thereof by advancing or retracting to expose or receive the first electrode 21 or portion thereof.


As previously described, the elongated member 18 may comprise a distally located tip 28. In certain embodiments, the tip 28 may include an insulator configured to resist conduction of electric current. It is to be appreciated that tips 28 of various dimensions may be provided to suit particular applications. For example, in some embodiments, the length of the tip 28 may be longer than the first electrode 21 while in other embodiments the length of the tip 28 may be shorter than the first electrode 21. Tips 28 of various lengths may beneficially increase stability of the first electrode 21 during ablation or assist delivery of the first electrode 21 by, for example, increasing steerability of the elongate member 18. In various embodiments, a diameter of the tip 28 may be greater than or less than a diameter of the first electrode 21 in a contracted state. In some such embodiments, the tip 28 may comprise multiple diameters. Tips 28 comprising multiple diameters may be configured to assist in delivery, placement, and/or positioning of the first electrode 21. For example, contours provided about the multiple diameters of the tip 28 may be designed to anchor or fitably position the first electrode 21 at or near a treatment site. Such contours may also include one or more surface features configured to grippably engage tissue at or near a treatment site. In various embodiments, the tip 28 comprises a distal end configured to assist in delivery, placement and/or positioning of the first electrode 21. For example, a distal end of the tip 28 may comprise a dull or blunt end, as illustrated in FIG. 1, for example. In some embodiments, the distal end of the tip 28 comprises a comparatively sharp point configured to direct the elongate member 18 along surfaces and within channels. FIG. 3 illustrates an embodiment comprising such a tip 28. In particular, FIG. 3 illustrates a first electrode 21 disposed along a distal portion of the elongate member 18. The distal end of the elongate member 18 comprises a tip 28. The tip 28 is tapered to a comparatively sharp point. It is to be appreciated the degree of taper may be more or less than depicted in FIG. 1 or 3, depending on the desired application. In some embodiments, the tip 28 may be a sharp point configured to pierce tissue and/or anchor the first electrode 21. The tip 28 may also comprise a thin catheter configured to drain fluid, for example. As will be explained in more detail below, in certain embodiments, the tip 28 may perform any number of functions such as sensory functions (e.g., optics, temperature, location, etc.) and/or electrolyte delivery. It is to be appreciated that in some embodiments an electrode 21 may comprise the tip 28 and be configured to deliver or receive electric current. For example, in some embodiments, the tip 28 may be a needle electrode.


In various embodiments, the slide assembly 34 is operatively coupled to the sheath 40 such that movement of the slide member 30 in a first direction advances the sheath 40 relative to the distal end of the handle 14 and movement of the slide member 30 in a second direction retracts the sheath relative to the distal end of the handle 14. In some embodiments, the sheath may be retractable relative to the distal end of the handle 14 to expose or deliver the first electrode 21 to a deployed position at or near a treatment site. In some embodiments, the sheath 40 may be advanceable relative to the distal end of the handle 14 to envelope or withdraw the first electrode 21 to a withdrawn position. It will be appreciated that the elongate member 18 may be advanceable by arrangements other than the slide member 30, such as a lever, trigger, actuator, or button, for example, and advancement or retraction may be effectuated manually, electrically, and/or mechanically, for example. In one embodiment, the elongate member 18 may be advanced or retracted by increasing or decreasing a length of the elongate member 18. For example, one or more electrodes 21 or other portions of the elongate member 18 may comprise an adjustable length comprised of an elastic or otherwise extendable or compressible material such that an adjustment of the length effectuates an advancement or retraction of the elongate member 18. In some embodiments, a distal advancement of the elongate member 18 deploys the first electrode 21 to target tissue and a proximal retraction of the elongate member 18 withdraws the first electrode 21 from target tissue. In some embodiments, one or more actuators may be configured to deploy the first electrode 21 to a treatment region, to withdraw the first electrode 21 from a treatment region, to extend or flex the first electrode 21, and/or to transition the expandable portion 20 between contracted and expanded states. In some embodiments, multiple transitions may be actuated by the same or different actuators. For example, an actuation signal to transition between a contracted state and an expanded state may be coupled with an actuation signal to withdraw or deploy the first electrode 21.


In various embodiments, first and second electrodes 21, 22 may be disposed along the distal portion of the elongate member 18 and may be employed to more precisely define a treatment area to, for example, ablate undesirable tissue while reducing muscle contractions in adjoining tissues. FIG. 4 illustrates an embodiment of the electrical ablation device 12 and system 10 depicted in FIG. 1 comprising a first electrode 21 and a second electrode 22 disposed along the distal portion of the elongate member 18. The first electrode 21 may be configured as the positive electrode and the second electrode 22 may be configured as the negative electrode. The first electrode 21 may be electrically coupled to the conductive structure, which may be coupled to the positive terminal of the energy source 11. The second electrode 22 may be electrically coupled to a conductive structure, such as an electrically conductive lead or wire, which may be coupled to the negative terminal of the energy source 11. The conductive structures may be electrically insulated from each other and surrounding structures, except for the electrical connections to the respective electrodes 21, 22. The first and second electrodes 21, 22 may be deployed using actuation methods similar to those described with respect to the first electrode 21. For example, the first electrode 21 may be withdrawn or advanced by repositioning of slide member (not shown) or other actuator. The second electrode 22 may similarly be withdrawn or advanced by repositioning of the same or different slide member or other actuator. In some embodiments, advancing the first electrode 21 or second electrode 22 deploys respective electrodes 21, 22 from the distal end of the sheath 40. One or both electrodes 21, 22 may be coupled to the slide member, or additional slide members may be provided to advance and/or withdraw the electrodes 21, 22 and/or to deploy the electrodes 21, 22. Additionally, it is to be appreciated that, in certain embodiments, first and second electrodes 21, 22 may be selectively deployable. Thus, a clinician may optionally use the first electrode 21 or the second electrode 22 by selectively deploying only the first electrode 21 or only the second electrode 22. In this way, the clinician may independently locate additional electrodes before or after applying power to the first electrode 21 and/or second electrode 22, thus, providing flexibility to create a variety of electric fields during a single insertion of the electrical ablation device 12. It is to be appreciated that, in some embodiments, the identities of the first electrode 21, second electrode 22, or additional electrodes may be selectively changed or switched. For example, in one embodiment, the functionality of the first electrode 21 may be disabled and the identity of the second electrode 22 switched to the previous identity of the first electrode 21.


In some embodiments, where the elongate member comprises multiple electrodes, the distance “d” between electrodes may be adjustable. Referring again to FIG. 4, the illustrated embodiment includes an adjustable distance between the first electrode 21 and second the electrode 22. Such an adjustable distance may be adjustable between 2 mm and 25 mm, for example, and may be used to flexibly confine a treatment zone. A clinician may accordingly adjust the distance “d” between electrodes 21, 22 prior to use by, for example, inserting one or more extenders or inserts between electrodes 21, 22. Multiple extenders or inserts of suitable lengths may be provided to allow a clinician to customize the distance between electrodes 21, 22 and tailor the length to a desired use. In some embodiments, the distance between to electrodes 21, 22 may be adjusted by advancing or rotating the first electrode 21 relative to the second electrode 22 by actuation of one or more slides or actuators located on the handle 14. For example, electrodes 21, 22 may be threadably or slidably disposed along the elongate member about threads or along another track. In various embodiments, the intervening length of elongate member between electrodes 21, 22 may expand thereby increasing the distance.



FIG. 5 illustrates an additional embodiment of the electrical ablation device 12 and system depicted in FIG. 1 comprising a first electrode 21 and a second electrode 22 disposed along the distal portion of the elongate member 18. The electrodes 21, 22 are illustrated in various levels of expanded states. For example, both the first electrode 21 and second electrode 22 are expanded about the axis. The second electrode 22, however, is also extended along the axis and comprises a length greater than the first electrode 21. In some embodiments, asymmetrical electrodes may be provided such that when the electrodes 21, 22 expand, the electrodes 21, 22 comprise divergent dimensions. In other embodiments, however, symmetrical electrodes (e.g., electrodes comprising the same or substantially similar dimensions) may be provided. Divergent dimensions may include, for example, different diameters and/or lengths, as illustrated in FIG. 5. Selection of optimal divergent dimensions with respect to two or more electrodes 21, 22 will, in general, be dictated by the desired application. Notably, and as will be explained in more detail below, first 21 and second electrodes 22 may diverge in one or more dimensions as the result of selective expansion, as a by-product of a method of expansion, or due to construction. For example, the length of the first electrode 21 in the contracted state may or may not be the same length of the second electrode 22 in the contracted state, however, the length of the two electrodes 21, 22 may nonetheless be the same length in respective expanded states. The embodiment illustrated in FIG. 5 further comprises a third electrode 23 disposed along the distal portion of the elongate member 18. The third electrode 23, is distal to the first electrode 21 and, in some embodiments, may be attachable to the first electrode 21 at a connection at or near the distal tip 28 of the elongate member 18 or first electrode 21. In some embodiments, the third electrode 23 is configured as a return or comprises a polarity different from that of the first 21 and/or second electrode 22. In other embodiments, however, the third electrode 23 is configured to extend the electrical identity of the first 21 or second electrode 22.


According to the various embodiments of electrical ablation systems, devices, and methods disclosed herein, electrodes 21 may comprise flexible and/or expandable portions. In some instances, such flexible and/or expandable portions may include a framework comprising one or more framework members providing, which may provide structure to the flexible and/or expandable portions. In various embodiments, a framework defines a selectively expandable perimeter and/or diameter of the expandable portion and may include one or more energy delivery surfaces configured to contact tissue and deliver ablative energy. Herein, the generalized shape and periphery surfaces of expandable and/or flexible portions may be generally referred to as a basket. It is to be appreciated that the electrodes in FIGS. 2-5 and 7 include one or more generalized depictions of baskets and, thus, are not intended to limit the disclosure with respect to appearance or construction of frameworks. Notably, as will become apparent below, flexible and/or expandable portions may comprise baskets comprising various framework constructions having various perimeters and cross-sections including helical, circular, triangular, rectangular, pentagonal, hexagonal, or any other suitable shape, be it a regular geometric shape or irregular, for example. Furthermore, while, in some embodiments, a framework may comprise, for example, a conductive sleeve having an energy delivery surface configured to apply ablative energy that may or may not be dressed about internally arranged framework members, baskets in various other embodiments need not comprise a continuous surface. For example, in certain embodiments, a basket comprises a discontinuous surface defined by a framework of two or more framework members which include tissue contract regions having energy delivery surfaces configured to contact tissue and deliver ablative energy. It is also to be appreciated that while embodiments of electrodes 21 and portions thereof may be referred to as expandable or flexible, the two are not mutually exclusive. Indeed, in certain embodiments, an electrode 21 comprises a flexible portion and an expandable portion wherein at least a portion of the expandable portion comprises at least a portion of the flexible portion. That is, at least a portion of the expandable portion and the flexible portion of the electrode 21 overlap. In some embodiments, however, the expandable portion and the flexible portion may not overlap or may only overlap when the electrode 21 is in the contracted state or the expanded state.


Framework members may be configured to flex or bend in one or more directions and may comprise flexible materials exhibiting elastic and/or reflexive properties. For example, framework members may comprise materials such as plastics, polymers, alloys, metallics, or other elastics including superelastics. Framework members may similarly comprise rigid or conditionally rigid materials configures to flex or bend about a joint or socket, for example. In some embodiments, a clinician may decrease trauma associated with directing electrodes through tortuous biological lumens by utilizing a flexible electrode 21. Flexible electrodes 21 may beneficially reach undesirable tissues in target regions that may otherwise be considered inoperable. In various embodiments, flexible electrodes 21 may also increase the contact area between tissue contact regions of the flexible electrodes 21 and undesirable tissue. As those having skill in the art will recognize, flexible electrodes 21 may be especially helpful by providing greater control over an application when, for example, undesirable tissue is partially obstructing a biological lumen.



FIG. 6 illustrates a flexible portion 16 according to certain embodiments. The flexible portion 16 is disposed along a distal portion of the elongate member 18 and includes a cylindrical framework 50 comprising a coiled framework member 52 (e.g., a spring). The framework 50 extends along a longitudinal axis defined by the flexible portion 16. The framework further comprises a proximal coupler 54 and a distal coupler 56. The proximal coupler 54 and distal coupler 56 are configured to couple the framework member 52 to the elongate member 23 and tip 28. In the embodiment illustrated, the tip 28 provides a blunt and rounded terminus and the flexible portion 16 is flexibly configured for insertion into a biological lumen such that it may flex or bend, for example, in response to curvatures of the lumen. The electrode 21 may also beneficially bend or flex during delivery to a tissue treatment region either through an artificial delivery channel such as an endoscope, trocar, or lumen, for example, or naked (i.e., exposed or not within an artificial delivery channel). In this way, the flexible portion 16 may be flexibly delivered to a target region in a minimally invasive manner.


In various embodiments, electrodes 21 may be expandable in any physical dimension, such as, for example, width or height. In some embodiments, for instance, an expansion of an electrode 21 may be described as an increase in a diameter of the electrode 21. As generally used herein, the term “diameter” generally means a straight line distance between two points located along a perimeter of an expandable portion 20 such that the straight line passes through the axis of the expandable portion 20. The perimeter of an expandable portion 20 may comprise a periphery or external surface of the expandable portion 20. For example, in some embodiments, the framework 50 defines a perimeter of the expandable portion 20 and a diameter may be the distance between two tissue contact regions on opposing sides of the framework. It is to be appreciated that diameter is not limited to a specific geometric shape or cross-section and includes helical, circular, triangular, rectangular, pentagonal, hexagonal, or any other suitable shape, be it a regular geometric shape or irregular, for example.


In addition to expandability and/or flexibility, an electrode 21 may also be extendable. That is, a length of the electrode 21 may be extendable by extending a movable portion of the electrode 21 relative to a fixed portion of the electrode 21. For example, in one embodiment of the flexible electrode 21 illustrated in FIG. 6, a clinician may extend the flexible electrode 21 by actuating a relative movement between the proximal coupler 54 and the distal coupler 56 such that the length of the flexible portion 16 increases. Such an extension may or may not reduce flexibility of the flexible portion 16. As those having skill in the art may recognize, in various embodiments of the electrodes disclosed herein, an extendable length may be utilized by a clinician increase an application area to beneficially reduce trauma that may otherwise result from multiple ablative treatments.


In various embodiments, an electrical ablation device 12 comprises one or more expandable electrodes 21. Expandable electrodes 21, such as those illustrated in FIGS. 2, 3, and 4, for example, may comprise a framework 50 comprising one or more framework members 52. It is to be appreciated that framework members 52 may have an associated first form and an associated second form. In some embodiments, the first form comprises a memory form and the second form comprises a retained form. The retained form may comprise an arrangement or orientation of framework members 52 in an other than memory form. For example, in the retained form, framework members 52 may be deformed, retarded, or otherwise strained as a result of manipulation by, for example, a retaining structure. Manipulation may include stress such as torque, compressive, and/or tension on one or more framework members 52 such that the expandable portion 20 comprises an increased or decreased diameter. In some embodiments, manipulation may result in plastic deformation. In certain embodiments, framework members 52 in the retained form may be transitioned to the memory form by release or removal of a retaining structure retaining the framework members 52 in the retained form. In certain embodiments, framework members 52 in the retained form may also be returned to the memory form by manipulation including application of torque, compression, and/or tension stress on one or more framework members 52 such that the expandable portion 20 and/or framework 50 comprises an increased or decreased diameter.


The degree to which a dimension of an expandable portion 20 may expand may be many multiples of the original value of the dimension. For example, a dimension of an expandable portion 20 in a first state may have a value of 1 and the dimension of the expandable portion 20 in a second state may have a value of 2, 3, 10, 20 or greater, such as 40. In certain embodiments, the degree of expansion is limited only by the length of the expandable portion 20 in the first state. In some embodiments, a variable expansion feature is provided. A variable expansion feature may enable the clinician to adjust the degree to which an electrode 21 expands. For example, a clinician may adjust the degree of expansion to a predetermined diameter before or during a procedure. A variable expansion feature may also be configured to adapt to a procedure or provide feedback to the clinician such that the degree of expansion may be adjusted. For example, the magnitude of an expansion force may be finite and/or nominal after a particular degree of expansion has taken place such that degree of expansion may be limited when external resistance to expansion is at or near a predetermined threshold, for example, when a wall or structure is obstructing a full expansion. Such a variable expansion feature may be further adjustable to tailor to specific applications. For example, an electrode 21 comprising a conductive balloon may be inserted into a lumen and inflated by controllable pressure to substantially conform to the shape of the lumen. Such a complementary shape may increase circumferential contact about the lumen without exerting an invasive force on tissue. Similarly, in various embodiments, framework members 52 retain at least partial flexibility when the expandable portion 20 is in the expanded state. For example, framework members 52 may be flexible inward toward the axis and/or outward of the axis. The elongate member 18 and/or expandable portion 20 may similarly be flexible away from the axis at various angles and directions. In some embodiments, an adaptable feature includes an electrode 21 wherein the length of the expandable portion 20 may be adjustable. For example, in some embodiments, an expandable portion 20 may be withdrawn or received within the sheath 40 such that only the portion of the expandable portion 20 that remains deployed is expanded when the expandable portion 20 is selectively transitioned to the expanded state.



FIG. 7 illustrates an embodiment of an expandable portion 20 disposed along an elongate member 18 according to various embodiments. The expandable portion 20 is shown deployed from a sheath 40 and is in an expanded state. A framework 50 defines a general perimeter (e.g., a basket) about an axis of the expandable portion 20 and includes a first tapered length 24a diverging about 50° from the axis, a second length 24b extending substantially parallel to the axis, and a third tapered length 24c converging about 50 degrees toward the axis. In various embodiments, the basket may be representative of a metallic balloon, metallic covering, or an embodiment similar to FIG. 9, 13, or 24, for example, wherein the degree of expansion is a function of the first and/or third tapered lengths and the degree to which the tapered lengths diverge relative to the axis. The elongate member 18 further comprises a distal tip 28 providing a terminus tapered to a sharp point. In the contracted state (not shown) the diameter of the expandable portion 20 is reduced by a factor of at least 8 such that the expandable portion 20 may be received within a channel defined within the sheath 40. When deployed from the distal end of the sheath 40, the expandable portion 20 may be expanded by any disclosed method. As can be seen, the degree of expansion may be a function of the first and/or third tapered lengths 24a,c and the degree to which the tapered lengths 24a,c respectively diverge or converge relative to the axis. For example, increasing or decreasing the degree of divergence or convergence of the first and/or third tapered lengths 24a,c respectively increases or decreases the degree of expansion while also respectively decreasing or increasing the length of the expandable portion 20. Additionally, increasing or decreasing the lengths of the first and/or third tapered lengths 24a,c respectively increases or decreases the degree of expansion. In embodiments where the first and/or third tapered lengths 24a,c may be extendable, for example, the length of the expandable portion 20 may not increase or decrease during a transition between the expanded state and the contracted state. However, in embodiments, wherein the first and/or third tapered lengths 24a,c do not extend, an expansion may decrease the length of the expandable portion 20.


According to various embodiments, electrodes 21 or expandable portions 20 thereof may be selectively transitioned between a contracted state and one or more expanded states. FIGS. 8-25 illustrate various non-limiting embodiments of expandable portions 20 of electrodes 21 comprising frameworks 50 and framework members 52 as well as various non-limiting embodiments of methods of expanding and/or contracting expandable portions 20. Before addressing these embodiments, however, a number of beneficial aspects of these and other embodiments will be introduced to assist those having skill in the art in their understanding of the various embodiments.


In some embodiments, transitioning an expandable portion 20 from a contracted state to an expanded state may be driven by an expansion force. Expansion forces may be applied to one or more framework members 52 to effectuate an expansion. Expansion forces may comprise any known force, such as torque, compression, or tension, for example. In one embodiment, for instance, changes in internal pressure drive transitions using an injectable, such as a solid, liquid, or gas, injected into or released from a cavity defined within a framework 50. Increase in interior pressure may expand the framework 50 to an equilibrium pressure in one or more regions of the framework 50 or may drive further expansion by increasing tension about the cavity of the framework 50. Similarly, contraction forces may be applied to one or more framework members 52 to drive a contraction, such as a contraction between an expanded state and a less expanded state. Contraction forces may comprise any known force, such as torque, compression, and tension, for example, to decrease a dimension. For example, in one embodiment, changes in internal pressure drive transitions using an injectable, such as a solid, liquid, or gas, injected into or released from a cavity defined within a framework 50. Decrease in interior pressure, such as a release of an injectable, may contract the framework 50 to an equilibrium pressure in one or more regions of the framework 50 by relieving tension about the cavity or may drive further contraction by releasing additional injectable, thereby allowing external pressure to compress the framework 50 and occupy the cavity.


In various embodiments, electrical ablation devices 12 may employ compression, tension, and/or rotation to transition electrodes 21 or expandable portions 20 between contracted and expanded states. In some embodiments, compression of framework members 52 may decrease a length of the expandable portion 20 while, at the same time, increase a diameter of the expandable portion 20. For example, compressed framework members 52 may strain, bow, or bend outward of the axis to relieve compressive stress. Compression may also drive a repositioning of framework members 52 within the framework 50 to effectuate a transition that increases a diameter of an expandable portion 20 without decreasing a length of the expandable portion 20. For example, one or more framework members 52 or portions thereof may be urged outward of the axis or along the elongate member 18 resulting in repositioning of those or other framework members 52 and an increase in a dimension of the expandable portion 20. In some embodiments, tension of framework members 52 may increase a length of the expandable portion 20 while, at the same time, decreasing a diameter of the expandable portion 20. For example, otherwise bowed or outward extending framework members 52 may be tensioned to strain, stretch, or straighten inward toward the axis as to relieve tension stress. Tension may also drive repositioning of framework members 52 within the framework 50 to effectuate a transition that increases a diameter of the expandable portion 20 without decreasing a length of the expandable portion 20. For example, one or more framework members 52 or portions thereof may be pulled inward toward the axis or along the elongate member 18 resulting in repositioning of those or other framework members 52 and a decrease in a dimension of the expandable portion 20. In some embodiments, a rotation of a first coupler configured to couple manipulations effectuating relative movements between framework members 52 or portions thereof relative to a second coupler may increases or decreases a distance between framework members 52 or portions thereof. For example, a decrease in the distance may compress one or more intervening portions or other framework members 52 while an increase in the distance may tension one or more intervening portions or framework members 52.


In various embodiments, framework members 52 comprise memory materials. Memory materials may include reflexive and/or elastic materials configured to return to a memory orientation or arrangement following removal of a deformative stress. For example, in some embodiments, framework members 52 are configured to be deformed by a deformative stress above or below an elastic limit and return to a memory form upon removal of the deformative stress and/or subsequent manipulation, such as a change in temperature. In certain embodiments, memory materials include shape memory materials having one-way and/or two-way memory effect. Memory materials may also include materials that may be deformable and reformable by manipulation. For example, a first counter rotation between two portions of a coil may partially unwind the coil while a second counter rotation, opposite of the first, may rewind the coil. Materials having such properties are known in the art and include polymers such as memory foams, plastics, elastomers, and rubbers as well as metallics and alloys. It is to be appreciated that such materials include superelastics and shape memory materials, such as alloys (e.g., NiTi), ceramics, and polymers including gels, foams, and solids. Notably, when framework members 52 comprise memory materials that are poor conductors, conductive materials may be used to establish an electrical path for ablative energy to be transmitted and delivered to tissues. For example, conductive coatings, wires, sleeves, and/or tissue contact regions may be used to transmit and deliver energy to tissue. In some embodiments, elastic limits of framework members 52 may be increased due to arrangement and/or orientation of framework members 52. For example, framework members 52 may comprise configurations of coils or braids comprising increased elastic limits due to, for example, distributed strains.


In various embodiments, framework members 52 a memory form that may be manipulated or otherwise deformed or retained by a retaining force and upon removal of the retaining force, the material at least partially returns to the memory form. Framework members 52 having a memory form may be arranged within the expandable portion 20 in any suitable manner such that the framework members 52 will return to the memory form following removal of a retaining force or upon manipulation. For example, a framework 50 comprising a conductive coating and including framework members 52 comprising a foam polymer may be configured to expand in at least one dimension upon removal of a retaining force and contract in the at least one dimension upon application of the retaining force. In certain embodiments, the retaining force is provided by a channel (e.g., an artificial channel defined within an endoscope, trocar, or sheath) in which the expandable portion 20 is received. Other retaining structures may also be used to apply a retaining force. For example, hooks, latches, constrictable loops, or other retaining mechanisms may be employed in certain embodiments to retain framework members 52 and/or prevent framework members 52 from transitioning to one or more memory forms.


Framework members 52 may individually or collectively have one or more memory forms and/or retained forms. For example, framework members 52 may deform in response to a retaining force and return to a memory form when the retaining force is removed. Alternately, framework members 52 may comprise a first memory form and a second memory form wherein when one or more framework members 52 are in the first memory form the expandable portion 20 is in an expanded state and wherein when one or more of the framework members 52 are in the second memory form, the expandable portion 20 is in a contracted state. In certain embodiments, the memory form may correspond to the expanded state and thus comprises an increased diameter compared to the retained form or may correspond to the contacted state and thus comprises a decreased diameter compared to the retained form. Of course, in some embodiments, a retaining force may be combined with and or coupled to a second, third, or plurality of additionally forces to effectuate an active transition between contracted and expanded states.


Framework members 52 may be configured to deform or strain to reduce a diameter of the expandable portion 20 when framework members 52 are compressed toward the axis or are otherwise retained. In this way, an electrode 21 may be directed to a tissue treatment region within an artificial channel in a contracted state and be expandable upon deployment at or near the tissue treatment site and/or in response to removal of the retaining force. In one embodiment, a first framework member 52 comprising a bias, such as a spring, foam, or other memory material, is biased outward of the axis, such as radially. When the expandable portion 20 is pushed, pulled, or rotated within a channel having a diameter less than a diameter of the expandable portion 20 in the expanded state, the channel compresses the first framework member 52 toward the axis, retaining it in a retained form. However, when the expandable portion 20 is pushed, pulled, or rotated from the channel, the first framework member 52 is no longer retained by the channel and, therefore, transitions to the memory form upon deployment and extends outward of the axis. In a further embodiment, a second framework member 52 extends proximally toward the channel when the expandable portion 20 is deployed and in the expanded state. The second framework member 52 comprises a proximal lip and a distal compression surface coupled to the outward extending portion of the first framework member 52. When the expandable portion 20 is received within the channel, the proximal lip is progressively drawn into the channel, leveraging the distal compression surface toward the axis, compressing the first framework member 52, and decreasing a diameter of the expandable portion 20.



FIG. 8 illustrates an expandable portion 20 disposed along a distal portion of an elongate member 18. The expandable portion 20 is in the contracted state and is within an artificial channel defined within a sheath 40. The channel has a diameter less than a diameter of the expandable portion 20 in the expanded state and retains the framework members 52 in a retained form. The sheath 40 is operatively connected to a handle 14 (not shown). The handle includes an actuator (not shown), which may be similar to the slide member 30 illustrated in FIG. 1, configured to deploy and withdraw the expandable portion 20 from the distal end of the sheath 40. In some embodiments, the expandable portion 20 may be deployed by advancing the expandable portion 20 distally of the sheath 40. Accordingly, advancing the expandable portion 20 may comprise proximally withdrawing the sheath 40 or distally advancing the expandable portion 20 relative to the handle 14. When the expandable portion 20 is received within the sheath 40, a retaining force is applied to the expandable portion 20 by the channel, thus, restraining the expandable portion 20 in the contracted state. However, as illustrated in FIG. 9, when the expandable portion 20 is deployed from the sheath 40, the framework members 52 are no longer retained by the channel and, therefore, transition to a memory form. In this embodiment, the memory form corresponds to the expanded state of the expandable portion 20.


Still referring to FIG. 9, the expandable portion may be transitioned to the contracted state by withdrawing the expandable portion 20 within the channel. When the expandable portion 20 in received within the channel, the channel applies a retaining force to the framework members 52, thereby retaining the framework members 52 in the retained form. An active force such as a compression, tension, and/or torque may be employed to withdraw and/or deploy the expandable portion 20. For example, the expandable portion 20 may be pushed, pulled, or rotated from or into the channel. Pushing, pulling, or rotating the expandable portion 20 may further be combined with compression applied by the channel to force framework members 52 to deform toward the axis and transition the expandable portion 20 to the contracted state, as illustrated in FIG. 8. In some embodiments, transitioning the expandable portion 20 to a contracted state comprises applying tension to one or more framework members 52. Tension may also be combined with rotation, for example. In some embodiments, a proximal tension may force framework members 52 to deform toward the axis and may be combined with a distal compression of framework members 52.


The expandable portion 20 in the expandable state illustrated in FIG. 9 includes framework members 52 including a linear portion 25b flanked by a distal tapered portion 25c and a proximal tapered portion 25a. In the memory form, the proximal tapered portion 25a diverges away from the axis at a first angle, and the distal tapered portion 25c converges toward the axis at a second angle. As can be seen, the degree of expansion is a function of the lengths and degree of divergence and convergence of the tapered portions 25a,c. For example, increasing the length of the tapered portions 25a,c increases the diameter of the expandable portion 20. Additionally, the degree of expansion increases as the degree of divergence and convergence approaches 90°. In some embodiments, such an expansion in diameter is also accompanied by a reduction in length of the expandable portion 20. While FIGS. 8 & 9 illustrate a framework 50 comprising four framework members 52 in a basket arrangement, frameworks 50 may include any number of framework members 52. For example, in some embodiments, a framework 50 comprises two framework members 52 extending along the axis. According to the desired application, the diverging and converging tapered lengths and angles they define may be increased to increase the degree of expansion or decreased to decrease the degree of expansion. In certain embodiments, a plurality of 5, 10, 20, or more framework members 52 may extend along the axis and be expandable to a predetermined diameter. In certain embodiments, framework members 52 may be formed from a sheet or tube of framework material. For example, a framework 50 comprising a sheet or tube may be cut or etched, for example with a laser, such that one or more framework members 52 or portions thereof may be extendable away from the axis when the expandable portion 20 is in the expanded state. In certain embodiments, a framework 50 comprises an alloy tube body comprising one or more longitudinal framework members 52 laser etched along the body, and when the expandable portion 20 is in the expanded state, the one or more framework members 52 extend outward of the axis.


The framework members 52 illustrated in FIGS. 8 and 9, may comprise a memory material, such as superelastics. Memory materials comprising superelastics, such as shape memory materials, may be configured to expand or contract to a memory form upon release of a retaining force or upon manipulation. Framework members 52 incorporating superelastics may therefore comprise an associated memory form and an associated retained form. The retained form may correspond to a martensitic conformation while the memory form may correspond to an austenitic conformation. For example, at austenitic temperatures, framework members 52 may be retained by a retaining structure, e.g., compressed within the channel, in a martensitic conformation and return to an austenitic conformation comprising an increased diameter when no longer retained by a retaining structure, e.g., when deployed from the distal end of the sheath 40. Similarly, at martensitic temperatures, framework members 52 may be plastically deformed to a reduced diameter in a martensitic conformation and then returned to an expanded diameter in an austenitic confirmation upon increase to the austenitic transition temperature. Similarly, framework members 52 may be received within the channel of the sheath 40 in an austenitic confirmation and then deployed from the distal end of the sheath in the austenitic confirmation. Once deployed, a retaining force comprising a relative decrease in the distance between framework members 52 or portions thereof or an internal extension extending framework members 52 or portions thereof outward of the axis may compress or tense framework members 52 into a martensitic confirmation comprising an increased diameter. Upon removal of the retaining force at austenitic temperatures, framework members 52 return to an austenitic conformation comprising a reduced diameter. Upon removal of the retaining force at martensitic temperatures, framework members 52 may return to reduced diameter by application of a deformative stress or an increase to austenitic temperatures. In some embodiments, framework members 52 have two-way memory. For example, framework members 52 may comprise at least two memory forms and be transitional between the at least two memory forms in response to manipulation. For instance, in some embodiments, framework members 52 comprise a low temperature memory form and a high temperature memory form. The framework members 52 may thereby be transitioned between the two memory forms via manipulation comprising a change in temperature above and below associated transition temperatures. Of course, as those having ordinary skill in the art may deduce from this disclosure, countless variations of one-way and two-way shape memory may be employed to achieve desired transitions of expandable portions 20 herein described and, therefore, further description of all the possible variations is unnecessarily.


In some embodiments, framework members 52 are arranged as a regular or an irregular grouping of looped coils, braids, or folds occupying a portion of the expandable portion. In various embodiments, framework members 52 may comprise a material, orientation, and/or arrangement imparting the framework members 52 with a memory form when loads are within an associated elastic limit. For example, a framework member 52 may comprise a spring (e.g., a bow, compression, torsion, or tension spring) having an associated memory form and associated elastic limit. The spring may increase or decrease in a dimension in response to an application or removal of a load. When springs are coils or helixes wound about the axis, framework members 52 may be at least partially unwound when the expandable portion 20 is in the contracted state and framework members 52 may be rewound when the expandable portion 20 is in the expanded state. Framework members 52 comprising coils or helixes may also comprise a changed diameter upon application or removal of a load when, for example, a load longitudinally strains a spring. In this way, a clinician may, for example, increase a diameter of a framework member 52 by compressing a compression spring or releasing tension applied to a tension spring. Similarly, a clinician may, for example, decrease a diameter of a framework member 52 by releasing a compressive load applied to a compression spring or apply a tension to a tension spring. Thus, framework members 52 may undergo deformative strains, such as linear or torsion, in a retained form and transition to a memory form upon removal or reversal of a load or force.



FIG. 10 illustrates an expandable portion 20 disposed along a distal portion of an elongate member 18 comprising a tip 28. The expandable portion 20 is illustrated deployed from a sheath 40 and in an expanded state. A coiled framework member 52 comprising a spring is looped about the axis and is depicted in a memory form comprising an increased diameter. It will be appreciated that the diameter of the expandable portion 20 in FIG. 10 may be configured to increase as a function of the pitch between coils. For example, as pitch decreases and the length of the spring approaches its solid height, the diameter of the spring increases. The expandable portion 20 in FIG. 10 may be transitioned to a contracted state by withdrawing the framework member 52 within a channel defined within the sheath 40 (or a separate channel) comprising a diameter less than the diameter of the expandable portion 20 in the expanded state. For example, when a proximal tension force is applied to the expandable portion 20, the expandable portion 20 is received within the channel forcing the framework member 52 to longitudinally extend, thus, reducing the diameter of the spring and transitioning the framework member 52 into a retained form. While the framework member 52 is retained within the channel, the length of the expandable portion 20 is increased and the diameter of the expandable portion 20 is decreased. When desired, a clinician may subsequently transition the expandable portion 20 from the contracted state to the expanded state (as illustrated in FIG. 9) by deploying the expandable portion 20 from the distal end of the sheath 40. Deploying the expandable portion 20 releases the retaining force and allows the framework member 52 to transition from the retained form to the memory form. In some embodiments, channels may also be fitted with spaced grooves, threads, or tracts, for example, configured to precisely deploy a length of spring or number of coils from the channel.


In various embodiments, framework members 52 may be braided to form one or more baskets along a length of the expandable portion 20. In one embodiment, framework members 52 are braided into a general cylindrical or tube-like arrangement as illustrated in FIG. 11. The expandable portion 20 is shown in the process of deploying from a distal end of a sheath 40 concomitant with a transition between a contracted state and an expanded state. The framework members 52 comprise a conductive braid having an associated retained form and memory form. The framework members 52 are configured to expand to the memory form upon removal of a retaining force, thereby transitioning the expandable portion 20 from the contracted state to the expanded state. For example, when the expandable portion 20 is in the expanded state, it may be proximally withdrawn and received within a channel comprising a lesser diameter and transitioned to the contracted state. Tension stress is applied to the braid when the expandable portion 20 is proximally withdrawn into the lesser diameter of the channel, urging the braid to increase in length while decreasing in diameter. Thereafter, the reduced diameter of the channel maintains compression on the braid and retains the tension stress within the braid. In the contracted state, the expandable portion 20 is deliverable to a tissue treatment region within the channel. Once delivered to the tissue treatment region, the expandable portion 20 may be deployed from the distal end of the sheath 40, thereby decompressing the braid and relieving the tension stress. Consequently, the braid decreases in length and expands about its diameter when the braid is transitioned from the retained form to the memory form. Thus, removal of the retaining force relieves the tension stress within the braid resulting in a reduction in the length of the braid and an increase in a diameter of the braid. As such, the expandable portion 20 may transition from the contracted state to the expanded state upon removal of the retaining force.


In additional embodiments, framework members 52 may be arranged in one or more concentric coils (e.g., loops or wrappings) of framework members 52 arranged about the axis. An outer band of the coil may thereby be rotatable relative to an inner band of the coil such that the expandable portion 20 may be transited between contracted and expanded states by relative rotations between the bands. Such framework members 52 may further comprises an associated memory form and an associated retained form such that a relative rotation between bands comprises a retain force and transitions the expandable portion 20 from the expanded state to the contracted state and a release of the retaining force transitions the expandable portion 20 from the contracted state to the expanded state. In other embodiments, however, a relative rotation between bands may transition the expandable portion 20 from the contracted state to the expanded state and a release of a retaining force may transition the expandable portion 20 from the expanded state to the contracted state. It is to be appreciated that multiple coils comprising multiple bands rotatable relative to one another such that various diameters along the length of the expandable portion 20 may be used to adjustable diameters of the expandable portion 20 to meet various applications.


In various embodiments, electrical ablation devices 12 comprise movable portions. Movable portions may comprise framework couplers and/or movable elements including rings, blocks, or collars disposed about or along the elongate member 18. Movable portions may be slidable along a tract, rotatable about threads, or movable along a distance of the elongate member 18, for example. Elongate members 18 and/or expandable portions 20 may further comprise an adjustable distance such that a movable portion does not physically transition along an elongate member 18 but rather moves as a result of a decrease or increase in the relative distance between the movable portion and another movable portion or position along the elongate member 18 or with respect to the axis. For example, an elongate member 18 may comprise an adjustable distance wherein an adjustment in the distance results in a first movable portion moving relative to a second movable portion. In certain embodiments, the distance between movable portions may be adjusted by extending or retracting a folded or nested portion of the adjustable distance, for example. Extending or retracting may be accomplished by, for example, relative rotations, release of a bias, and/or application of counter or relative forces between two portions. In one embodiment, an electric ablation device 12 comprises a movable portion such as a block, ring, coupler, or other element comprising an abutment surface. The element may be configured to be movable along an elongate member 18 and abut a framework member 52. In some embodiments, movement of the element applies a compressive stress to framework members 52 or relieves a compressive strain. In various embodiments, pulleys or gears may also be employed to move movable portions. For example, movable portions may ride along a track defined along the elongate member 18. The track may include gears configured to move a movable portion or adjust a length of the elongate member 18 between movable portions, for example, by nesting a portion of the elongate member 18.


In various embodiments, framework members 52 may be movable with respect to the elongate member 18. One or more framework members 52 or portions thereof may be configured to slide along or pivot with respect to the elongate member 18. For example, a first portion of a framework member 52 may be fixed or pivotably fixed to the elongate member 18 at a first position and a second portion of the framework member 52 may be fixed or pivotably fixed to the elongate member 18 at a second position. FIG. 12 illustrates an embodiment of an expandable portion 20 in an expanded state. The expandable portion 20 comprises a plurality of longitudinal framework members 52 disposed along a distal portion of the elongate member 18. For simplicity, only two longitudinal framework members 52 are illustrated. The longitudinal framework members 52 extend along the axis between a proximal movable portion comprising a proximal coupler 54 and at distal coupler 56 adjacent to the tip 28. The proximal coupler 54 comprises a rotatable portion rotatably movable along the elongate member 18 upon threads 60 provided about the elongate member 18. Rotation of the proximal coupler 54 in a first direction moves the proximal coupler 54 proximally and rotation of the proximal coupler 54 in a second direction moves the proximal coupler 54 distally. Proximal and distal movement of the proximal coupler 54 corresponds to a relative movement between the proximal coupler 54 and the distal coupler 56. In one embodiment, when the proximal coupler 54 moves distally, the distance between the proximal coupler 54 and the distal coupler 56 decreases and a compressive stress is applied to the longitudinal framework members 52. The compressive stress causes a deformative strain marked by bowing of the longitudinal framework members 52 outward of the axis, thus, increasing a diameter of the expandable portion 20. Alternately, when the proximal coupler 54 moves proximally, the distance between the proximal coupler 54 and the distal coupler 56 increases and the compressive stress is relieved. Relief of the compressive stress allows the longitudinal framework 52 members to relax inward and longitudinally align along the axis, thus, decreasing a diameter of the expandable portion 20. In another embodiment, a proximal movement of the proximal coupler 54 applies a tension stress to the longitudinal framework members 52 resulting in a deformative strain marked by inward positioning of longitudinal framework members 52 decreasing a diameter of the expandable portion 20. Alternately, a distal movement of the proximal coupler 54 relieves the tension stress allowing longitudinal framework members 52 to relax outward of the axis, thus, increasing the diameter of the expandable portion 20. In some embodiments, the compressive stress comprises a retaining force and the proximal coupler 54 comprises a retaining structure. Thus, in a memory form, longitudinal framework members 52 may extend inward or bow outward of the axis, and, in the retained form, longitudinal framework members 52 may be compressed to bow outward of the axis or tensioned to straighten and radially align inward toward the axis. In some embodiments, framework members 52 do not rotate corresponding to rotation of a proximal or distal coupler 56. For example, couplers may comprise abutment surfaces configured to compress a first portion of a framework member 52 against or relative to a second portion of a framework member 52. In certain embodiments, couplers may comprise a track upon which a first portion of framework member 52 may maintain axial positioning relative to a second portion of the framework member 52. Similarly, couplers may comprise a sleeve upon which a first portion of a framework member 52 is coupled. The sleeve may be rotatable about an inner portion of the coupler upon bearings such that the first portion of the framework member 52 may maintain axial positioning corresponding to movements of the inner portion of the coupler.


It is to be appreciated that the proximal and distal orientation is provided to assist in the understanding of the systems, devices, and methods disclosed herein. In certain embodiments orientations and/or arrangements may be reversed such that the goal of transitioning an expandable portion remains that same. For example, the distal coupler 56 may be rotatably movable upon threads, for instance, provided near the distal coupler 56. Such orientational variations do not deviate from this disclosure. Indeed, in one embodiment, the proximal coupler 54 and the distal coupler 56 are rotatable about threads provided about the surface of the elongate member 18. Similarly, in another embodiment, the distal coupler 56 is clickably movable along the elongate member 18. In further embodiments, a series of framework 50 arrangements and/or expandable portions 20 may be disposed along the distal portion of the elongate member 18. Such a series of framework 50 arrangements and/or expandable portions 20 may be configured for a desired application and provide customizable ablation zones within a biological lumen or treatment site.



FIG. 13 illustrates an embodiment of an expandable portion 20 comprising a four member basket. The framework members 52 are coupled at a proximal coupler 54 and a distal coupler 56. The proximal coupler 54 is movable relative to the distal coupler 56 such that a decrease in the distance between the couplers 54, 56 increases a diameter of the expandable portion 20, as shown in FIG. 14, and an increase in the distance between the couplers 54, 56 decreases the diameter of the expandable portion 20, as shown in FIG. 13. As shown in FIG. 14, in the expanded state, framework members 52 have a proximal tapered portion 26a and a distal tapered portion 26b defining an interior angle of about 80°. In some embodiments, the degree of expansion is a function of the lengths 26a,b and the angle defined therebetween. For example, increasing a length 26a,b may increase degree of expansion and decreasing the angle defined between the lengths 26a,b may increase degree of expansion. In some embodiments, a portion of the elongate member 18 may be translatable through the proximal coupler 54 and fixed relative to the distal coupler 56 such that retracting the elongate member 18 relative to the proximal coupler 54 decreases the distance between the proximal coupler 54 and the distal coupler 56 and advancing the elongate member 18 relative to the proximal coupler 54 increases the distance between the proximal coupler 54 and the distal coupler 56. Accordingly, when the elongate member 18 is withdrawn proximally, the distal coupler 56 moves proximally and framework members 52 compress and bow outward in a retained form corresponding to an expanded state of the expandable portion 20. Similarly, framework members 52 may comprise a memory form corresponding to an expanded state of the expandable portion 20 such that when the elongate member 18 is withdrawn proximally, the distal coupler 56 moves proximally and framework members 52 tense and straighten inward in a retained form corresponding to a contracted state of the expandable portion 20. Compression of the framework members 52, as illustrated in FIG. 14, may result in radial bowing of the framework members 52 outward of the axis, increasing a diameter of the expandable portion 20. Depending on the desired application, numerous configurations of a plurality of framework members 52 arranged along an axis may be configured to flex, bend, deform, or otherwise strain in response to stress. For example, framework members 52 may be configured to flex, bend, deform, or otherwise strain at two or more positions, thus forming a basket similar to that which is depicted in FIG. 9. In some embodiments, 5, 6, 8, 15, or more framework members 52 may be provided that flex, bend, deform, or otherwise strain along a plurality of positions and, for example, take on a spherical shape in the expanded state.



FIG. 15 illustrates yet another embodiment of an expandable portion 20. In this embodiment, relative movements between framework members 52 expand the expandable portion 20 similar to an umbrella. In particular, one or more framework members 52 comprising extenders 53 are provided. First ends 53a of the extenders 53 are pivotably coupled to a proximal coupler 54 positionable along a length of the elongate member 18. Second ends 53b of the extenders 53 are pivotably coupled to one or more additional framework members comprising ribs 51. Ribs 51 may comprise a flexible material (e.g., an elastic, series of jointed framework members, or a portion of a flexible covering) or, in some embodiments, a rigid material and may be fixedly coupled to the elongate member 18 at a distal coupler 56 adjacent to the distal tip 28 such that extension of extenders 53 extend portions of the ribs 51 outward of the axis. The extenders 53 are preferably sufficiently rigid to extend ribs 51 by, for example, bending, flexing, or swinging the ribs 51 outward of the axis. In the illustrated embodiment, a transition between the contracted state and an expanded state comprises a relative movement between the proximal 54 and distal 56 couplers. For example, a transition from the contracted state to an expanded state comprises decreasing the distance between the couplers 54, 56. A relative movement between couplers 54, 56 may be accomplished in any suitable manner. For example, in one embodiment a clinician may distally reposition the proximal coupler 54 by proximally pulling a nested portion of the elongate member 18 comprising the distal coupler 56 using an actuator provided on the handle (not shown). FIG. 16 illustrates an embodiment of the expandable portion 20 depicted in FIG. 15 in an expanded state. As can be seen, the extenders 53 prop and extend the ribs 51 outward of the axis in response to a relative movement between the proximal 54 and distal 56 couplers. In this embodiment, the proximal coupler 54 includes a rotatable portion rotatable upon threads 60 provided about an adjacent surface of the elongate member 18. Extenders 53 are extendable by distally rotating the proximal coupler 54 and retractable by proximally rotating the proximal coupler 54. In various embodiments, the proximal coupler 54 is repositionable by proximally or distally sliding the coupler 52 along the elongate member 18. In additional embodiments, second or third extenders may be associated with first extenders 53. For example, second extenders may comprise a first end pivotably coupled to a central portion of a first extender and a second end pivotably coupled to an additional framework member, such as a rib 51. Third extenders may be similarly configured. Second and third extenders may provide additional structure and or support to expandable portions 20 or increase expansion. In other embodiments, an extender 53 may be a wedge having an engagement surface configured to engage and prop up a rib 51. For example, as the distance between the wedge and the distal coupler 56 decreases, the wedge progressively moves along the underside of the rib 51, swinging the rib 51 outward of the axis, and expanding a diameter of the expandable portion 20.



FIG. 18 illustrates yet an additional embodiment of an expandable portion 20 comprising two pivotably coupled framework members 52a,b. The expandable portion 20 is illustrated in a slightly expanded state. The framework members 52a,b are pivotably coupled about a joint 62 (e.g., a hinge, pin, or flexible portion) at adjacent ends. Each framework member 52a,b is pivotably coupled to the elongate member 18 about additional joints 62 at respective proximal 54 and distal couplers 56. The proximal 54 and distal couplers 56 are relatively movable with respect to each other. In this embodiment, transitioning the expandable portion 20 from the contracted state to the expanded state comprises relatively moving the proximal 54 and distal couplers 56 and comprises nesting an intervening portion of the elongate member 18. For example, nesting the distal portion within the proximal portion of the elongate member 18 decreases the distance between the proximal 54 and distal couplers 56, resulting in an outward pivoting of the adjacent ends of the framework members 52a,b, increasing a diameter of the expandable portion 20, and thereby expanding the expandable portion 20. Conversely, unnesting the distal portion from the proximal portion increases the distance between the proximal 54 and distal couplers 56, resulting in an inward pivoting of the adjacent ends of the framework members 52a,b, decreasing the diameter of the expandable portion 20, and thereby contracting the expandable portion 20. For simplicity, FIG. 18 includes only two coupled framework members 52a,b; however, additional framework members may similarly be coupled to the framework members 52a,b. For example, a third framework member may be coupled between the two framework members 52a,b illustrated in FIG. 18 such that a relative movement between the proximal 54 and distal couplers 56 extends the third framework member outward of the axis relatively parallel with the axis. Also for simplicity, FIG. 18 includes only two sets of coupled framework members 52a,b; in additional embodiments, three or more sets of coupled framework members 52a,b are provided about the circumference of the elongate member 18 to further increase the diameter of the expandable portion 20 in the expanded state.


In certain embodiments, framework members 52 may comprise a coil operatively coupled to the elongate member 18 at a first position. In such an embodiment, relative counter rotation between the first position and a second position at least partially unwinds the coil and corresponds to an increase in a diameter of the expandable portion 20. For example, when the framework member 52 is a right-handed coil or helix a clockwise rotation of a proximal position relative to a distal position transitions the expandable portion 20 between the contracted state and an expanded state while a counterclockwise rotation of the proximal position relative to the distal position transitions the expandable portion 20 from an expanded state to the contracted state. Similarly, when the framework member 52 is a left-handed coil or helix a clockwise rotation of the distal position relative to the proximal position transitions the expandable portion 20 from the contracted state to an expanded state while a counterclockwise rotation of the distal position relative to the proximal position transitions the expandable portion 20 from an expanded state to a more contracted state. In a similar embodiment, the longitudinal distance between the proximal and distal positions is also adjustable. For example, the proximal position may be slidable toward the distal position, thus, reducing the distance between the two. In one embodiment, one or both positions are threadably rotatable about the elongate member 18 such that rotation of the positions increases or decreases the distance between the proximal and distal positions. In other embodiments, one or both positions are clickably or slidably positionable along the elongate member 18. It is to be appreciated that a coil may be rotatable at multiple positions such that various diameters along the length of the expandable portion 20 may be adjustable to meet various applications.



FIG. 18 illustrates an embodiment of an expandable portion 20 in the contracted state comprising a coiled framework member 52. The coil is coupled to the elongate member 18 at a distal coupler 56 adjacent to a distal tip 28 such that a transition of the expandable portion 20 from the contracted state to an expanded state comprises a counter rotation between the distal coupler 56 and a proximal position 58 of the framework member 52, as illustrated in FIG. 19. It is to be appreciated that the coil may be proximally coupled or fixed relative to the sheath 40 or otherwise proximally independent of a rotation of the distal coupler 56. FIG. 19 illustrates an embodiment of the expandable portion 20 shown in FIG. 18 in the expanded state following multiple clockwise rotations of the distal coupler 56 relative to the proximal portion 58 of the coil. According to this embodiment, counterclockwise rotation of the distal coupler 56 relative to the proximal portion 58 of the coil transitions the expandable portion 20 from an expanded state to a less contracted state. FIG. 20 illustrates a further embodiment of the expandable portion 20 depicted in FIGS. 18 and 19 and includes a method of further increasing the degree of expansion of the expandable portion 20 by decreasing its length. For example, a clinician may withdraw a portion of the elongate member 18 within the sheath 40 while maintaining the length of framework member 52 deployed from its distal end. In this way, the expandable dimension may be further customized to fit any one of a number of desired applications.



FIG. 21 illustrates an expandable portion 20 comprising a framework member 52 orientated in a tube-like braid extending along a distal portion of a elongate member 18. The expandable portion 20 is illustrated in a partially deployed position and is in a contracted state. A proximal end of the braid is coupled to a proximal coupler 54 (shown in cutaway). A distal end of the braid is coupled to a distal coupler 56 adjacent to a distal tip 28. In this embodiment, relative movement between the proximal coupler 54 and the distal coupler 56 transitions the expandable portion 20 between the contracted state and an expanded state. Notably, in some embodiments, a sheath 40 may be provided that may, in certain instances, at least partially be utilized as a proximal coupler 54. For example, as illustrated in FIG. 22, when the distal coupler 56 moves proximally with respect to the proximal coupler 54, the braid is compressed. The braid orientation of the framework member 52 also enables loosening of the braid such that the distance between individual overlaps of framework members 52 within the braid increases in response to compressive stress. Because the length of deployed braid does not decrease to the extent of the relative movement between the proximal coupler 54 and the distal coupler 56, a dimension, or in this instance, a diameter, of the expandable portion 20 increases. Alternatively, when relative movement between the proximal coupler 54 and the distal coupler 56 results in an increase in the distance between the respective couplers 54, 56, tension on the framework members 52 decompresses the braid, decreasing a diameter of the expandable portion 20 to a less expanded state. In some embodiments, a full transition from an expanded state to a contracted state comprises relative movement between the proximal coupler 54 and the distal coupler 56 increasing the distance between the two couplers such that the tension stress applied to the braid is sufficient to contract the braid to a predetermined diameter.



FIG. 23 illustrates a further embodiment of the expandable portions 20 illustrated in FIGS. 21 and 22 that includes an additional feature to customize the degree of expansion. In this embodiment, a clinician may selectively control or choose the degree to which the expandable portion 20 expands by adjusting the distance between the proximal coupler 54 and the distal coupler 54. As can be seen, a decrease in distance between the coupler 54, 56 increases a diameter of the expandable portion 20 while an increase in the distance between the couplers 54, 56 decreases the diameter. In this way, a clinician may beneficially control the diameter of the expandable portion 20. Furthermore, when a sheath 40 is provided that may be at least partially utilized as a proximal coupler 54, a clinician may compensate for a decrease in length of the deployed expandable portion 20 by deploying additional expandable portion 20 (such as framework members 52) that may also be compressed to increase the diameter of the expandable portion 20.


As previously described, one or a multiple of methods may be employed to effectuate a relative movement between a first movable portion comprising a proximal portion of framework members 50, such as a proximal coupler, and a second movable portion comprising a distal portion of framework members 52, such as a distal coupler. For example, in some embodiments, a clinician may engage an interface to signal actuation or a relative movement between the first and second portions. Actuation signals may trigger transitions effectuated by mechanical and/or electrical elements. In certain embodiments, an actuator comprises a manipulator configured to manually extend or retract portions of framework members 52 and/or portions of the elongate member 18. A signal may result in a rotation of a coupler about a threaded track, as in FIG. 12, for example, or a slide of the first movable portion relative to the second movable portion, as in, FIG. 14, for example. The elongate member 18 may additionally be fitted with longitudinal tracks or rails in which the first and/or second movable portions may transition. In some embodiments, an intervening span of elongate member 18 between the first and second movable portions may decrease in length by telescopically nesting or folding into an adjacent span, as in, for example, FIG. 17. Such a decrease in length of an intervening span of elongate member 18 may be aided by a bias configured to releasably extend or retract the intervening span. In certain embodiments, framework members 52 and/or the elongate member 18 may be fitted with gears configured to relatively move portions thereof.



FIG. 24 illustrates an expandable portion 20 in an expanded state according to various embodiments. The expandable portion 20 comprises a plurality of framework member 52 comprising a thermoresponsive shape memory material defining a basket. The framework members 52 extend along the axis and each comprise a linear portion 27b flanked by a distal tapered portion 27c and proximal tapered portion 27a. As shown, the proximal tapered portion 27a of each framework member 52 diverges away from the axis at a first angle, and the distal tapered portion 27c of each framework member 52 converges toward the axis at a second angle. As can be seen, the degree of expansion is a function of the lengths of the tapered portions 27a,c and their degree of divergence away and convergence toward the axis. For example, increasing the length of the tapered portions 27a,c increases the diameter of the expandable portion 20. Additionally, the degree of expansion increases as the degree of divergence and convergence approaches 90°. In some embodiments, such an expansion in diameter is also accompanied by a reduction in length of the expandable portion 20. When the expandable portion 20 is in the contracted state, as illustrated in FIG. 25, proximal tapered portions 27a, linear portions 27b, and distal tapered portions 27c extend relatively linearly along the axis such that the expandable portion 20 may be received by a channel defined within the sheath 40.


In the embodiment illustrated in FIGS. 24 and 25, framework members 52 exhibit two-way memory. That is, framework members 52 comprise at least two memory forms and are transitional between the at least two memory forms in response changes in temperature. At temperatures at or below a low transition temperature, framework members 52 are in a low temperature form. At temperatures at or above a high transition temperature, framework members 52 are in a high temperature form. Depending on desired application, the low temperature form may correspond to either the expanded state or the contracted state and the high temperature form may correspond to either the expanded state or contracted state. A clinician may signal a transition comprising a temperature change through an actuator located on the handle (not shown). Actuation may result in transmission of energy, such as vibrations, to the framework members 52 sufficient to increase the temperature of framework members 52 and effectuate a transition to the high temperature form. Actuation may also comprise deployment into a biological environment, in some embodiments. For example, a transition temperature may be set at or below a biological temperature such that when framework members 52 are exposed to biological temperatures, the expandable portion 20 undergoes a transition.


In some embodiments, a sheath 40 is not provided and an electrode 21 may be delivered to a target region within another delivery device. In some such embodiments, the electrode 21 may be delivered to the target region naked, that is, not within an artificial channel. In these and other embodiments, the electrode 21 may be delivered to a target region by advancing the elongate member 18 through a biological orifice or lumen. Once delivered to the target region, the electrode 21 may be expanded in response to an actuation signal. The electrical ablation device 12 illustrated in FIG. 26 is configured for use and delivery to a target region either within an artificial delivery channel or naked. The device 12 includes a handle 14 through which a conductive elongate member 18 extends. Near the proximal end of the handle 14, the elongate member 18 comprises a connector 19 for connecting the elongate member 18 to a power source (not shown). The elongate member 18 extends distally from the distal end of the handle 14 and includes an electrode 21 disposed along a distal portion of its length and a distal tip 28. The electrode 21 comprises an expandable portion 20 comprising a plurality of framework members 52 arranged in a basket similar to the embodiment depicted in FIG. 24. The handle 14 comprises an actuator 31 configured to transition the expandable portion 20 between contracted and expanded states by any suitable method.


In various embodiments, the elongate member 18 may be flexible along all or a portion of its length. Such flexible portions may be bendable, deformable, or elastic, for example. Flexible portions may also be conditionally flexible or conditionally rigid. In some embodiments, the elongate member 18 comprises flexible portions which may be mechanically bendable such that portions of the elongate member 18 are pivotable in response to a signal or otherwise manipulable. In one embodiment, the elongate member 18 comprises a maneuverable portion configured to maneuver within a biological lumen such as vascular, duct, cavity, orifice, or tract area, for example, and deliver an electrode 21, to a target site. In one embodiment, a cardiac catheter platform comprises one or more electrodes 21 disposed along the distal portion of a flexible and/or maneuverable elongate member 18 configured to deliver the one or more electrodes 21 into chamber, vessel, or a surface of the heart to endocardially ablate spots for treatment for atrial fibrillation, for example. The one or more electrodes 21 may be selectively expandable between contracted and expanded states. In some embodiments, multiple electrodes 21 are disposed along the distal portion of the elongate member 18 and spaced to deliver energy to cardiac tissue within a tightly controlled electric field. In some such embodiments, the distance between electrodes 21 along the distal portion of the elongate member 18 may be adjustable to conform to a particular procedure.


Referring to FIG. 27, a cardiac catheter platform according to various embodiments is illustrated. The platform comprises a catheter assembly comprising an electrode 21 disposed along a distal portion of an elongate member 18. The platform further comprises a handle 14 configured to maneuver the elongate member 18 and electrode 21 under imaging into the heart to endocardially ablate spots or points as a treatment for atrial fibrillation. In the illustrated embodiment, the elongate member 18 is equipped with a long insulated tip 28 located at the distal end of the elongate member 18. The tip 28 may be configured to beneficially increase the ability of a clinician to thread, steer, or navigate the elongate member 18 and electrode 21 to a tissue treatment region. In various embodiments, a cardiac catheter platform may comprise an expandable portion 20 comprising a comparatively increased length over certain other embodiments. An increased length may be advantageous in certain treatment applications by allowing a clinician to more easily connect ablative points along a desired lesion line. In some embodiments, an expandable portion 20 comprising an adjustable length, as previously described, may be provided to customize the expandable portion 20 to flexibly suit particular surgical applications. In some embodiments, the length may be conveniently adjusted at or near the tissue treatment site. Such a feature may beneficially decrease treatment time by enabling a clinician to adjust the expanded length of the electrode 21 to adaptively connect ablative points during a procedure without a need to completely remove the catheter. Referring again to FIG. 27, a system comprising the illustrated cardiac catheter may further comprise a second electrode 22 (not shown) configured to couple to an energy source (not shown). The second electrode 22 may be a return pad, needle, clamp, second probe, or second electrode disposed along the distal portion of the elongate member 18.



FIG. 28A includes a photograph of an ablation zone following ablative treatment according to various embodiments. Using intravascular approaches described herein, an electrode 21 was placed in a porcine liver duct and a second electrode 22 comprising a return was placed on the skin. As can be seen, following ablative treatment, an ablation zone 80 surrounded the vessel. No lesions or burns were observed at the tissue around the site of the return. FIG. 28B includes a photograph of an ablation zone 80 following ablative treatment according to various embodiments. Using intravascular approaches described herein an electrode 21 was placed in a porcine liver vessel and a second needle electrode 22 was placed into the liver parenchyma. As can be seen, following ablative treatment, an ablation zone 80 surrounded the vessel. FIG. 29 includes a photograph of an endocardiac ablation zone 80 following ablative treatment according to various embodiments. Using intravascular approaches described herein, an electrode 21 was contacted with porcine heart tissue. Following ablative treatment, an ablation zone 80 comprising a lesion line along cardiac tissue was observed.


In various embodiments, electrical ablation devices 12 include accessory features such as optics, applicators, and sensors. For example, transducers or sensors may be located in the handle 14, or tip 28, or other suitable location to sense, for example, the force required to expand an electrode 21. This feedback information may be useful to determine whether electrodes 21 have been properly positioned within a biological lumen at or near a tissue treatment site. Manual actuation of an expandable portion 20 may similarly provide feedback to a clinician regarding the force required to fully expand the expandable portion 20. In this way, the clinician may decide that full expansion of the expandable portion 20 is either unnecessary or may otherwise result in unnecessary trauma and adjust the degree of expansion accordingly. In certain embodiments, feedback is provided to the clinician to physically sense when an electrode 21 is placed at or near a tissue treatment site. In some embodiments, feedback information provided by the transducers or sensors may be processed and displayed by circuits located either internally or externally to the energy source 11. Sensor readings may be employed, for example, to determine whether an electrode 21 has been properly located at or near a tissue treatment site thereby assuring a suitable margin of error has been achieved in locating the electrode 21. Sensor readings may also be employed, for example, to determine whether pulse parameters need to be adjusted to achieve a desired result, such as, for example, reducing the intensity of muscular contractions in the patient.


In one embodiment, an electrical ablation device 12 includes an accessory feature comprising an electrolyte applicator. An electrolyte applicator may be configured to apply or deliver an exogenous electrolyte at or near a tissue treatment site. An electrolyte applicator may include a delivery portion and a reservoir portion. In some instances, the delivery portion may comprise the reservoir portion. The reservoir portion may be configured to contain electrolyte for delivery. The delivery portion may be configured to deliver electrolyte at or near the tissue treatment site. In some embodiments, the delivery portion comprises a channel adjacent to or within the elongate member 18 or sheath 40. In one embodiment, the delivery portion comprises the tip 28. A clinician may actuate an actuator located on the handle 14, for example, to deliver electrolyte from the delivery portion. In certain embodiments, the delivery portion may be deployable independent of the electrode 21 from a lumen or artificial channel. In some embodiments, the delivery portion, reservoir portion, or the electrolyte applicator may be separate from the electrical ablation system 10. In various embodiments, the delivery portion of an electrolyte applicator may apply an aqueous electrolyte solution to the treatment area prior to or during a treatment to increase conductivity. In other embodiments, however, no solution may be added or a separate or same accessory feature may be configured to apply suction to a treatment area to, for example, remove fluids prior to or during a treatment.


In certain embodiments, at least one of a temperature sensor and pressure sensor may be located in or proximate the electrical ablation system 10. The temperature sensor and/or pressure sensor may be located within the handle 14, protective sleeve 38, sheath 40, elongate member 18, at the distal end of the elongate member 18, such as the tip 28, or within one or more electrodes 21. In certain embodiments, the temperature sensor and/or pressure sensor may be separate from the electrical ablation system 10. The temperature sensor and pressure sensor may provide feedback to the operator, surgeon, or clinician to apply an electric field pulse to the undesirable tissue. The pressure and/or temperature information may be useful to determine whether the undesirable tissue may be treated having reduced or no detrimental thermal effects to surrounding healthy tissue. According to certain embodiments, the temperature sensor may measure the temperature of the tissue treatment region, undesirable tissue, or the area surrounding one or more electrodes before, during, and/or after treatment such as before and/or after the first and/or second sequences of electrical pulses are delivered to the tissue. According to certain embodiments, the pressure sensor may measure the pressure of the tissue treatment region, the space between the electrodes, and/or the area surrounding one or more electrodes before, during, and/or after treatment, such as before and/or after the first and/or second sequences of electrical pulses are delivered to the tissue.


The electrical ablation system 10 may be employed to ablate undesirable tissue in delicate zones or near critical structures and be deployed through a biological lumen, such as vascular, ducts, or tract areas. The electrical ablation system 10 may be configured to treat a number of lesions and osteopathologies comprising metastatic lesions, tumors, fractures, infected sites, and inflamed sites in a tissue treatment region using electrical energy. The electrical ablation devices 12 may be configured to be positioned within a patient's natural body orifice, e.g., the mouth, anus, and vagina, and/or advanced through internal body lumen or cavities, e.g., the esophagus, stomach, intestines, colon, cervix, and urethra, to reach the tissue treatment region. For example, an elongate member 18 may be configured to be positioned and passed through a small incision or keyhole formed through the patient's skin or abdominal wall using a trocar to reach the tissue treatment region. The tissue treatment region may be located in the patient's brain, lung, breast, liver, gall bladder, pancreas, prostate gland, various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity. The electrical ablation system 10 may be used in conjunction with endoscopic, laparoscopic, thoracoscopic, open surgical procedures via small incisions or keyholes, percutaneous techniques, transcutaneous techniques, and/or external non-invasive techniques, and any combinations thereof.


In one embodiment, the electrical ablation device 12 may be employed in conjunction with an artificial channel (e.g., a flexible endoscope, as well as a rigid endoscope, laparoscope, or thoracoscope, such as the GIF-100 model available from Olympus Corporation). In one embodiment, the endoscope may be introduced to the tissue treatment region trans-anally through the colon, trans-orally through the esophagus and stomach, trans-vaginally through the cervix, transcutaneously, or via an external incision or keyhole formed in the abdomen in conjunction with a trocar. The electrode 21 may thereby be delivered to a tissue treatment region via insertion and guided into or proximate the tissue treatment region using the endoscope. Such delivery may also be accomplished using other various artificial channels. The endoscope or other artificial channel may define one or more channels for receiving additional devices such as a light source and a viewing port. Images within the field of view of the viewing port may be received by an optical device, such as, for example, a camera comprising a charge coupled device (CCD) usually located within the endoscope, and transmitted to a display monitor (not shown) outside the patient. In other embodiments, the endoscope is not utilized, and the electrical ablation device 12 comprises a light source and/or a viewing port, for example. Still additional embodiments employ other techniques to determine proper instrument placement, such as, for example, ultrasound or a computerized tomography (CT) scan.


According to one embodiment, methods of electrically ablating tissue include delivering a first electrode 21 to a tissue treatment region. The first electrode 21 may be configured to couple to the energy source and to a tissue treatment region located within or near a lumen. In one embodiment the first electrode 21 is delivered or directed into a lumen at or near a tissue treatment region through a hollow bore, such as an artificial channel. The first electrode 21 may then be deployed at or near a tissue treatment site. Once deployed, an expandable portion 20 of the first electrode 21 may be expanded in at least one dimension (e.g., diameter or length) and then contacted with the lumen wall. A second electrode 22 may be coupled to the first electrode 21 and the patient such that the second electrode 22 is in conductive communication with the first electrode 21 through the patient and represents a difference in electric potential with respect to the first electrode 21. For example, in some embodiments, the second electrode 22 may be a ground or return pad, a needle electrode, or medical clamp in contact or conductive communication with the patient. In various embodiments, the second electrode 22 may be a separately placed electrode, such as a conductive material, return pad, needle, or clamp, for example, may be located at a near by or adjacent tissue, surface, or lumen. Once delivered to a tissue treatment region, the first electrode 21 may be actuated (e.g., deployed, expanded, and energized) to ablate the undesirable tissue.


In some embodiments, expanding an expandable portion 20 of a first electrode 21 comprises transitioning the expandable portion 20 from a contracted state to an expanded state. Transitioning an electrode 21 from a contracted state to an expanded state may comprise increasing at least one dimension of the electrode 21. In certain embodiments, when the expandable portion 20 transitions from the contracted state to the expanded state, a diameter of the expandable portion 20 proportionally decreases in length. In other embodiments, however, the diameter of the expandable portion 20 does not expand proportionally to a decrease in length.


In some embodiments, the first electrode 21 may be alternately or selectively transitionable between a contracted state and an expanded state. In certain embodiments, a transition from a contracted state to an expanded state comprises a relative movement between two portions of a framework or framework members 52. The relative movement may be rotational or longitudinal. For example, a decrease in the distance between two portions of a framework 50 or framework members 52 may transition an expandable portion 20 from a contracted state to an expanded state. Relative movement may result in one or more framework members 52 extending outward of the axis. Outward extension may be the result of bowing of one or more framework members 52. Framework members 52 extending outward of the axis may similarly prop-up, extend, or otherwise reposition other framework members 52 outward of the axis. Various memory materials and orientations of framework members 52 may be employed to assist in transitioning an expandable portion 20 between contracted and expanded states. For example, framework members 52 may be arranged as springs, coils, braids, multi-member baskets, umbrellas, and injectable cavities and may comprise rigid, jointed, or memory materials, including shape set memory superelastics. For example, framework members 52 may comprise metallics, alloys, rubbers, plastics, polymers, and various conductive materials.


In various embodiments, expanding an electrode comprises expanding a diameter or radius or of the expandable portion many times that of the electrode in a contracted state. Depending on the desired application, electrodes may expand 2, 5, 10, 20, 40 or more times in diameter or radius to expand to a diameter conforming to a diameter of a tissue treatment region comprising a biological lumen, such as, for example, a larynx. In various embodiments, the diameter of the first electrode may by different from the diameter of the second electrode. Similarly, in some embodiments, the first electrode may have a different length than the second electrode. Again, depending on the desired application, such variations are contemplated and are considered within this disclosure. As is to be appreciated, when multiple electrodes are disposed along the distal portion of an elongate member, various spacing between the electrodes may also be desirable. In some such embodiments, the distance from the first electrode to the second electrode may be adjusted from 0.5 cm to 3 cm, such as, for example, 1 cm, 1.5 cm, 2.0 cm, and 3 cm. However, in other applications it may be desirable to greatly increase the distance between first and second electrodes to, for example, customize the size of the electric field to a particular application.


Electrodes 21 may be introduced, delivered, deployed, or expanded according to any of the above methods and then contacted with a lumen wall. Contact with a lumen wall is preferably at least partially circumferential. Electrical current may then be applied in various pulse power outputs, such as monophasic square waves, biphasic square waves, RF modulated high voltage, or nanosecond duration pulses, for example. The applied current and waveform can be customized for the desired application and clinical goal to provide various tissue effects such as cell lysis, apoptosis, or irreversible electroporation.



FIG. 30 is a representative use of an electrical ablation system and device according to various embodiments. An elongate member 18 delivers the expandable portion 20 to a tissue region comprising a lumen 82 (e.g., a hepatic vein) employing methods herein disclosed. An alternate delivery placement of the elongate member 18′ is additionally indicated by the dashed outline. The expandable portion 20 is then deployed from the distal end of the sheath 40 to the target site (e.g., a tumor surrounding the hepatic vein). Once deployed, the expandable portion 20 is expanded, e.g., transitioned from a contracted state to an expanded state. In FIG. 30, saline is introduced into the lumen to increase electrical conductivity prior to treatment (not shown). The expandable portion 20 is then contacted with a wall of the lumen and ablative treatment is applied. FIG. 30 illustrates an ablation zone 80 of ablated cells following such treatment. As can be seen in this depiction, in some embodiments, the dimensions of the expandable portion 20 in the lumen may determine the size of the zone.


Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors such as tips, electrodes, and elongate members may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. An electrical ablation device, comprising: an elongate member;a first electrode disposed along the elongate member and extending along an axis, the first electrode having a proximal end configured to couple to an energy source and a surface configured to couple to a tissue treatment region and apply ablative energy; anda first expandable portion having a proximal end and a distal end and extending along the axis, the first expandable portion defining a first perimeter of the first electrode and having an associated first diameter with respect to the axis, wherein the first expandable portion comprises a first framework comprising a framework member, wherein the framework member comprises a helix extending along the first expandable portion, wherein a distal end of the framework member is configured to deliver electric current,wherein the first framework is selectively expandable to transition the first expandable portion from a contracted state to an expanded state, and the first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state,wherein, when the first framework is expanded, the first diameter is expanded and the first expandable portion is transitioned from the contracted state to the expanded state,wherein, when the first framework is contracted, the first diameter is contracted and the first expandable portion is transitioned from the expanded state to the contracted state,wherein a relative rotation between a proximal portion and a distal portion of the framework member transitions the first expandable portion between the contracted state and the expanded state, andwherein the relative rotation between the proximal portion and the distal portion of the framework member comprises a counter rotation of the distal portion of the framework member relative to the proximal portion of the framework member.
  • 2. The electrical ablation device of claim 1, wherein the first electrode comprises a first flexible portion, and wherein at least a portion of the first expandable portion comprises at least a portion of the first flexible portion.
  • 3. The electrical ablation device of claim 1, wherein the first framework is expandable to expand the first diameter to circumferentially contact a biological lumen at two or more locations about the circumference of a biological lumen.
  • 4. The electrical ablation device of claim 1, wherein the framework member has an associated memory form and an associated retained form, and wherein the framework member is transitionable between the memory form and the retained form to expand and contract the first framework.
  • 5. The electrical ablation device of claim 4, further comprising a retaining structure configured to retain the framework member in the retained form.
  • 6. The electrical ablation device of claim 5, wherein the retaining structure comprises a sheath defining a channel configured to receive the framework member within a distal portion thereof, wherein the framework member is deployable from a distal end of the distal portion of the sheath, wherein the framework member is transitioned from the retained form to the memory form when deployed from the distal end of the sheath.
  • 7. The electrical ablation device of claim 1, wherein the framework member is transitionable between an associated low temperature form and an associated high temperature form.
  • 8. The electrical ablation device of claim 1, wherein the first framework further comprises a proximal and a distal coupler configured to couple the framework member within the first framework, wherein the proximal and distal couplers are separated by a distance, and wherein a transition from the contracted state to the expanded state further comprises a decrease in the distance between the proximal coupler and the distal coupler.
  • 9. The electrical ablation device of claim 8, wherein the decrease in the distance between the proximal and distal coupler pivots at least a portion of the framework member outward of the axis.
  • 10. The electrical ablation device of claim 1, further comprising: a second electrode disposed along the elongate member and extending along the axis, the second electrode having a proximal end configured to couple to the energy source and a surface configured to couple to the tissue treatment region;a second expandable portion having a proximal end and a distal end and extending along the axis, the second expandable portion defining a second perimeter of the second electrode having an associated second diameter with respect to the axis, wherein the second expandable portion comprises a second framework comprising one or more second framework members; andthe second framework selectively expandable to transition the second expandable portion from a contracted state to an expanded state, and the second framework selectively contractible to transition the second expandable portion from the expanded state to the contracted state, wherein, when the second framework is expanded, the second diameter is expanded and the second expandable portion is transitioned from the contracted state to the expanded state, and wherein, when the second framework is contracted, the second diameter is contracted and the second expandable portion is transitioned from the expanded state to the contracted state.
  • 11. The electrical ablation device of claim 10, wherein the first electrode and the second electrode are separated by a distance along the elongate member, and wherein the distance between the first electrode and the second electrode is selectively adjustable.
  • 12. A method of electrosurgically treating tissue, comprising: obtaining the electrical ablation device of claim 1;delivering the first electrode to a tissue treatment region comprising a biological lumen;expanding the first electrode;contacting the first electrode to a wall of the biological lumen proximal to the tissue to be treated; andtreating the tissue by applying, with the first electrode, one or more sequences of electric pulses to the tissue to be treated sufficient to induce cell death in the tissue by irreversible electroporation.
  • 13. The method of electrosurgically treating tissue of claim 12, further comprising rotating the helix in a first direction within the biological lumen to continuously treat the entire biological lumen.
  • 14. An electrical ablation device, comprising: an elongate member;a first electrode disposed along the elongate member and extending along an axis, the first electrode having a proximal end configured to wirelessly couple to an energy source and a surface configured to couple to a tissue treatment region and apply ablative energy; anda first expandable portion having a proximal end and a distal end and extending along the axis, the first expandable portion defining a first perimeter of the first electrode and having an associated first diameter with respect to the axis, wherein the first expandable portion comprises a first framework comprising a framework member, wherein the framework member comprises a helix extending along the first expandable portion,wherein a distal end of the framework member is configured to deliver electric current,wherein the first framework is selectively expandable to transition the first expandable portion from a contracted state to an expanded state, and the first framework is selectively contractible to transition the first expandable portion from the expanded state to the contracted state,wherein a relative rotation between a proximal portion and a distal portion of the framework member transitions the first expandable portion between the contracted state and the expanded state, andwherein the relative rotation between the proximal portion and the distal portion of the framework member comprises a counter rotation of the distal portion of the framework member relative to the proximal portion of the framework member.
  • 15. An electrical ablation device, comprising: an elongate member;an electrode disposed along the elongate member and extending along an axis, the electrode having a proximal end configured to couple to an energy source and a surface configured to couple to a tissue treatment region and apply ablative energy; andan expandable portion comprising a proximal end and a distal end and extending along the axis, the expandable portion defining a perimeter of the electrode and having an associated diameter with respect to the axis, wherein the expandable portion comprises a framework comprising a framework member, wherein the framework member comprises a helix extending along the expandable portion,wherein the framework is selectively expandable to transition the expandable portion from a contracted state to an expanded state, and the framework is selectively contractible to transition the expandable portion from the expanded state to the contracted state,wherein a relative rotation between a proximal portion and a distal portion of the framework member transitions the expandable portion between the contracted state and the expanded state, andwherein the relative rotation between the proximal portion and the distal portion of the framework member comprises a counter rotation of the distal portion of the framework member relative to the proximal portion of the framework member.
US Referenced Citations (1915)
Number Name Date Kind
112794 Felton Mar 1871 A
645576 Tesla Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1039354 Bonadio Sep 1912 A
1127948 Wappler Feb 1915 A
1482653 Lilly Feb 1924 A
1581706 White Apr 1926 A
1581707 White Apr 1926 A
1581708 White Apr 1926 A
1581709 White Apr 1926 A
1581710 White Apr 1926 A
1625602 Gould et al. Apr 1927 A
1916722 Ende Jul 1933 A
2028635 Wappler Jan 1936 A
2031682 Wappler et al. Feb 1936 A
2113246 Wappler Apr 1938 A
2137710 Anderson Nov 1938 A
2155365 Rankin Apr 1939 A
2191858 Moore Feb 1940 A
2196620 Attarian Apr 1940 A
2388137 Graumlich Oct 1945 A
2451077 Emsig Oct 1948 A
2493108 Casey, Jr. Jan 1950 A
2504152 Riker et al. Apr 1950 A
2938382 De Graaf May 1960 A
2952206 Becksted Sep 1960 A
3044461 Murdock Jul 1962 A
3069195 Buck Dec 1962 A
3070088 Brahos Dec 1962 A
3110956 Fischer, Jr. Nov 1963 A
3170471 Schnitzer Feb 1965 A
3435824 Gamponia Apr 1969 A
3470876 Barchilon Oct 1969 A
3481325 Glassman Dec 1969 A
3595239 Petersen Jul 1971 A
3669487 Roberts et al. Jun 1972 A
3746881 Fitch et al. Jul 1973 A
3799672 Vurek Mar 1974 A
3854473 Matsuo Dec 1974 A
3854743 Hansen Dec 1974 A
3929123 Jamshidi Dec 1975 A
3946740 Bassett Mar 1976 A
3948251 Hosono Apr 1976 A
3961632 Moossun Jun 1976 A
3965890 Gauthier Jun 1976 A
3994301 Agris Nov 1976 A
4011872 Komiya Mar 1977 A
4012812 Black Mar 1977 A
4043342 Morrison, Jr. Aug 1977 A
4071028 Perkins Jan 1978 A
4085743 Yoon Apr 1978 A
4164225 Johnson et al. Aug 1979 A
4170997 Pinnow et al. Oct 1979 A
4174715 Hasson Nov 1979 A
4178920 Cawood, Jr. et al. Dec 1979 A
4207873 Kruy Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4258716 Sutherland Mar 1981 A
4269174 Adair May 1981 A
4278077 Mizumoto Jul 1981 A
4281646 Kinoshita Aug 1981 A
4285344 Marshall Aug 1981 A
4311143 Komiya Jan 1982 A
4329980 Terada May 1982 A
4393872 Reznik et al. Jul 1983 A
4396021 Baumgartner Aug 1983 A
4396139 Hall et al. Aug 1983 A
4406656 Hattler et al. Sep 1983 A
4452246 Bader et al. Jun 1984 A
4461281 Carson Jul 1984 A
4491132 Aikins Jan 1985 A
4492232 Green Jan 1985 A
4527331 Lasner et al. Jul 1985 A
4527564 Eguchi et al. Jul 1985 A
4538594 Boebel et al. Sep 1985 A
D281104 Davison Oct 1985 S
4569347 Frisbie Feb 1986 A
4580551 Siegmund et al. Apr 1986 A
4646722 Silverstein et al. Mar 1987 A
4649904 Krauter et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4655219 Petruzzi Apr 1987 A
4657016 Garito et al. Apr 1987 A
4657018 Hakky Apr 1987 A
4669470 Brandfield Jun 1987 A
4671477 Cullen Jun 1987 A
4677982 Llinas et al. Jul 1987 A
4685447 Iversen et al. Aug 1987 A
4711239 Sorochenko et al. Dec 1987 A
4711240 Goldwasser et al. Dec 1987 A
4712545 Honkanen Dec 1987 A
4721116 Schintgen et al. Jan 1988 A
4727600 Avakian Feb 1988 A
4733662 DeSatnick et al. Mar 1988 A
D295894 Sharkany et al. May 1988 S
4742817 Kawashima et al. May 1988 A
4753223 Bremer Jun 1988 A
4763669 Jaeger Aug 1988 A
4770188 Chikama Sep 1988 A
4790624 Van Hoye et al. Dec 1988 A
4791707 Tucker Dec 1988 A
4796627 Tucker Jan 1989 A
4807593 Ito Feb 1989 A
4815450 Patel Mar 1989 A
4819620 Okutsu Apr 1989 A
4823794 Pierce Apr 1989 A
4829999 Auth May 1989 A
4836188 Berry Jun 1989 A
4846573 Taylor et al. Jul 1989 A
4867140 Hovis et al. Sep 1989 A
4869238 Opie et al. Sep 1989 A
4869459 Bourne Sep 1989 A
4873979 Hanna Oct 1989 A
4880015 Nierman Nov 1989 A
4904048 Sogawa et al. Feb 1990 A
4911148 Sosnowski et al. Mar 1990 A
4926860 Stice et al. May 1990 A
4934364 Green Jun 1990 A
4938214 Specht et al. Jul 1990 A
4950273 Briggs Aug 1990 A
4950285 Wilk Aug 1990 A
4953539 Nakamura et al. Sep 1990 A
4960133 Hewson Oct 1990 A
4977887 Gouda Dec 1990 A
4979496 Komi Dec 1990 A
4979950 Transue et al. Dec 1990 A
4984581 Stice Jan 1991 A
4990152 Yoon Feb 1991 A
4991565 Takahashi et al. Feb 1991 A
4994079 Genese et al. Feb 1991 A
5007917 Evans Apr 1991 A
5010876 Henley et al. Apr 1991 A
5015249 Nakao et al. May 1991 A
5020514 Heckele Jun 1991 A
5020535 Parker et al. Jun 1991 A
5025778 Silverstein et al. Jun 1991 A
5026379 Yoon Jun 1991 A
5033169 Bindon Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5049153 Nakao et al. Sep 1991 A
5050585 Takahashi Sep 1991 A
5052372 Shapiro Oct 1991 A
5065516 Dulebohn Nov 1991 A
5066295 Kozak et al. Nov 1991 A
5098378 Piontek et al. Mar 1992 A
5099827 Melzer et al. Mar 1992 A
5108421 Fowler Apr 1992 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5133727 Bales et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5156609 Nakao et al. Oct 1992 A
5174300 Bales et al. Dec 1992 A
5176126 Chikama Jan 1993 A
5190050 Nitzsche Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5192284 Pleatman Mar 1993 A
5192300 Fowler Mar 1993 A
5197963 Parins Mar 1993 A
5201752 Brown et al. Apr 1993 A
5201908 Jones Apr 1993 A
5203785 Slater Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5209747 Knoepfler May 1993 A
5217003 Wilk Jun 1993 A
5217453 Wilk Jun 1993 A
5219357 Honkanen et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222362 Maus et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5222965 Haughton Jun 1993 A
5234437 Sepetka Aug 1993 A
5234453 Smith et al. Aug 1993 A
5235964 Abenaim Aug 1993 A
5242456 Nash et al. Sep 1993 A
5245460 Allen et al. Sep 1993 A
5246424 Wilk Sep 1993 A
5257999 Slanetz, Jr. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5263958 deGuillebon et al. Nov 1993 A
5273524 Fox et al. Dec 1993 A
5275607 Lo et al. Jan 1994 A
5275614 Haber et al. Jan 1994 A
5275616 Fowler Jan 1994 A
5284128 Hart Feb 1994 A
5284162 Wilk Feb 1994 A
5287845 Faul et al. Feb 1994 A
5287852 Arkinstall Feb 1994 A
5290299 Fain et al. Mar 1994 A
5290302 Pericic Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5297536 Wilk Mar 1994 A
5297687 Freed Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5312333 Churinetz et al. May 1994 A
5312351 Gerrone May 1994 A
5312416 Spaeth et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318589 Lichtman Jun 1994 A
5320636 Slater Jun 1994 A
5324261 Amundson et al. Jun 1994 A
5325845 Adair Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5330488 Goldrath Jul 1994 A
5330496 Alferness Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5334168 Hemmer Aug 1994 A
5334198 Hart et al. Aug 1994 A
5336192 Palestrant Aug 1994 A
5336222 Durgin, Jr. et al. Aug 1994 A
5339805 Parker Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5342396 Cook Aug 1994 A
5344428 Griffiths Sep 1994 A
5345927 Bonutti Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352184 Goldberg et al. Oct 1994 A
5352222 Rydell Oct 1994 A
5354302 Ko Oct 1994 A
5354311 Kambin et al. Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5356408 Rydell Oct 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364408 Gordon Nov 1994 A
5364410 Failla et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5366467 Lynch et al. Nov 1994 A
5368605 Miller, Jr. Nov 1994 A
5368606 Marlow et al. Nov 1994 A
5370647 Graber et al. Dec 1994 A
5370679 Atlee, III Dec 1994 A
5374273 Nakao et al. Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5374953 Sasaki et al. Dec 1994 A
5376077 Gomringer Dec 1994 A
5377695 An Haack Jan 1995 A
5378234 Hammerslag et al. Jan 1995 A
5383877 Clarke Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5386817 Jones Feb 1995 A
5387259 Davidson Feb 1995 A
5391174 Weston Feb 1995 A
5392789 Slater et al. Feb 1995 A
5395367 Wilk Mar 1995 A
5395381 Green et al. Mar 1995 A
5395386 Slater Mar 1995 A
5397332 Kammerer et al. Mar 1995 A
5401248 Bencini Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5403328 Shallman Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405073 Porter Apr 1995 A
5405359 Pierce Apr 1995 A
5409478 Gerry et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5423821 Pasque Jun 1995 A
5431635 Yoon Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5433735 Zanakis et al. Jul 1995 A
5439471 Kerr Aug 1995 A
5439478 Palmer Aug 1995 A
5441059 Dannan Aug 1995 A
5441494 Ortiz Aug 1995 A
5441498 Perkins Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445648 Cook Aug 1995 A
5449021 Chikama Sep 1995 A
5454827 Aust et al. Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462561 Voda Oct 1995 A
5465731 Bell et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5472441 Edwards et al. Dec 1995 A
5478347 Aranyi Dec 1995 A
5478352 Fowler Dec 1995 A
5480404 Kammerer et al. Jan 1996 A
5482029 Sekiguchi et al. Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499990 Schülken et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5500012 Brucker et al. Mar 1996 A
5501692 Riza Mar 1996 A
5503616 Jones Apr 1996 A
5505686 Willis et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514157 Nicholas et al. May 1996 A
5518501 Oneda et al. May 1996 A
5522829 Michalos Jun 1996 A
5522830 Aranyi Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5533418 Wu et al. Jul 1996 A
5536234 Newman Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5549637 Crainich Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5555883 Avitall Sep 1996 A
5558133 Bortoli et al. Sep 1996 A
5562693 Devlin et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569298 Schnell Oct 1996 A
5571090 Sherts Nov 1996 A
5573540 Yoon Nov 1996 A
5578030 Levin Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584845 Hart Dec 1996 A
5590660 MacAulay et al. Jan 1997 A
5591179 Edelstein Jan 1997 A
5591205 Fowler Jan 1997 A
5593420 Eubanks, Jr. et al. Jan 1997 A
5595562 Grier Jan 1997 A
5597378 Jervis Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601574 Stefanchik et al. Feb 1997 A
5601588 Tonomura et al. Feb 1997 A
5601602 Fowler Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607386 Flam Mar 1997 A
5607389 Edwards et al. Mar 1997 A
5607406 Hernandez et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5613975 Christy Mar 1997 A
5613977 Weber et al. Mar 1997 A
5614943 Nakamura et al. Mar 1997 A
5616117 Dinkier et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5624399 Ackerman Apr 1997 A
5624431 Gerry et al. Apr 1997 A
5626578 Tihon May 1997 A
5626587 Bishop et al. May 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5630782 Adair May 1997 A
5630795 Kuramoto et al. May 1997 A
5643283 Younker Jul 1997 A
5643292 Hart Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5644798 Shah Jul 1997 A
5645083 Essig et al. Jul 1997 A
5645519 Lee et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5649372 Souza Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653690 Booth et al. Aug 1997 A
5653722 Kieturakis Aug 1997 A
5657755 Desai Aug 1997 A
5662621 Lafontaine Sep 1997 A
5662663 Shallman Sep 1997 A
5667527 Cook Sep 1997 A
5669875 van Eerdenburg Sep 1997 A
5681276 Lundquist Oct 1997 A
5681279 Roper et al. Oct 1997 A
5681324 Kammerer et al. Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690606 Slotman Nov 1997 A
5690656 Cope et al. Nov 1997 A
5690660 Kauker et al. Nov 1997 A
5695448 Kimura et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695511 Cano et al. Dec 1997 A
5700275 Bell et al. Dec 1997 A
5702438 Avitall Dec 1997 A
5704892 Adair Jan 1998 A
5709708 Thal Jan 1998 A
5711921 Langford Jan 1998 A
5716326 Dannan Feb 1998 A
5716375 Fowler Feb 1998 A
5725542 Yoon Mar 1998 A
5728094 Edwards Mar 1998 A
5730740 Wales et al. Mar 1998 A
5735849 Baden et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741278 Stevens Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5746759 Meade et al. May 1998 A
5749826 Faulkner May 1998 A
5749881 Sackier et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752951 Yanik May 1998 A
5755731 Grinberg May 1998 A
5759150 Konou et al. Jun 1998 A
5759151 Sturges Jun 1998 A
5762604 Kieturakis Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5766170 Eggers Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769849 Eggers Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5779720 Walder-Utz et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5791022 Bohman Aug 1998 A
5792113 Kramer et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797939 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800449 Wales Sep 1998 A
5800451 Buess et al. Sep 1998 A
5803903 Athas et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5808665 Green Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810865 Koscher et al. Sep 1998 A
5810876 Kelleher Sep 1998 A
5810877 Roth et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5814026 Yoon Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817107 Schaller Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5818527 Yamaguchi et al. Oct 1998 A
5819736 Avny et al. Oct 1998 A
5823947 Yoon et al. Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5827190 Palcic et al. Oct 1998 A
5827276 LeVeen et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5833703 Manushakian Nov 1998 A
5833715 Vachon et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5843017 Yoon Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843121 Yoon Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853374 Hart et al. Dec 1998 A
5855569 Komi Jan 1999 A
5855585 Kontos Jan 1999 A
5860913 Yamaya et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5873849 Bernard Feb 1999 A
5876411 Kontos Mar 1999 A
5882331 Sasaki Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5893846 Bales et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5899919 Eubanks, Jr. et al. May 1999 A
5902238 Golden et al. May 1999 A
5902254 Magram May 1999 A
5904702 Ek et al. May 1999 A
5906625 Bito et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916146 Allotta et al. Jun 1999 A
5916147 Boury Jun 1999 A
5919207 Taheri Jul 1999 A
5921892 Easton Jul 1999 A
5921993 Yoon Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5922008 Gimpelson Jul 1999 A
5925052 Simmons Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5936536 Morris Aug 1999 A
5938661 Hahnen Aug 1999 A
5941815 Chang Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951547 Gough et al. Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5970581 Chadwick et al. Oct 1999 A
5971995 Rousseau Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976074 Moriyama Nov 1999 A
5976075 Beane et al. Nov 1999 A
5976130 McBrayer et al. Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980556 Giordano et al. Nov 1999 A
5984933 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5984950 Cragg et al. Nov 1999 A
5989182 Hori et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5993474 Ouchi Nov 1999 A
5995875 Blewett et al. Nov 1999 A
5997555 Kontos Dec 1999 A
6001120 Levin Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010515 Swain et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6016452 Kasevich Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6019770 Christoudias Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024747 Kontos Feb 2000 A
6027522 Palmer Feb 2000 A
6030365 Laufer Feb 2000 A
6030384 Nezhat Feb 2000 A
6030634 Wu et al. Feb 2000 A
6033399 Gines Mar 2000 A
6033401 Edwards et al. Mar 2000 A
6036640 Corace et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6050992 Nichols Apr 2000 A
6053927 Hamas Apr 2000 A
6053937 Edwards et al. Apr 2000 A
6059719 Yamamoto et al. May 2000 A
6066160 Colvin et al. May 2000 A
6068603 Suzuki May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6086530 Mack Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090108 McBrayer et al. Jul 2000 A
6090129 Ouchi Jul 2000 A
6096046 Weiss Aug 2000 A
6102909 Chen et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109852 Shahinpoor et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6110183 Cope Aug 2000 A
6113593 Tu et al. Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6131790 Piraka Oct 2000 A
6139555 Hart et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6146391 Cigaina Nov 2000 A
6148222 Ramsey, III Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149662 Pugliesi et al. Nov 2000 A
6152871 Foley et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168605 Measamer et al. Jan 2001 B1
6169269 Maynard Jan 2001 B1
6170130 Hamilton et al. Jan 2001 B1
6173872 Cohen Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183420 Douk et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190383 Schmaltz et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6203533 Ouchi Mar 2001 B1
6206872 Lafond et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6210409 Ellman et al. Apr 2001 B1
6214007 Anderson Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6231506 Hu et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6240312 Alfano et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6258064 Smith et al. Jul 2001 B1
6261242 Roberts et al. Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6283963 Regula Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322578 Houle et al. Nov 2001 B1
6325534 Hawley et al. Dec 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6350267 Stefanchik Feb 2002 B1
6350269 Shipp et al. Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352541 Kienzle et al. Mar 2002 B1
6352543 Cole Mar 2002 B1
6355013 van Muiden Mar 2002 B1
6355035 Manushakian Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
6368340 Malecki et al. Apr 2002 B2
6371956 Wilson et al. Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383197 Conlon et al. May 2002 B1
6387671 Rubinsky et al. May 2002 B1
6391029 Hooven et al. May 2002 B1
6398708 Hastings et al. Jun 2002 B1
6402735 Langevin Jun 2002 B1
6402746 Whayne et al. Jun 2002 B1
6406440 Stefanchik Jun 2002 B1
6409727 Bales et al. Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6419641 Mark et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6431500 Jacobs et al. Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6443970 Schulze et al. Sep 2002 B1
6443988 Felt et al. Sep 2002 B2
6447444 Avni et al. Sep 2002 B1
6447511 Slater Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6454783 Piskun Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6458074 Matsui et al. Oct 2002 B1
6458076 Pruitt Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6470218 Behl Oct 2002 B1
6475104 Lutz et al. Nov 2002 B1
6485411 Konstorum et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491627 Komi Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6493590 Wessman et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6503192 Ouchi Jan 2003 B1
6506190 Walshe Jan 2003 B1
6508827 Manhes Jan 2003 B1
6514239 Shimmura et al. Feb 2003 B2
6517534 McGovern et al. Feb 2003 B1
6520954 Ouchi Feb 2003 B2
6526320 Mitchell Feb 2003 B2
6527753 Sekine et al. Mar 2003 B2
6527782 Hogg et al. Mar 2003 B2
6530880 Pagliuca Mar 2003 B2
6530922 Cosman et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6537200 Leysieffer et al. Mar 2003 B2
6543456 Freeman Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551356 Rousseau Apr 2003 B2
6554766 Maeda et al. Apr 2003 B2
6554823 Palmer et al. Apr 2003 B2
6554829 Schulze et al. Apr 2003 B2
6558384 Mayenberger May 2003 B2
6562034 Edwards et al. May 2003 B2
6562035 Levin May 2003 B1
6562052 Nobles et al. May 2003 B2
6569120 Green et al. May 2003 B1
6569159 Edwards et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6572635 Bonutti Jun 2003 B1
6575988 Rousseau Jun 2003 B2
6579311 Makower Jun 2003 B1
6581889 Carpenter et al. Jun 2003 B2
6585642 Christopher Jul 2003 B2
6585717 Wittenberger et al. Jul 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592559 Pakter et al. Jul 2003 B1
6592603 Lasner Jul 2003 B2
6594971 Addy et al. Jul 2003 B1
6602262 Griego et al. Aug 2003 B2
6605105 Cuschieri et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6610074 Santilli Aug 2003 B2
6613038 Bonutti et al. Sep 2003 B2
6613068 Ouchi Sep 2003 B2
6616632 Sharp et al. Sep 2003 B2
6620193 Lau et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6626919 Swanstrom Sep 2003 B1
6632171 Iddan et al. Oct 2003 B2
6632229 Yamanouchi Oct 2003 B1
6632234 Kieturakis et al. Oct 2003 B2
6638275 McGaffigan et al. Oct 2003 B1
6638286 Burbank et al. Oct 2003 B1
6645225 Atkinson Nov 2003 B1
6652518 Wellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6652551 Heiss Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6663655 Ginn et al. Dec 2003 B2
6666854 Lange Dec 2003 B1
6672338 Esashi et al. Jan 2004 B1
6673058 Snow Jan 2004 B2
6673070 Edwards et al. Jan 2004 B2
6673087 Chang et al. Jan 2004 B1
6673092 Bacher Jan 2004 B1
6676685 Pedros et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6684938 Tsujita et al. Feb 2004 B2
6685628 Vu Feb 2004 B2
6685724 Haluck Feb 2004 B1
6692445 Roberts et al. Feb 2004 B2
6692462 Mackenzie et al. Feb 2004 B2
6692493 McGovern et al. Feb 2004 B2
6695867 Ginn et al. Feb 2004 B2
6699180 Kobayashi Mar 2004 B2
6699256 Logan et al. Mar 2004 B1
6699263 Cope Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6708066 Herbst et al. Mar 2004 B2
6709188 Ushimaru Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6716226 Sixto, Jr. et al. Apr 2004 B2
6731875 Kartalopoulos May 2004 B1
6736822 McClellan et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6740082 Shadduck May 2004 B2
6743166 Berci et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749609 Lunsford et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752811 Chu et al. Jun 2004 B2
6752822 Jespersen Jun 2004 B2
6758857 Cioanta et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6761722 Cole et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6773434 Ciarrocca Aug 2004 B2
6776165 Jin Aug 2004 B2
6776787 Phung et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780352 Jacobson Aug 2004 B2
6783491 Saadat et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786905 Swanson et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6821285 Laufer et al. Nov 2004 B2
6824548 Smith et al. Nov 2004 B2
6830545 Bendall Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6836688 Ingle et al. Dec 2004 B2
6837847 Ewers et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843794 Sixto, Jr. et al. Jan 2005 B2
6861250 Cole et al. Mar 2005 B1
6866627 Nozue Mar 2005 B2
6866628 Goodman et al. Mar 2005 B2
6869394 Ishibiki Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6878110 Yang et al. Apr 2005 B2
6881213 Ryan et al. Apr 2005 B2
6881216 Di Caprio et al. Apr 2005 B2
6884213 Raz et al. Apr 2005 B2
6887255 Shimm May 2005 B2
6889089 Behl et al. May 2005 B2
6890295 Michels et al. May 2005 B2
6896683 Gadberry et al. May 2005 B1
6896692 Ginn et al. May 2005 B2
6899710 Hooven May 2005 B2
6908427 Fleener et al. Jun 2005 B2
6908476 Jud et al. Jun 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6916284 Moriyama Jul 2005 B2
6918871 Schulze Jul 2005 B2
6918906 Long Jul 2005 B2
6918908 Bonner et al. Jul 2005 B2
6926723 Mulhauser et al. Aug 2005 B1
6926725 Cooke et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932824 Roop et al. Aug 2005 B1
6932827 Cole Aug 2005 B2
6932834 Lizardi et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
6939290 Iddan Sep 2005 B2
6939292 Mizuno Sep 2005 B2
6939327 Hall et al. Sep 2005 B2
6939347 Thompson Sep 2005 B2
6942613 Ewers et al. Sep 2005 B2
6944490 Chow Sep 2005 B1
6945472 Wuttke et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6955641 Lubock Oct 2005 B2
6955683 Bonutti Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6960183 Nicolette Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6971988 Orban, III Dec 2005 B2
6972017 Smith et al. Dec 2005 B2
6974411 Belson Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6986738 Glukhovsky et al. Jan 2006 B2
6986774 Middleman et al. Jan 2006 B2
6988987 Ishikawa et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
6994706 Chornenky et al. Feb 2006 B2
6994708 Manzo Feb 2006 B2
6997870 Couvillon, Jr. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001329 Kobayashi et al. Feb 2006 B2
7001341 Gellman et al. Feb 2006 B2
7008375 Weisel Mar 2006 B2
7008419 Shadduck Mar 2006 B2
7009634 Iddan et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7018373 Suzuki Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025580 Heagy et al. Apr 2006 B2
7025721 Cohen et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029438 Morin et al. Apr 2006 B2
7029450 Gellman Apr 2006 B2
7032600 Fukuda et al. Apr 2006 B2
7035680 Partridge et al. Apr 2006 B2
7037290 Gardeski et al. May 2006 B2
7041052 Saadat et al. May 2006 B2
7052454 Taylor May 2006 B2
7052489 Griego et al. May 2006 B2
7056330 Gayton Jun 2006 B2
7060024 Long et al. Jun 2006 B2
7060025 Long et al. Jun 2006 B2
7063697 Slater Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070559 Adams et al. Jul 2006 B2
7070602 Smith et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083629 Weller et al. Aug 2006 B2
7083635 Ginn Aug 2006 B2
7087010 Ootawara et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7088923 Haruyama Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090685 Kortenbach et al. Aug 2006 B2
7093518 Gmeilbauer Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7105000 McBrayer Sep 2006 B2
7105005 Blake Sep 2006 B2
7108696 Daniel et al. Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7112208 Morris et al. Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7115124 Xiao Oct 2006 B1
7115785 Guggenheim et al. Oct 2006 B2
7117703 Kato et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7122605 Ohrbom et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
7130697 Chornenky et al. Oct 2006 B2
RE39415 Bales et al. Nov 2006 E
7131978 Sancoff et al. Nov 2006 B2
7131979 DiCarlo et al. Nov 2006 B2
7131980 Field et al. Nov 2006 B1
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7146984 Stack et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150655 Mastrototaro et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7152488 Hedrich et al. Dec 2006 B2
7153321 Andrews Dec 2006 B2
7156845 Mulier et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7163525 Franer Jan 2007 B2
7169104 Ueda et al. Jan 2007 B2
7172714 Jacobson Feb 2007 B2
7175591 Kaladelfos Feb 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7186265 Sharkawy et al. Mar 2007 B2
7188627 Nelson et al. Mar 2007 B2
7195612 Van Sloten et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7204820 Akahoshi Apr 2007 B2
7204840 Skakoon et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211089 Kear et al. May 2007 B2
7211092 Hughett May 2007 B2
7220227 Sasaki et al. May 2007 B2
7223271 Muramatsu et al. May 2007 B2
7223272 Francere et al. May 2007 B2
7226458 Kaplan et al. Jun 2007 B2
7229438 Young Jun 2007 B2
7232414 Gonzalez Jun 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7241290 Doyle et al. Jul 2007 B2
7241295 Maguire Jul 2007 B2
7244228 Lubowski Jul 2007 B2
7250027 Barry Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7270663 Nakao Sep 2007 B2
7288075 Parihar et al. Oct 2007 B2
7290615 Christanti et al. Nov 2007 B2
7291127 Eidenschink Nov 2007 B2
7294139 Gengler Nov 2007 B1
7301250 Cassel Nov 2007 B2
7306597 Manzo Dec 2007 B2
7308828 Hashimoto Dec 2007 B2
7311107 Harel et al. Dec 2007 B2
7318802 Suzuki et al. Jan 2008 B2
7320695 Carroll Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7341554 Sekine et al. Mar 2008 B2
7344536 Lunsford et al. Mar 2008 B1
7349223 Haemer et al. Mar 2008 B2
7352387 Yamamoto Apr 2008 B2
7364582 Lee Apr 2008 B2
7371215 Colliou et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7390324 Whalen et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7402162 Ouchi Jul 2008 B2
7404791 Linares et al. Jul 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416554 Lam et al. Aug 2008 B2
7422590 Kupferschmid et al. Sep 2008 B2
7435229 Wolf Oct 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7441507 Teraura et al. Oct 2008 B2
7442166 Huang et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455675 Schur et al. Nov 2008 B2
7468066 Vargas et al. Dec 2008 B2
7476237 Taniguchi et al. Jan 2009 B2
7479104 Lau et al. Jan 2009 B2
7485093 Glukhovsky Feb 2009 B2
7488295 Burbank et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7497867 Lasner et al. Mar 2009 B2
7498950 Ertas et al. Mar 2009 B1
7507200 Okada Mar 2009 B2
7507239 Shadduck Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7514568 Freeman Apr 2009 B2
7515953 Madar et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7524281 Chu et al. Apr 2009 B2
7524302 Tower Apr 2009 B2
7534228 Williams May 2009 B2
7535570 Muraishi May 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7544203 Chin et al. Jun 2009 B2
7548040 Lee et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549991 Lu et al. Jun 2009 B2
7549998 Braun Jun 2009 B2
7553278 Kucklick Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7559887 Dannan Jul 2009 B2
7559916 Smith et al. Jul 2009 B2
7560006 Rakos et al. Jul 2009 B2
7561907 Fuimaono et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7565201 Blackmore et al. Jul 2009 B2
7566334 Christian et al. Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7575548 Takemoto et al. Aug 2009 B2
7579005 Keeler et al. Aug 2009 B2
7579550 Dayton et al. Aug 2009 B2
7582096 Gellman et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7588557 Nakao Sep 2009 B2
7591781 Hirata Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7608083 Lee et al. Oct 2009 B2
7611479 Cragg et al. Nov 2009 B2
7612084 James et al. Nov 2009 B2
7615002 Rothweiler et al. Nov 2009 B2
7615005 Stefanchik et al. Nov 2009 B2
7618398 Holman et al. Nov 2009 B2
7621936 Cragg et al. Nov 2009 B2
7632250 Smith et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637903 Lentz et al. Dec 2009 B2
7648519 Lee et al. Jan 2010 B2
7650742 Ushijima Jan 2010 B2
7651483 Byrum et al. Jan 2010 B2
7651509 Bojarski et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7662089 Okada et al. Feb 2010 B2
7666180 Holsten et al. Feb 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7670282 Mathis Mar 2010 B2
7670336 Young et al. Mar 2010 B2
7674259 Shadduck Mar 2010 B2
7678043 Gilad Mar 2010 B2
7680543 Azure Mar 2010 B2
7684599 Horn et al. Mar 2010 B2
7684851 Miyake et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7697970 Uchiyama et al. Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699864 Kick et al. Apr 2010 B2
7710563 Betzig et al. May 2010 B2
7713189 Hanke May 2010 B2
7713270 Suzuki May 2010 B2
7721742 Kalloo et al. May 2010 B2
7722631 Mikkaichi et al. May 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744613 Ewers et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749161 Beckman et al. Jul 2010 B2
7751866 Aoki et al. Jul 2010 B2
7753901 Piskun et al. Jul 2010 B2
7753933 Ginn et al. Jul 2010 B2
7758577 Nobis et al. Jul 2010 B2
7762949 Nakao Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7763012 Petrick et al. Jul 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7766896 Kornkven Volk et al. Aug 2010 B2
7770584 Danek et al. Aug 2010 B2
7771416 Spivey et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7776035 Rick et al. Aug 2010 B2
7780683 Roue et al. Aug 2010 B2
7780691 Stefanchik Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7794409 Damarati Sep 2010 B2
7794447 Dann et al. Sep 2010 B2
7794458 McIntyre et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7798750 Clark Sep 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815566 Stefanchik et al. Oct 2010 B2
7815651 Skakoon et al. Oct 2010 B2
7815659 Conlon et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7819836 Levine et al. Oct 2010 B2
7828186 Wales Nov 2010 B2
7828809 Skakoon et al. Nov 2010 B2
7833156 Williams et al. Nov 2010 B2
7833231 Skakoon et al. Nov 2010 B2
7833238 Nakao Nov 2010 B2
7837615 Le et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7842068 Ginn Nov 2010 B2
7846171 Kullas et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857820 Skakoon et al. Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7862553 Ewaschuk Jan 2011 B2
7867216 Wahr et al. Jan 2011 B2
7871371 Komiya et al. Jan 2011 B2
7879004 Seibel et al. Feb 2011 B2
7883458 Hamel Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887558 Lin et al. Feb 2011 B2
7892200 Birk et al. Feb 2011 B2
7892220 Faller et al. Feb 2011 B2
7896804 Uchimura et al. Mar 2011 B2
7896887 Rimbaugh et al. Mar 2011 B2
7905828 Brock et al. Mar 2011 B2
7909809 Scopton et al. Mar 2011 B2
7914513 Voorhees, Jr. Mar 2011 B2
7916809 Tsushima Mar 2011 B2
7918785 Okada et al. Apr 2011 B2
7918869 Saadat et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7927271 Dimitriou et al. Apr 2011 B2
7931624 Smith et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7945332 Schechter May 2011 B2
7947000 Vargas et al. May 2011 B2
7953326 Farr et al. May 2011 B2
7955298 Carroll et al. Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7959629 Young et al. Jun 2011 B2
7963975 Criscuolo Jun 2011 B2
7965180 Koyama Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7969473 Kotoda Jun 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7976458 Stefanchik et al. Jul 2011 B2
7976552 Suzuki Jul 2011 B2
7985239 Suzuki Jul 2011 B2
7985830 Mance et al. Jul 2011 B2
7988618 Mikkaichi et al. Aug 2011 B2
7988685 Ziaie et al. Aug 2011 B2
8007495 McDaniel et al. Aug 2011 B2
8021362 Deem et al. Sep 2011 B2
8029504 Long Oct 2011 B2
8034046 Eidenschink Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8043289 Behl et al. Oct 2011 B2
8048067 Davalos et al. Nov 2011 B2
8048108 Sibbitt et al. Nov 2011 B2
8052699 Sherwinter Nov 2011 B1
8057510 Ginn et al. Nov 2011 B2
8062306 Nobis et al. Nov 2011 B2
8062311 Litscher et al. Nov 2011 B2
8066632 Dario et al. Nov 2011 B2
8066702 Rittman, III et al. Nov 2011 B2
8070759 Stefanchik et al. Dec 2011 B2
8070804 Hyde et al. Dec 2011 B2
8075572 Stefanchik et al. Dec 2011 B2
8075587 Ginn Dec 2011 B2
8083787 Korb et al. Dec 2011 B2
8088062 Zwolinski Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8096941 Fowler et al. Jan 2012 B2
8100922 Griffith Jan 2012 B2
8105342 Onuki et al. Jan 2012 B2
8109872 Kennedy, II et al. Feb 2012 B2
8114072 Long et al. Feb 2012 B2
8114119 Spivey et al. Feb 2012 B2
8115447 Toya et al. Feb 2012 B2
8118821 Mouw Feb 2012 B2
8118834 Goraltchouk et al. Feb 2012 B1
8131371 Demarals et al. Mar 2012 B2
8147424 Kassab et al. Apr 2012 B2
8157813 Ko et al. Apr 2012 B2
8157834 Conlon Apr 2012 B2
8172772 Zwolinski et al. May 2012 B2
8182414 Handa et al. May 2012 B2
8187166 Kuth et al. May 2012 B2
8200334 Min et al. Jun 2012 B1
8206295 Kaul Jun 2012 B2
8211125 Spivey Jul 2012 B2
8216224 Morris et al. Jul 2012 B2
8221310 Saadat et al. Jul 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8222385 Yoshizaki et al. Jul 2012 B2
8241204 Spivey Aug 2012 B2
8251068 Schnell Aug 2012 B2
8252057 Fox Aug 2012 B2
8262563 Bakos et al. Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8262680 Swain et al. Sep 2012 B2
8267854 Asada et al. Sep 2012 B2
8303581 Arts et al. Nov 2012 B2
8308738 Nobis et al. Nov 2012 B2
8317806 Coe et al. Nov 2012 B2
8317814 Karasawa et al. Nov 2012 B2
8328836 Conlon et al. Dec 2012 B2
8337394 Vakharia Dec 2012 B2
8337492 Kunis et al. Dec 2012 B2
8343041 Byers et al. Jan 2013 B2
8353487 Trusty et al. Jan 2013 B2
8357170 Stefanchik Jan 2013 B2
8359093 Wariar Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361112 Carroll, II et al. Jan 2013 B2
8366733 Gabel et al. Feb 2013 B2
8377057 Rick et al. Feb 2013 B2
8403926 Nobis et al. Mar 2013 B2
8409200 Holcomb et al. Apr 2013 B2
8425505 Long Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8449452 Iddan et al. May 2013 B2
8449538 Long May 2013 B2
8454594 Demarais Jun 2013 B2
8475359 Asada et al. Jul 2013 B2
8475452 Van Wyk et al. Jul 2013 B2
8480657 Bakos Jul 2013 B2
8480689 Spivey et al. Jul 2013 B2
8485968 Weimer et al. Jul 2013 B2
8496574 Trusty et al. Jul 2013 B2
8500697 Kurth et al. Aug 2013 B2
8506564 Long et al. Aug 2013 B2
8512335 Cheng et al. Aug 2013 B2
8523884 Stam et al. Sep 2013 B2
8523939 Hausen Sep 2013 B1
8529563 Long et al. Sep 2013 B2
8545396 Cover et al. Oct 2013 B2
8568410 Vakharia et al. Oct 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8608652 Voegele et al. Dec 2013 B2
8623011 Spivey Jan 2014 B2
8636648 Gazdzinski Jan 2014 B2
8636730 Keppel Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8652150 Swain et al. Feb 2014 B2
8668686 Govari et al. Mar 2014 B2
8679003 Spivey Mar 2014 B2
8685058 Wilk Apr 2014 B2
8727967 Weitzner May 2014 B2
8747401 Gonzalez et al. Jun 2014 B2
8753335 Moshe et al. Jun 2014 B2
8771173 Fonger et al. Jul 2014 B2
8771260 Conlon et al. Jul 2014 B2
8828031 Fox et al. Sep 2014 B2
8845656 Skakoon et al. Sep 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8880185 Hastings et al. Nov 2014 B2
8882786 Bearinger et al. Nov 2014 B2
8888792 Harris et al. Nov 2014 B2
8906035 Zwolinski et al. Dec 2014 B2
8911452 Skakoon et al. Dec 2014 B2
8939897 Nobis Jan 2015 B2
8956352 Mauch Feb 2015 B2
8974374 Schostek et al. Mar 2015 B2
8986199 Weisenburgh, II et al. Mar 2015 B2
9005198 Long et al. Apr 2015 B2
9011431 Long et al. Apr 2015 B2
9028483 Long et al. May 2015 B2
9036015 Verburgh et al. May 2015 B2
9049987 Conlon et al. Jun 2015 B2
9078662 Bakos et al. Jul 2015 B2
9186203 Spivey et al. Nov 2015 B2
9248278 Crosby et al. Feb 2016 B2
9271796 Buysse et al. Mar 2016 B2
9295485 Conlon et al. Mar 2016 B2
9339328 Ortiz et al. May 2016 B2
9427255 Griffith et al. Aug 2016 B2
9668725 Beaven Jun 2017 B2
9788885 Long et al. Oct 2017 B2
9788888 Bakos et al. Oct 2017 B2
9861272 Pell et al. Jan 2018 B2
9883910 Conlon et al. Feb 2018 B2
10004558 Long et al. Jun 2018 B2
20010023333 Wise et al. Sep 2001 A1
20020022771 Diokno et al. Feb 2002 A1
20020022857 Goldsteen et al. Feb 2002 A1
20020023353 Ting-Kung Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020049439 Muller et al. Apr 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20020082551 Yachia et al. Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020133115 Gordon et al. Sep 2002 A1
20020138086 Sixto, Jr. et al. Sep 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020165592 Glukhovsky et al. Nov 2002 A1
20020173805 Matsuno et al. Nov 2002 A1
20020183591 Matsuura et al. Dec 2002 A1
20030014090 Abrahamson Jan 2003 A1
20030018373 Eckhardt et al. Jan 2003 A1
20030023255 Miles et al. Jan 2003 A1
20030036679 Kortenbach et al. Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030078471 Foley et al. Apr 2003 A1
20030083681 Moutafis et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120257 Houston et al. Jun 2003 A1
20030124009 Ravi et al. Jul 2003 A1
20030125770 Fuimaono Jul 2003 A1
20030130564 Martone et al. Jul 2003 A1
20030130656 Levin Jul 2003 A1
20030139646 Sharrow et al. Jul 2003 A1
20030158521 Ameri Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030176880 Long et al. Sep 2003 A1
20030187351 Franck et al. Oct 2003 A1
20030216611 Vu Nov 2003 A1
20030216615 Ouchi Nov 2003 A1
20030220545 Ouchi Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229269 Humphrey Dec 2003 A1
20030229371 Whitworth Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040002683 Nicholson et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040054322 Vargas Mar 2004 A1
20040098007 Heiss May 2004 A1
20040101456 Kuroshima et al. May 2004 A1
20040104999 Okada Jun 2004 A1
20040116948 Sixto, Jr. et al. Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040133077 Obenchain et al. Jul 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040136779 Bhaskar Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138587 Lyons, IV Jul 2004 A1
20040138747 Kaladelfos Jul 2004 A1
20040161451 Pierce et al. Aug 2004 A1
20040167545 Sadler et al. Aug 2004 A1
20040176699 Walker et al. Sep 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040193186 Kortenbach et al. Sep 2004 A1
20040193188 Francese Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040193200 Dworschak et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040199159 Lee et al. Oct 2004 A1
20040206859 Chong et al. Oct 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040215058 Zirps et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040225323 Nagase et al. Nov 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243108 Suzuki Dec 2004 A1
20040249246 Campos Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20040254572 McIntyre et al. Dec 2004 A1
20040260198 Rothberg et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040260337 Freed Dec 2004 A1
20050004515 Hart et al. Jan 2005 A1
20050033265 Engel et al. Feb 2005 A1
20050033277 Clague et al. Feb 2005 A1
20050033319 Gambale et al. Feb 2005 A1
20050033333 Smith et al. Feb 2005 A1
20050043690 Todd Feb 2005 A1
20050049616 Rivera et al. Mar 2005 A1
20050059963 Phan et al. Mar 2005 A1
20050059964 Fitz Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065509 Coldwell et al. Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070754 Nobis et al. Mar 2005 A1
20050070763 Nobis et al. Mar 2005 A1
20050070764 Nobis et al. Mar 2005 A1
20050070947 Franer et al. Mar 2005 A1
20050080413 Canady Apr 2005 A1
20050080435 Smith et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085832 Sancoff et al. Apr 2005 A1
20050090837 Sixto, Jr. et al. Apr 2005 A1
20050090838 Sixto, Jr. et al. Apr 2005 A1
20050096502 Khalili May 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050101838 Camillocci et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050110881 Glukhovsky et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119613 Moenning et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050131279 Boulais et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050143647 Minai et al. Jun 2005 A1
20050143690 High Jun 2005 A1
20050143774 Polo Jun 2005 A1
20050143803 Watson et al. Jun 2005 A1
20050149087 Ahlberg et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159648 Freed Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050165411 Orban, III Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182429 Yamanouchi Aug 2005 A1
20050192478 Williams et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050192602 Manzo Sep 2005 A1
20050192654 Chanduszko et al. Sep 2005 A1
20050209624 Vijay Sep 2005 A1
20050215858 Vail, III Sep 2005 A1
20050216036 Nakao Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228406 Bose Oct 2005 A1
20050234297 Devierre et al. Oct 2005 A1
20050240249 Tu et al. Oct 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050250987 Ewers et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050250993 Jaeger Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050261711 Okada et al. Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050274935 Nelson Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277957 Kuhns et al. Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060004406 Wehrstein et al. Jan 2006 A1
20060004409 Nobis et al. Jan 2006 A1
20060004410 Nobis et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060015131 Kierce et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060025654 Suzuki et al. Feb 2006 A1
20060025781 Young et al. Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060064083 Khalaj et al. Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060069425 Hillis et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060095031 Ormsby May 2006 A1
20060095060 Mayenberger et al. May 2006 A1
20060100687 Fahey et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman et al. May 2006 A1
20060111703 Kunis et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142644 Mulac et al. Jun 2006 A1
20060142652 Keenan Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060142798 Holman et al. Jun 2006 A1
20060149129 Watts et al. Jul 2006 A1
20060149131 Or Jul 2006 A1
20060149132 Iddan Jul 2006 A1
20060149135 Paz Jul 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060195084 Slater Aug 2006 A1
20060200005 Bjork et al. Sep 2006 A1
20060200121 Mowery Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060200199 Bonutti et al. Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217742 Messerly et al. Sep 2006 A1
20060217743 Messerly et al. Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060241691 Wilk Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247576 Poncet Nov 2006 A1
20060247663 Schwartz et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253039 McKenna et al. Nov 2006 A1
20060258907 Stefanchik et al. Nov 2006 A1
20060258908 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060258955 Hoffman et al. Nov 2006 A1
20060259010 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20060264930 Nishimura Nov 2006 A1
20060270902 Igarashi et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060276835 Uchida Dec 2006 A1
20060281970 Stokes et al. Dec 2006 A1
20060282106 Cole et al. Dec 2006 A1
20060285732 Horn et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20070000550 Osinski Jan 2007 A1
20070002135 Glukhovsky Jan 2007 A1
20070005019 Okishige Jan 2007 A1
20070010801 Chen et al. Jan 2007 A1
20070015965 Cox et al. Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070032700 Fowler et al. Feb 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070043261 Watanabe et al. Feb 2007 A1
20070049800 Boulais Mar 2007 A1
20070049902 Griffin et al. Mar 2007 A1
20070049968 Sibbit et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070060880 Gregorich et al. Mar 2007 A1
20070066869 Hoffman Mar 2007 A1
20070067017 Trapp Mar 2007 A1
20070073102 Matsuno et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070078439 Grandt et al. Apr 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070083192 Welch Apr 2007 A1
20070083195 Werneth et al. Apr 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070100375 Mikkaichi et al. May 2007 A1
20070100376 Mikkaichi et al. May 2007 A1
20070106113 Ravo May 2007 A1
20070106118 Moriyama May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070112251 Nakhuda May 2007 A1
20070112331 Weber et al. May 2007 A1
20070112342 Pearson et al. May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070112417 Shanley et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123840 Cox May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070129719 Kendale et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070135709 Rioux et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142706 Matsui et al. Jun 2007 A1
20070142710 Yokoi et al. Jun 2007 A1
20070142779 Duane et al. Jun 2007 A1
20070142780 Van Lue Jun 2007 A1
20070154460 Kraft et al. Jul 2007 A1
20070156028 Van Lue et al. Jul 2007 A1
20070156116 Gonzalez Jul 2007 A1
20070156127 Rioux et al. Jul 2007 A1
20070161855 Mikkaichi et al. Jul 2007 A1
20070162101 Burgermeister et al. Jul 2007 A1
20070167901 Herrig et al. Jul 2007 A1
20070173686 Lin et al. Jul 2007 A1
20070173691 Yokoi et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070173870 Zacharias Jul 2007 A2
20070173872 Neuenfeldt Jul 2007 A1
20070179525 Frecker et al. Aug 2007 A1
20070179530 Tieu et al. Aug 2007 A1
20070191904 Libbus et al. Aug 2007 A1
20070197865 Miyake et al. Aug 2007 A1
20070198057 Gelbart et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070203487 Sugita Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208364 Smith et al. Sep 2007 A1
20070208407 Gerdts et al. Sep 2007 A1
20070213754 Mikkaichi et al. Sep 2007 A1
20070225552 Segawa et al. Sep 2007 A1
20070225554 Maseda et al. Sep 2007 A1
20070233040 Macnamara et al. Oct 2007 A1
20070244356 Carrillo, Jr. et al. Oct 2007 A1
20070244358 Lee Oct 2007 A1
20070250038 Boulais Oct 2007 A1
20070250057 Nobis et al. Oct 2007 A1
20070255096 Stefanchik et al. Nov 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070255303 Bakos et al. Nov 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070260112 Rahmani Nov 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20070260121 Bakos et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070260302 Igaki Nov 2007 A1
20070265494 Leanna et al. Nov 2007 A1
20070270629 Charles Nov 2007 A1
20070270889 Conlon et al. Nov 2007 A1
20070270895 Nobis et al. Nov 2007 A1
20070270907 Stokes et al. Nov 2007 A1
20070282165 Hopkins et al. Dec 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080004650 George Jan 2008 A1
20080015409 Barlow et al. Jan 2008 A1
20080015413 Barlow et al. Jan 2008 A1
20080015552 Doyle et al. Jan 2008 A1
20080021416 Arai et al. Jan 2008 A1
20080022927 Zhang et al. Jan 2008 A1
20080027387 Grabinsky Jan 2008 A1
20080033244 Matsui et al. Feb 2008 A1
20080033451 Rieber et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058586 Karpiel Mar 2008 A1
20080058854 Kieturakis et al. Mar 2008 A1
20080065169 Colliou et al. Mar 2008 A1
20080071264 Azure Mar 2008 A1
20080082108 Skakoon et al. Apr 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080091068 Terliuc Apr 2008 A1
20080097159 Ishiguro Apr 2008 A1
20080097472 Agmon et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080103527 Martin et al. May 2008 A1
20080114384 Chang et al. May 2008 A1
20080119870 Williams May 2008 A1
20080119891 Miles et al. May 2008 A1
20080125765 Berenshteyn et al. May 2008 A1
20080125774 Palanker et al. May 2008 A1
20080125796 Graham May 2008 A1
20080132892 Lunsford et al. Jun 2008 A1
20080139882 Fujimori Jun 2008 A1
20080140069 Filloux et al. Jun 2008 A1
20080140071 Vegesna Jun 2008 A1
20080147056 van der Weide et al. Jun 2008 A1
20080150754 Quendt Jun 2008 A1
20080171907 Long et al. Jul 2008 A1
20080177135 Muyari et al. Jul 2008 A1
20080188710 Segawa et al. Aug 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080208213 Benjamin et al. Aug 2008 A1
20080208280 Lindenthaler et al. Aug 2008 A1
20080214890 Motai et al. Sep 2008 A1
20080221587 Schwartz Sep 2008 A1
20080228213 Blakeney et al. Sep 2008 A1
20080230972 Ganley Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243176 Weitzner et al. Oct 2008 A1
20080249567 Kaplan Oct 2008 A1
20080262513 Stahler et al. Oct 2008 A1
20080262524 Bangera et al. Oct 2008 A1
20080262540 Bangera et al. Oct 2008 A1
20080275474 Martin et al. Nov 2008 A1
20080275475 Schwemberger et al. Nov 2008 A1
20080287737 Dejima Nov 2008 A1
20080287801 Magnin et al. Nov 2008 A1
20080287983 Smith et al. Nov 2008 A1
20080300461 Shaw et al. Dec 2008 A1
20080300547 Bakos Dec 2008 A1
20080300571 LePivert Dec 2008 A1
20080306493 Shibata et al. Dec 2008 A1
20080309758 Karasawa et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20080312499 Handa et al. Dec 2008 A1
20080312500 Asada et al. Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20080319439 Ootsubu Dec 2008 A1
20090005636 Pang et al. Jan 2009 A1
20090030278 Minakuchi Jan 2009 A1
20090054728 Trusty Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090069634 Larkin Mar 2009 A1
20090076499 Azure Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090082627 Karasawa et al. Mar 2009 A1
20090082776 Cresina Mar 2009 A1
20090082779 Nakao Mar 2009 A1
20090093690 Yoshizawa Apr 2009 A1
20090112059 Nobis Apr 2009 A1
20090112063 Bakos et al. Apr 2009 A1
20090125042 Mouw May 2009 A1
20090131751 Spivey et al. May 2009 A1
20090143639 Stark Jun 2009 A1
20090143649 Rossi Jun 2009 A1
20090143794 Conlon et al. Jun 2009 A1
20090143818 Faller et al. Jun 2009 A1
20090149710 Stefanchik et al. Jun 2009 A1
20090163770 Torrie et al. Jun 2009 A1
20090177031 Surti et al. Jul 2009 A1
20090177219 Conlon Jul 2009 A1
20090182325 Werneth et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192344 Bakos et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198212 Timberlake et al. Aug 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090198253 Omori Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090210000 Sullivan et al. Aug 2009 A1
20090216248 Uenohara et al. Aug 2009 A1
20090221873 McGrath Sep 2009 A1
20090227999 Willis et al. Sep 2009 A1
20090228001 Pacey Sep 2009 A1
20090248055 Spivey et al. Oct 2009 A1
20090259105 Miyano et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090281559 Swain et al. Nov 2009 A1
20090287206 Jun Nov 2009 A1
20090287236 Bakos et al. Nov 2009 A1
20090292164 Yamatani Nov 2009 A1
20090292167 Kimoto Nov 2009 A1
20090306470 Karasawa et al. Dec 2009 A1
20090322864 Karasawa et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100010298 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100023032 Granja Filho Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100036198 Tacchino et al. Feb 2010 A1
20100042045 Spivey Feb 2010 A1
20100048990 Bakos Feb 2010 A1
20100049223 Granja Filho Feb 2010 A1
20100056862 Bakos Mar 2010 A1
20100056864 Lee Mar 2010 A1
20100076451 Zwolinski et al. Mar 2010 A1
20100076460 Taylor et al. Mar 2010 A1
20100081875 Fowler et al. Apr 2010 A1
20100091128 Ogasawara et al. Apr 2010 A1
20100113872 Asada et al. May 2010 A1
20100121362 Clague et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100152539 Ghabrial et al. Jun 2010 A1
20100152725 Pearson et al. Jun 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100191050 Zwolinski Jul 2010 A1
20100191267 Fox Jul 2010 A1
20100198149 Fox Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100198254 Schaeffer Aug 2010 A1
20100210906 Wendlandt Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100249700 Spivey Sep 2010 A1
20100256628 Pearson et al. Oct 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100268025 Belson Oct 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100298642 Trusty et al. Nov 2010 A1
20100312056 Galperin et al. Dec 2010 A1
20100331622 Conlon Dec 2010 A2
20100331758 Davalos et al. Dec 2010 A1
20110077476 Rofougaran Mar 2011 A1
20110087224 Cadeddu et al. Apr 2011 A1
20110093009 Fox Apr 2011 A1
20110098694 Long Apr 2011 A1
20110098704 Long et al. Apr 2011 A1
20110106221 Neal, II et al. May 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110112527 Hamilton, Jr. et al. May 2011 A1
20110115891 Trusty May 2011 A1
20110152610 Trusty et al. Jun 2011 A1
20110152878 Trusty et al. Jun 2011 A1
20110152888 Ho et al. Jun 2011 A1
20110152923 Fox Jun 2011 A1
20110160514 Long et al. Jun 2011 A1
20110190764 Long et al. Aug 2011 A1
20110193948 Amling et al. Aug 2011 A1
20110245619 Holcomb Oct 2011 A1
20110282149 Vargas et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110285488 Scott et al. Nov 2011 A1
20120004502 Weitzner et al. Jan 2012 A1
20120029335 Sudam et al. Feb 2012 A1
20120078266 Tyson, Jr. Mar 2012 A1
20120088965 Stokes et al. Apr 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120089093 Trusty Apr 2012 A1
20120101331 Gilad et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120109122 Arena et al. May 2012 A1
20120116155 Trusty May 2012 A1
20120116266 Houser et al. May 2012 A1
20120149981 Khait et al. Jun 2012 A1
20120179148 Conlon Jul 2012 A1
20120191075 Trusty Jul 2012 A1
20120191076 Voegele et al. Jul 2012 A1
20120197246 Mauch Aug 2012 A1
20120220998 Long et al. Aug 2012 A1
20120220999 Long Aug 2012 A1
20120221002 Long et al. Aug 2012 A1
20120289857 Toth et al. Nov 2012 A1
20130030430 Stewart et al. Jan 2013 A1
20130090666 Hess et al. Apr 2013 A1
20130138091 Coe et al. May 2013 A1
20130158348 Nobis et al. Jun 2013 A1
20130172672 Iddan et al. Jul 2013 A1
20130231530 Lien et al. Sep 2013 A1
20130245356 Fernandez et al. Sep 2013 A1
20130261389 Long Oct 2013 A1
20130267834 McGee Oct 2013 A1
20130331649 Khait et al. Dec 2013 A1
20140031813 Tellio et al. Jan 2014 A1
20140039492 Long Feb 2014 A1
20140052126 Long et al. Feb 2014 A1
20140052216 Long et al. Feb 2014 A1
20140121678 Trusty et al. May 2014 A1
20140243597 Weisenburgh, II et al. Aug 2014 A1
20140343360 Shohat et al. Nov 2014 A1
20150032132 Harris et al. Jan 2015 A1
20150100064 Skakoon et al. Apr 2015 A1
20150230858 Long et al. Aug 2015 A1
20160074056 Conlon Mar 2016 A1
20160100879 Long Apr 2016 A1
20160128759 Long et al. May 2016 A1
20160296280 Long Oct 2016 A1
20160338731 Griffith et al. Nov 2016 A1
20170049508 Long et al. Feb 2017 A1
20170086937 Tellio et al. Mar 2017 A1
20170119465 Long et al. May 2017 A1
20180042661 Long et al. Feb 2018 A1
Foreign Referenced Citations (191)
Number Date Country
666310 Feb 1996 AU
3008120 Sep 1980 DE
4323585 Jan 1995 DE
19713797 Oct 1997 DE
19757056 Aug 2008 DE
102006027873 Oct 2009 DE
0086338 Aug 1983 EP
0286415 Oct 1988 EP
0499491 Aug 1992 EP
0589454 Mar 1994 EP
0464479 Mar 1995 EP
0529675 Feb 1996 EP
0773003 May 1997 EP
0621009 Jul 1997 EP
0724863 Jul 1999 EP
0760629 Nov 1999 EP
0818974 Jul 2001 EP
1281356 Feb 2003 EP
0947166 May 2003 EP
0836832 Dec 2003 EP
1402837 Mar 2004 EP
0744918 Apr 2004 EP
0931515 Aug 2004 EP
0941128 Oct 2004 EP
1411843 Oct 2004 EP
1150614 Nov 2004 EP
1477104 Nov 2004 EP
1481642 Dec 2004 EP
1493391 Jan 2005 EP
0848598 Feb 2005 EP
1281360 Mar 2005 EP
1568330 Aug 2005 EP
1452143 Sep 2005 EP
1616527 Jan 2006 EP
1006888 Mar 2006 EP
1629764 Mar 2006 EP
1013229 Jun 2006 EP
1721561 Nov 2006 EP
1153578 Mar 2007 EP
1334696 Mar 2007 EP
1769766 Apr 2007 EP
1836971 Sep 2007 EP
1836980 Sep 2007 EP
1854421 Nov 2007 EP
1857061 Nov 2007 EP
1875876 Jan 2008 EP
1891881 Feb 2008 EP
1902663 Mar 2008 EP
1477106 Jun 2008 EP
1949844 Jul 2008 EP
1518499 Aug 2008 EP
1582138 Sep 2008 EP
1709918 Oct 2008 EP
1985226 Oct 2008 EP
1994904 Nov 2008 EP
1707130 Dec 2008 EP
0723462 Mar 2009 EP
1769749 Nov 2009 EP
2135545 Dec 2009 EP
1493397 Sep 2011 EP
2659847 Nov 2013 EP
2731610 Sep 1996 FR
330629 Jun 1930 GB
2335860 Oct 1999 GB
2403909 Jan 2005 GB
2421190 Jun 2006 GB
2443261 Apr 2008 GB
56-46674 Apr 1981 JP
63309252 Dec 1988 JP
4038960 Feb 1992 JP
H06269460 Sep 1994 JP
8-29699 Feb 1996 JP
H 9-75365 Mar 1997 JP
H 10-24049 Jan 1998 JP
3007713 Feb 2000 JP
2000107197 Apr 2000 JP
2000245683 Sep 2000 JP
2001-526072 Dec 2001 JP
2002-369791 Dec 2002 JP
2003-088494 Mar 2003 JP
2003-235852 Aug 2003 JP
2004-33525 Feb 2004 JP
2004-065745 Mar 2004 JP
2005-121947 May 2005 JP
2005-261514 Sep 2005 JP
2005-296063 Oct 2005 JP
2006517843 Aug 2006 JP
2006297005 Nov 2006 JP
2006-343510 Dec 2006 JP
2007-20806 Feb 2007 JP
2007-125264 May 2007 JP
2007-516792 Jun 2007 JP
2010503496 Feb 2010 JP
2012515018 Jul 2012 JP
1021295 Feb 2004 NL
194230 May 1967 SU
980703 Dec 1982 SU
WO 8401707 May 1984 WO
WO 8607543 Dec 1986 WO
WO 9213494 Aug 1992 WO
WO 9310850 Jun 1993 WO
WO 9320760 Oct 1993 WO
WO 9320765 Oct 1993 WO
WO 9422383 Oct 1994 WO
WO 9509666 Apr 1995 WO
WO 9622056 Jul 1996 WO
WO 9627331 Sep 1996 WO
WO 9639946 Dec 1996 WO
WO 9712557 Apr 1997 WO
WO 9801080 Jan 1998 WO
WO 9900060 Jan 1999 WO
WO 9909919 Mar 1999 WO
WO 9917661 Apr 1999 WO
WO 9930622 Jun 1999 WO
WO 0022996 Apr 2000 WO
WO 0035358 Jun 2000 WO
WO 0068665 Nov 2000 WO
WO 0110319 Feb 2001 WO
WO 0126708 Apr 2001 WO
WO 0141627 Jun 2001 WO
WO 0158360 Aug 2001 WO
WO 0211621 Feb 2002 WO
WO 0234122 May 2002 WO
WO 02094082 Nov 2002 WO
WO 03045260 Jun 2003 WO
WO 03047684 Jun 2003 WO
WO 03059412 Jul 2003 WO
WO 03078721 Sep 2003 WO
WO 03081761 Oct 2003 WO
WO 03082129 Oct 2003 WO
WO 2004006789 Jan 2004 WO
WO 2004028613 Apr 2004 WO
WO 2004037123 May 2004 WO
WO 2004037149 May 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004086984 Oct 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005018467 Mar 2005 WO
WO 2005037088 Apr 2005 WO
WO 2005048827 Jun 2005 WO
WO 2005065284 Jul 2005 WO
WO 2005097019 Oct 2005 WO
WO 2005097234 Oct 2005 WO
WO 2005112810 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2005122866 Dec 2005 WO
WO 2006007399 Jan 2006 WO
WO 2006012630 Feb 2006 WO
WO 2006040109 Apr 2006 WO
WO 2006041881 Apr 2006 WO
WO 2006060405 Jun 2006 WO
WO 2006110733 Oct 2006 WO
WO 2006113216 Oct 2006 WO
WO 2007013059 Feb 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007035537 Mar 2007 WO
WO 2007048085 Apr 2007 WO
WO 2007063550 Jun 2007 WO
WO 2007100067 Sep 2007 WO
WO 2007109171 Sep 2007 WO
WO 2007135577 Nov 2007 WO
WO 2007143200 Dec 2007 WO
WO 2007144004 Dec 2007 WO
WO 2008005433 Jan 2008 WO
WO 2008033356 Mar 2008 WO
WO 2008034103 Mar 2008 WO
WO 2008041225 Apr 2008 WO
WO 2008076337 Jun 2008 WO
WO 2008076800 Jun 2008 WO
WO 2008079440 Jul 2008 WO
WO 2008080062 Jul 2008 WO
WO 2008101075 Aug 2008 WO
WO 2008101086 Aug 2008 WO
WO 2008102154 Aug 2008 WO
WO 2008108863 Sep 2008 WO
WO 2008151237 Dec 2008 WO
WO 2009021030 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009029065 Mar 2009 WO
WO 2009032623 Mar 2009 WO
WO 2009036457 Mar 2009 WO
WO 2009121017 Oct 2009 WO
WO-2009132190 Oct 2009 WO
WO 2010027688 Mar 2010 WO
WO 2010056716 May 2010 WO
WO 2010080974 Jul 2010 WO
WO 2010088481 Aug 2010 WO
WO 2012031204 Mar 2012 WO
WO 2012071526 May 2012 WO
WO-2012068505 May 2012 WO
WO 2013044378 Apr 2013 WO
Non-Patent Literature Citations (70)
Entry
International Search Report for PCT/US2013/052250, dated Oct. 29, 2013 (7 pages).
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “NOTES””, JSLS, vol. 10, pp. 133-134 (2006).
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (1994).
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006.
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004.
Ogando, “Prototype Tools That Go With the Flow,” Design News, 2 pages, Jul. 17, 2006.
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006.
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998).
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006).
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract).
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract).
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract).
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006.
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007.
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Decembre 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation).
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574.
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266.
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Interv Radiol, (1995), vol. 6(4), pp. 539-545.
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20.
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317.
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784.
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475.
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591.
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101.
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490.
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767.
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632.
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676.
USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages).
Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007.
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages).
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages).
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869.
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 2007, pp. 255-259.
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840.
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP_Overview&navRe1Id=1000.1003&method=D . . . , accessed Jul. 18, 2008 (4 pages).
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490.
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655.
K.E. Mönkemüller, M.D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Received Oct. 3, 1997; Accepted Mar. 31, 1998).
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES,” Endoscopy 2007, vol. 39, pp. 401-406.
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007).
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000).
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007).
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008).
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000).
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation In Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000).
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996).
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008).
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001).
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000).
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000).
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/all/20090422_152000; accessed Aug. 28, 2009 (3 pages).
“Ethicon Endo-Surgery Studies Presented At DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/product/20090603_120000; accessed Aug. 28, 2009 (3 pages).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo_port_modular_laparo . . . ; accessed Jan. 5, 2010 (4 pages).
Hakko Retractors, obtained Aug. 25, 2009 (5 pages).
Zadno et al., “Linear Superelasticity in Cold-Worked Ni—Ti,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990).
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages).
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article_id=218392121; accessed online Nov. 1, 2011 (2 pages).
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.htm (7 pages).
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages).
Rutala et al. “Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008” (available at http://www.cdc.gov/hicpac/Disinfection_Sterilization/13_11sterilizingPractices.html).
Bewley et al., “Spinning” in ASM Handbook, vol. 14B, Metalworking: Sheet Forming (2006).
Schoenbach et al. “Bacterial Decontamination of Liquids with Pulsed Electric Fields” IEEE Transactions on Dielectrics and Electrical Insulation. vol. 7 No. 5. Oct. 2000, pp. 637-645.
Davalos, et al., “Tissue Ablation with Irreversible Electroporation,” Annals of Biomedical Engineering, 33.2 (2005): 223-231.
International Preliminary Report on Patentability for PCT/US2013/052250, dated Feb. 3, 2015 (10 pages).
Written Opinion for PCT/US2013/052250, dated Oct. 29, 2013 (9 pages).
European Examination Report for 13750419.7, dated Nov. 8, 2016 (7 pages).
Maxim Integrated Application Note 3977: Class D Amplifiers: Fundamentals of Operation and Recent Developments, Jan. 31, 2007.
Related Publications (1)
Number Date Country
20140039491 A1 Feb 2014 US