The present subject matter relates to image capture eyewear, e.g., smart glasses, and, more particularly, to image capture eyewear with dual cameras for generating stereoscopic images.
Stereoscopic images of a scene are useful to create a three-dimensional effect. Typically, a first camera captures a first image of the scene, and a second camera captures a second image of the same scene. The first and second cameras have a fixed relationship to one another. A three-dimensional display system presents the captured first image to an eye of an observer and the captured second image to the other eye of the observer to create the desired three-dimensional effect. The relationship between the first and second cameras is important in order to provide a realistic three-dimensional effect. If the relationship between the first and second cameras deviates from the fixed relationship, e.g., due to bending of the support structure on which the cameras are mounted, the three-dimensional experience is adversely affected.
The drawings depict implementations, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements. When a plurality of similar elements is present, a single reference numeral may be assigned to the plurality of similar elements with a small letter designation referring to specific elements. When referring to the elements collectively or to a non-specific one or more of the elements, the small letter designation may be dropped.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that such details are not necessary to practice the present teachings. In other instances, a relatively high-level description, without detail, of well-known methods, procedures, components, and circuitry avoids unnecessarily obscuring aspects of the present teachings.
The term “coupled” as used herein refers to any logical, optical, physical, or electrical connection, link or the like by which signals or light produced or supplied by one system element are imparted to another coupled element. Unless described otherwise, coupled elements or devices are not necessarily physically connected to one another and may be separated by airspace, intermediate components, elements, or communication media that may modify, manipulate, or carry the light or signals.
The orientations of the image capture eyewear, associated components, and any devices incorporating an LED such as shown in any of the drawings, are by way of example only, for illustration and discussion purposes. In operation, orientation of the image capture eyewear may be in other directions suitable to the particular application of the image capture eyewear, for example up, down, sideways, or any other orientation. Also, any directional term, such as front, rear, inwards, outwards, towards, left, right, lateral, longitudinal, up, down, upper, lower, top, bottom and side, is exemplary, and not limiting, as to direction or orientation.
Example image capture eyewear has an optical element, electronic components, a support structure configured to support the optical element and the electronic components including dual cameras, and a display system coupled to the electronic components and supported by the support structure. The dual cameras capture stereoscopic images for use in rendering three dimensional images and/or creating a three-dimensional effect.
Support structure 13 supports the first and second cameras 10, 11. Support structure 13 also supports one or more optical elements within a field of view of a user when worn by the user. For example, central frame portion 16 supports the one or more optical elements. As used herein, the term “optical elements” refers to lenses, transparent pieces of glass or plastic, projectors, screens, displays and other devices for presenting visual images or through which a user perceives visual images. In an example, respective temples 14A and 14B connect to central frame portion 16 at respective articulated joints 18A and 18B. The illustrated temples 14A and 14B are elongate members having core wires 22A and 22B extending longitudinally therein.
Temple 14A is illustrated in a wearable condition and temple 14B is illustrated in a collapsed condition in
A plastics material or other material embeds core wire 22A, which extends longitudinally from adjacent articulated joint 18A toward a second longitudinal end of temple 14A. Similarly, the plastics material or other material also embeds core wire 22B, which extends longitudinally from adjacent articulated joint 18B toward a second longitudinal end of temple 14B. The plastics material or other material additionally embeds core wire 24, which extends from the right end portion 26A (terminating adjacent electronic components 20A) to left end portion 26B (terminating adjacent electronic components 20B).
Electronic components 20A and 20B are carried by support structure 13 (e.g., by either or both of temple(s) 14A, 14B and/or central frame portion 16). Electronic components 20A and 20B include a power source, power and communication related circuitry, communication devices, display devices, a computer, a memory, modules, and/or the like (not shown). Electronic components 20A and 20B may also include or support dual cameras 10 and 11 for capturing images and/or videos from different perspectives. These images may be fused to generate a stereoscopic images/videos. Also included, but not shown in the figure, are indicator LEDs indicating the operational state of image capture eyewear and one or more microphones for capturing audio that coincides with the captured video.
In one example, temples 14A and 14B and central frame portion 16 are constructed of a plastics material, cellulosic plastic (e.g., cellulosic acetate), an eco-plastic material, a thermoplastic material, or the like, with core wires 22A, 22B and 24 embedded therein. Core wires 22A, 22B and 24 provide structural integrity to support structure 13 (i.e., temple(s) 14A, 14B and/or central frame portion 16). Additionally, core wires 22A, 22B and/or 24 act as a heat sink to transfer heat generated by electronic components 20A and 20B away therefrom so as to reduce the likelihood of localized heating adjacent electronic components 20A and 20B. As such, core wires 22A, 22B and/or 24 thermally couple to the heat source to provide a heat sink for the heat source. Core wires 22A, 22B and/or 24 may include relatively flexible conductive metal or metal alloy material such as one or more of an aluminum, an alloy of aluminum, alloys of nickel-silver, and a stainless steel, for example.
As illustrated in
As described above, image capture eyewear 12 has dual cameras 10, 11 for capturing stereoscopic images. A simplified overhead view of the dual cameras 10, 11 is shown in
Generation of three-dimensional images and/or creation of a three-dimensional effect generally requires the fusion of stereoscopic images. For example, a stereoscopic imaging algorithm may create a three-dimensional image by fusing the stereoscopic images using the known sight lines, separation of the sight lines, and/or fields of view of the cameras. A stereoscopic imaging algorithm may create a three-dimensional effect by presenting a first of the stereoscopic images to a first eye of an observer via a display and a second of the stereoscopic images to a second eye of the observer via the same or a different display using the known sight lines, separation of the sight lines, and/or fields of view of the cameras.
The stereoscopic imaging algorithm can extract depth information by comparing information about a scene from the stereoscopic images, e.g., by examining the relative positions of objects in the two images. In traditional stereo vision, two cameras, displaced horizontally from one another are used to obtain two differing views on a scene. By comparing these two images, the relative depth information can be obtained in the form of a disparity map, which encodes the difference in horizontal coordinates of corresponding image points. The values in this disparity map are inversely proportional to the scene depth at the corresponding pixel location.
For a human to experience a three-dimensional effect, a stereoscopic device may superimpose the stereoscopic images, with the image from the right camera 10 being shown to the observer's right eye and from the left camera 11 being shown to the left eye. The images may be pre-processed to increase picture quality. For example, the images may first be processed to remove distortion (e.g., due to having been acquired with a “fisheye” lens). For example, barrel distortion and tangential distortion may be removed to ensure the observed image matches the projection of an ideal pinhole camera. The image may additionally be projected back to a common plane to allow comparison of the image pairs, known as image rectification. An information measure which compares the two images is minimized. This gives the best estimate of the position of features in the two images and creates a disparity map. Optionally, the received disparity map is projected into a three-dimensional point cloud. By utilizing the cameras' projective parameters, the point cloud can be computed such that it provides measurements at a known scale.
The algorithm(s) for presenting the stereoscopic images to produce a three-dimensional effect is dependent on the relative sightlines/fields of views between the respective cameras. Without this information, the algorithm(s) may not be able to properly fuse/display the stereoscopic images to achieve the desired three-dimensional effect.
All eyewear has a stiffness that enables support of the eyewear components, while allowing for some flexibility for user comfort. This flexibility, however, complicates the capture of suitable stereoscopic images to produce a desired three-dimensional effect, which, as described above, require the cameras to have a known sight lines/fields of view with respect to one another.
For example, the stereoscopic imaging algorithm may be set based on the known fields of view of the cameras as shown
The variable angles 23A, 23B resulting from this flexing are dependent on the stiffness of the temples 14A, 14B, the stiffness of the frame 13, the size of the user's head, etc. Thus, the relative fields of view of cameras 10 and 11 may be different for different wearers. The unflexed field of view of camera 10 changes by angle 23A from a field of view represented by lines 25A to 25B to a field of view represented by 25A′ to 25B′. The unflexed field of view of camera 11 changes by angle 23B from a field of view represented by lines 25C to 25D to a field of view represented by 25C′ to 25D′. In an example, a stereoscopic image algorithm calibrates the cameras to determine their relative fields of view.
Only two flexure states are illustrated in
Generally, the eyewear 12 performs a calibration prior to generating stereoscopic images. The calibration algorithm includes capturing images from both cameras 10 and 11 and determining the relative fields of view between the cameras by matching features between corresponding images captured by each of the cameras (i.e., what is the relative movement of a feature between right camera 10 and left camera 11. This calibration may be performed automatically by the eyewear, or upon user request (e.g., the user pressing a button such as button 32 (
The selector 32 may trigger (e.g., responsive to a momentary push of a button) controller 100 of image capture eyewear 12 to capture images/video for a calibration algorithm and/or stereoscopic imaging algorithm. In an example, the selector 32 may be a physical button on the eyewear 12 that, when pressed, sends a user input signal to the controller 100. The controller 100 may interpret pressing the button for a predetermined period of time (e.g., three seconds) as a request to perform the calibration algorithm and/or the stereoscopic imaging algorithm. In other examples, the selector 32 may be a virtual button on the eyewear or another device. In yet another example, the selector may be a voice module that interprets voice commands or an eye detection module that detects where the focus of an eye is directed. Controller 100 may also interpret signals from selector 32 as a trigger to select an intended recipient of the image(s) (e.g., user paired smartphone 50, or remote smartphone 51 via network 53).
Wireless module 102 may couple with a client/personal computing device 50 such as a smartphone, tablet, phablet, laptop computer, desktop computer, networked appliance, access point device, or any other such device capable of connecting with wireless module 102. Bluetooth, Bluetooth LE, Wi-Fi, Wi-Fi direct, a cellular modem, and a near field communication system, as well as multiple instances of any of these systems, for example, may implement these connections to enable communication there between. For example, communication between the devices may facilitate transfer of software updates, images, videos, lighting schemes, and/or sound between image capture eyewear 12 and the client device.
In addition, personal computing device 50 may be in communication with one or more recipients (e.g., recipient personal computing device 51) via a network 53. The network 53 may be a cellular network, Wi-Fi, the Internet or the like that allows personal computing devices to transmit and receive an image(s), e.g., via text, email, instant messaging, etc.
Cameras 10, 11 for capturing the images/video may include digital camera elements such as a charge-coupled device, a lens, or any other light capturing elements for capturing image data for conversion into an electrical signal(s). Cameras 10, 11 may additionally or alternatively include a microphone having a transducer for converting sound into an electrical signal(s).
The controller 100 controls the electronic components. For example, controller 100 includes circuitry to receive signals from cameras 10, 11 and process those signals into a format suitable for storage in memory 106 (e.g., flash storage). Controller 100 powers on and boots to operate in a normal operational mode, or to enter a sleep mode. In one example, controller 100 includes a microprocessor integrated circuit (IC) customized for processing sensor data from camera 10, along with volatile memory used by the microprocessor to operate. The memory may store software code for execution by controller 100 (e.g., execution of the calibration algorithm, the stereoscopic imaging algorithm, recipient selection, transmission of images, etc.).
Each of the electronic components require power to operate. Power circuit 104 may include a battery, power converter, and distribution circuitry (not shown). The battery may be a rechargeable battery such as lithium-ion or the like. Power converter and distribution circuitry may include electrical components for filtering and/or converting voltages for powering the various electronic components.
Calibration Algorithm
At block 302, the eyewear captures stereoscopic images of a scene containing at least one object with known dimensions (referred to herein as a known scene). Eyewear 12 may capture a right raw image of the known scene with right camera 10 and a left raw image of the known scene with left camera 11. In an example, the known scene has sharp features that are easily detectable by an image processing algorithm such as Scale Invariant Feature Transforms (SIFT) or Binary Robust Invariant Scalable Keypoints (BRISK). In another example, a trained deep neural network (DNN) can identify known objects such as people or cars.
At block 303, the images obtained at block 303 are rectified to remove distortion. Controller 100 may rectify the images to remove distortion introduced by the respective lenses of the cameras (e.g., distortion at the edges of the lens resulting from vignetting) to facilitate comparison of features between images. The right raw image is rectified to create a right rectified image and the left raw image is rectified to create the right rectified image.
At block 304, the calibration algorithm obtains a distance to a known feature in the known scene. In one example, the calibration algorithm run by controller 100 determines the distance to the known feature based on the size of the known feature in the captured image(s), e.g., the number of pixels covered by the known feature in a horizontal and/or vertical direction. In another example, the height/width of detected known objects are determined from bounding rectangles detected by a DNN. A DNN may also be trained to directly estimate a distance to a known object. In another example, the calibration algorithm receives the distance from a distance measuring device 108 such as a laser measuring device incorporated into the eyewear.
At block 306, the calibration algorithm identifies an actual offset between the stereoscopic images for one or more features in the known scene. The calibration algorithm may compare an offset for a known feature(s) in one image (e.g., a left raw or rectified image to that know feature(s) in another image (e.g., a right raw or rectified image). In an example, the number of pixels between the position of the feature in the left image and the position of the feature in the right image (e.g., in a horizontal direction) is the actual offset.
At block 308, the calibration algorithm determines a calibration offset. In an example, the calibration offset is a difference between the actual offset and a previously determined offset for the one or more features in the known scene determined with eyewear not experiencing any flexure.
In an alternative embodiment, the calibration offset is determined based on an amount of flexure experienced by the eyewear. The amount of flexure may be estimated based on a value generated by a strain gauge in the frame of the eyewear. For example, predefined offset values may be associated with predefined levels of strain (e.g., none, low, medium, and high). A difference calibration offset may be determined for each flexure amount (e.g., using steps 302308) enabling the system to properly render and display stereoscopic images taking into account the amount of flexure.
At block 310, store the calibration offset(s). In an example, the calibration algorithm stores the calibration offset(s) in memory 106 accessible by controller 100, e.g., for use in generating stereoscopic images. The controller 100 may store each calibration offset along with a flexure amount corresponding to the offset.
Stereoscopic Algorithm
At block 322, the eyewear obtains stereoscopic images of a scene. Eyewear 12 may capture a right raw image of the known scene with right camera 10 and a left raw image of the known scene with left camera 11.
At block 324, the stereoscopic algorithm rectifies the obtained raw stereoscopic images to correct distortion in the stereoscopic images. Controller 100 may rectify the images to remove distortion introduced by the respective lenses of the cameras (e.g., distortion at the edges of the lens resulting from vignetting) to facilitate comparison of features between images. The right raw image is rectified to create a right rectified image and the left raw image is rectified to create the right rectified image.
At block 326, the stereoscopic algorithm obtains a calibration offset (e.g., from the process described above with respect to
At block 328, the stereoscopic algorithm adjusts a three-dimensional rendering offset (i.e., an offset between two captured images of a scene captured by cameras having a known relationship to one another in order to provide a three-dimensional effect) in a rendering algorithm by the obtained calibration offset. In an example, controller 100 adjusts the three-dimensional rendering offset by the calibration offset.
At block 330, the stereoscopic algorithm presents three dimensional images based on the rendered stereoscopic images using the adjusted offset. In an example, the stereoscopic algorithm presents the right and left images of the stereoscopic images to the right and left eyes, respectively, of an observer (e.g., via displays of the eyewear). The presented images are projected, taking the adjusted offset into account, in order provide a more realistic three-dimensional effect to the wearer. In another example, the stereoscopic algorithm blends the right and left images of the stereoscopic images on a display, taking the adjusted offset into account, in order provide a more realistic three-dimensional effect to the viewer.
The steps in
It will be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. Relational terms such as first and second and the like may be used solely to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “includes,” “including,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises or includes a list of elements or steps does not include only those elements or steps but may include other elements or steps not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “a” or “an” does not, without further constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Unless otherwise stated, any and all measurements, values, ratings, positions, magnitudes, sizes, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. Such amounts are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain. For example, unless expressly stated otherwise, a parameter value or the like may vary by as much as ±10% from the stated amount.
In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various examples for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples require more features than are expressly recited in each claim. Rather, as the following claims reflect, the subject matter to be protected lies in less than all features of any single disclosed example. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
While the foregoing has described what are considered to be the best mode and other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that they may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all modifications and variations that fall within the true scope of the present concepts.
This application is a Continuation of U.S. application Ser. No. 16/688,046 filed on Nov. 19, 2019, which claims priority to U.S. Provisional Application Ser. No. 62/782,885 filed on Dec. 20, 2018, the contents of both of which are incorporated fully herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6091546 | Spitzer | Jul 2000 | A |
7784938 | Richards et al. | Aug 2010 | B2 |
8496173 | Anselment et al. | Jul 2013 | B2 |
8988509 | Macmillan et al. | Mar 2015 | B1 |
9239460 | Sylvan et al. | Jan 2016 | B2 |
9609194 | Egger et al. | Mar 2017 | B2 |
9609305 | Ramaswamy | Mar 2017 | B1 |
9628778 | Hsueh et al. | Apr 2017 | B2 |
9635222 | Blum | Apr 2017 | B2 |
9759918 | Ebstyne et al. | Sep 2017 | B2 |
9792667 | Sun et al. | Oct 2017 | B2 |
9965030 | Jeong | May 2018 | B2 |
10037084 | Joo | Jul 2018 | B2 |
10055816 | Sun et al. | Aug 2018 | B2 |
10104364 | Goma et al. | Oct 2018 | B2 |
10122998 | Baarsen et al. | Nov 2018 | B2 |
10152119 | Tseng et al. | Dec 2018 | B2 |
10168772 | Kim et al. | Jan 2019 | B2 |
10178378 | Travis | Jan 2019 | B2 |
10180576 | Totani et al. | Jan 2019 | B2 |
10187628 | Barron et al. | Jan 2019 | B2 |
10203752 | Fateh | Feb 2019 | B2 |
10215989 | Harrison et al. | Feb 2019 | B2 |
10271042 | Rougeaux | Apr 2019 | B2 |
10277887 | Aoki et al. | Apr 2019 | B2 |
10303250 | Jeong | May 2019 | B2 |
10345903 | Robbins et al. | Jul 2019 | B2 |
10368059 | Fateh et al. | Jul 2019 | B2 |
10378882 | Yeoh et al. | Aug 2019 | B2 |
10410367 | Ezra et al. | Sep 2019 | B2 |
10412368 | Osterwood et al. | Sep 2019 | B2 |
10412382 | Cole et al. | Sep 2019 | B2 |
10453219 | Myokan | Oct 2019 | B2 |
10482627 | Kim et al. | Nov 2019 | B2 |
10503247 | Samples et al. | Dec 2019 | B2 |
10504243 | Linde et al. | Dec 2019 | B2 |
10506219 | Hwang et al. | Dec 2019 | B2 |
10511832 | Shen et al. | Dec 2019 | B1 |
10587868 | Yun et al. | Mar 2020 | B2 |
10630965 | Held et al. | Apr 2020 | B2 |
10650602 | You et al. | May 2020 | B2 |
10659683 | Campbell | May 2020 | B2 |
10715788 | Sheridan | Jul 2020 | B2 |
10728531 | Kashibuchi | Jul 2020 | B2 |
10757342 | Ding et al. | Aug 2020 | B1 |
10764556 | Katz | Sep 2020 | B2 |
10798365 | Macmillan et al. | Oct 2020 | B2 |
10816807 | Polcak | Oct 2020 | B2 |
10873734 | Katz | Dec 2020 | B2 |
10887573 | Kenrick | Jan 2021 | B1 |
10896494 | Katz et al. | Jan 2021 | B1 |
10965931 | Ryuma et al. | Mar 2021 | B1 |
10983593 | Jeong | Apr 2021 | B2 |
11039113 | Katz | Jun 2021 | B2 |
11089289 | Ohishi et al. | Aug 2021 | B2 |
11112609 | Pomes | Sep 2021 | B1 |
11113889 | Castaneda | Sep 2021 | B1 |
11158088 | Zhang et al. | Oct 2021 | B2 |
11212509 | Ardisana et al. | Dec 2021 | B2 |
11259008 | Ryuma | Feb 2022 | B2 |
11269402 | Canberk | Mar 2022 | B1 |
11307412 | Meisenholder | Apr 2022 | B1 |
11314088 | Yun | Apr 2022 | B2 |
11323680 | Kennedy et al. | May 2022 | B2 |
20020075201 | Sauer et al. | Jun 2002 | A1 |
20020082498 | Wendt et al. | Jun 2002 | A1 |
20020113756 | Tuceryan et al. | Aug 2002 | A1 |
20050207486 | Lee et al. | Sep 2005 | A1 |
20100007582 | Zalewski | Jan 2010 | A1 |
20100110368 | Chaum | May 2010 | A1 |
20120113235 | Shintani | May 2012 | A1 |
20120167124 | Abdeljaoued | Jun 2012 | A1 |
20120229613 | Yoshida et al. | Sep 2012 | A1 |
20130015244 | Anselment et al. | Jan 2013 | A1 |
20130038510 | Brin et al. | Feb 2013 | A1 |
20130120224 | Cajigas et al. | May 2013 | A1 |
20130187943 | Bohn et al. | Jul 2013 | A1 |
20150055085 | Fonte et al. | Feb 2015 | A1 |
20150185476 | Lee | Jul 2015 | A1 |
20150215547 | Muller | Jul 2015 | A1 |
20150323792 | Kinoshita | Nov 2015 | A1 |
20150338498 | Weber et al. | Nov 2015 | A1 |
20160034032 | Jeong | Feb 2016 | A1 |
20160034042 | Joo | Feb 2016 | A1 |
20160037032 | Iwama | Feb 2016 | A1 |
20160091725 | Kim et al. | Mar 2016 | A1 |
20160117864 | Cajigas et al. | Apr 2016 | A1 |
20160119523 | Egger et al. | Apr 2016 | A1 |
20160165218 | Seo et al. | Jun 2016 | A1 |
20160225191 | Mullins | Aug 2016 | A1 |
20160284129 | Nishizawa et al. | Sep 2016 | A1 |
20170034499 | Doron et al. | Feb 2017 | A1 |
20170363885 | Blum et al. | Dec 2017 | A1 |
20180017815 | Chumbley et al. | Jan 2018 | A1 |
20180031842 | Tsai et al. | Feb 2018 | A1 |
20180031847 | Tatsuta et al. | Feb 2018 | A1 |
20180213201 | Zhang et al. | Jul 2018 | A1 |
20180224934 | Jeong | Aug 2018 | A1 |
20180288317 | Nopper et al. | Oct 2018 | A1 |
20180350107 | Myokan | Dec 2018 | A1 |
20180365859 | Oba et al. | Dec 2018 | A1 |
20190025591 | Wang et al. | Jan 2019 | A1 |
20190076013 | Aferzon et al. | Mar 2019 | A1 |
20190082166 | Song et al. | Mar 2019 | A1 |
20190108652 | Linde et al. | Apr 2019 | A1 |
20190129181 | Polcak | May 2019 | A1 |
20190129184 | Hu et al. | May 2019 | A1 |
20190158716 | Kerr et al. | May 2019 | A1 |
20190182415 | Sivan | Jun 2019 | A1 |
20190197982 | Chi et al. | Jun 2019 | A1 |
20190243157 | Sheldon et al. | Aug 2019 | A1 |
20190258077 | Sheldon et al. | Aug 2019 | A1 |
20190281199 | Müller et al. | Sep 2019 | A1 |
20200053342 | Macmillan et al. | Feb 2020 | A1 |
20200074684 | Lin et al. | Mar 2020 | A1 |
20200077073 | Nash et al. | Mar 2020 | A1 |
20200107005 | Katz | Apr 2020 | A1 |
20200107013 | Hudman et al. | Apr 2020 | A1 |
20200133031 | Muramatsu et al. | Apr 2020 | A1 |
20200175238 | Müller et al. | Jun 2020 | A1 |
20200175705 | Ezra et al. | Jun 2020 | A1 |
20200204787 | Ardisana et al. | Jun 2020 | A1 |
20200213572 | Katz et al. | Jul 2020 | A1 |
20200233213 | Porter et al. | Jul 2020 | A1 |
20200302665 | Onozawa et al. | Sep 2020 | A1 |
20200413030 | Zak et al. | Dec 2020 | A1 |
20210067764 | Shau et al. | Mar 2021 | A1 |
20210096388 | Hanover et al. | Apr 2021 | A1 |
20210099691 | Danziger | Apr 2021 | A1 |
20210112230 | Katz | Apr 2021 | A1 |
20210203909 | Ryuma et al. | Jul 2021 | A1 |
20210217147 | Edwin et al. | Jul 2021 | A1 |
20210271081 | Yun et al. | Sep 2021 | A1 |
20210297584 | Moubedi | Sep 2021 | A1 |
20210337181 | Shin | Oct 2021 | A1 |
20210374918 | Margolis et al. | Dec 2021 | A1 |
20210375301 | Geddes | Dec 2021 | A1 |
20210390882 | Iyengar | Dec 2021 | A1 |
20210409628 | Kalkgruber | Dec 2021 | A1 |
20210409678 | Birklbauer et al. | Dec 2021 | A1 |
20220060675 | Ardisana et al. | Feb 2022 | A1 |
20220082827 | Micusik | Mar 2022 | A1 |
20220099972 | Birklbauer | Mar 2022 | A1 |
20220099973 | Goodrich | Mar 2022 | A1 |
20220103748 | Canberk | Mar 2022 | A1 |
20220103757 | Ding | Mar 2022 | A1 |
20220103802 | Heger | Mar 2022 | A1 |
20220174188 | Price et al. | Jun 2022 | A1 |
20220197033 | Liang et al. | Jun 2022 | A1 |
20220206316 | Hatfield | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
105319718 | Feb 2016 | CN |
Entry |
---|
U.S. Appl. No. 16/706,162, filed Dec. 6, 2019, Dmitry Ryuma. |
U.S. Appl. No. 17/553,287, filed Dec. 16, 2021 to Ryuma et al. |
International Search Report and Written Opinion for International Application No. PCT/US2019/062136, dated Feb. 10, 2020 (dated Feb. 10, 2020)—15 pages. |
1st Chinese Office Action for Chinese Application No. 201980083770.8, dated Sep. 13, 2022 (Sep. 13, 2022)—8 pages (English translation—4 pages). |
Number | Date | Country | |
---|---|---|---|
20220060675 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62782885 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16688046 | Nov 2019 | US |
Child | 17521001 | US |