Flexible flat cable with improved easy structures for engagement/disengagement

Information

  • Patent Application
  • 20080029290
  • Publication Number
    20080029290
  • Date Filed
    August 02, 2007
    18 years ago
  • Date Published
    February 07, 2008
    17 years ago
Abstract
A flexible flat cable (10) in accordance with the present invention is adapted for mating with a complementary connector (70). The flexible flat cable (10) includes a number of conductors (20) parallelly disposed, an insulation jacket (30) covering said conductors (20); and an insert portion (40) form at one end of the flexible flat cable (10) with the conductors (20) exposed outside the insert portion (40); a chamfer (201) is formed on the end of the conductors (20) located in the insert portion (40).
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a top elevation view of a flexible flat cable in accordance with the present invention;



FIG. 2 is a partially enlarged view of the circled portion shown in FIG. 1;



FIG. 3 is a partially enlarged view of FIG. 1, viewed from side elevation;



FIG. 4 is a cross-sectional view illustrating the flexible flat cable inserting into a complementary connector at the first stage; and



FIG. 5 is another cross-sectional view illustrating the flexible flat cable inserting into the complementary connector at middle stage.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made to the drawing figures to describe the present invention in detail.


Referring to FIGS. 1-3, a flexible flat cable 10 comprises a plurality of flat conductors 20 parallelly disposed and an insulation jacket 30 covering opposite top and bottom surfaces of the flat conductors 20. The cross section of each flat conductor 20 is rectangular. The insulation jacket 30 could be a whole outer jacket integrated molding around the conductors via extrusion process, while the insulation jacket 30 could also include two layers laminated on the top and bottom surfaces of the conductors 20. The insulation jacket 30 defines a top surface 301 and an opposite bottom surface 302. A shielding layer 50 is sticked on the top surface 301, which is mainly used to prevent electromagnetic interference when signal transmission.


Now referring to FIGS. 1-2 and 4-5, a pair of insert portions 40 are formed on the two end sections P1, P2 of the flexible flat cable 10, which is capable of directly inserting into and pulling out from a complementary connector 70. The upper sides of the conductors 20 located at the insert portions 40 are not covered by the insulation jacket 30. A pair of reinforcing plates 60 are disposed on the bottom surface 302 of the insulation jacket 30 and adjacent to corresponding insert portions 40. Each reinforcing plate 60 comprises a horizontal portion 601 sticked on the bottom surface 302 below the insulation jacket 30 of the insert portion 40 for increasing the intensity of the insert portion 40, and the horizontal portion 601 is inserted into a receiving space 701 of the complementary connector 70 together with the insert portion 40. A flectional portion 602 is formed at free end of corresponding horizontal portion 601 and extends slantly from the free end of the horizontal portion 601 a certain distance, and an obtuse angle is thus formed between the horizontal portion 601 and the flectional portion 602. The flectional portion 602 makes the operator easy to hold the flexible flat cable 10 and easy to insert into and pull out from the complementary connector 70.


Referring to FIGS. 3-5, through the secondary process by pressure, a chamfer 201 is formed on the end of the conductors 20 exposed outside, the function of guidance has been formed by the chamfer 201. The slant surface of the chamfer 201 has an angle (A) of approximately 15 to 30 degrees with the top surface of the conductors 20. The terminals 80 received in the complementary connector 70 each define a contact portion 801. When operator holds the flectional portion 602 to drive the flexible flat cable 10 to insert into the complementary connector 70, the contact portions 801 firstly contact with the chamfer 201 of the exposed conductors 20 of the insert portion 40. As the guiding function of the chamfer 201, the terminals 80 would be got very small friction, so the conductors 20 would not be turnovered or broken, the insert portion 40 of the flexible flat cable 10 conveniently and reliably engages with the complementary connector 70 and thus achieving perfect electric connection there between. When operator holds the flectional portion 602 of the reinforcing plate 60 and exerts rearward horizontal force to the flectional portion 602, the flexible flat cable 10 is pulled out from the complementary connector 70, thus, the insert portion 40 of the flexible flat cable 10 is pulled out from the receiving space 701 of the complementary connector 70.


It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A flexible flat cable adapted for mating with a complementary connector, comprising: a plurality of conductors parallel disposed relative to one another defining a top surface;an insulation jacket covering said conductors defining a top surface and a bottom surface; andan insert portion formed at one end of the flexible flat cable with the conductors exposed outside the insert portion;and wherein a chamfer is formed on the end of the conductors located in the insert portion.
  • 2. The flexible flat cable as claimed in claim 1, wherein the slant surface of the chamfer has an angle of approximately 15 to 30 degrees with the top surface of the conductors.
  • 3. The flexible flat cable as claimed in claim 1, further comprising a reinforcing plate disposed on the bottom surface of the insulation jacket below the insert portion, and wherein the reforcing plate comprises a horizontal portion and a flectional portion, and wherein a certain angle is formed between the horizontal portion and the flectional portion.
  • 4. The flexible flat cable as claimed in claim 3, wherein the certain angle is more than 90 degrees.
  • 5. The flexible flat cable as claimed in claim 1, wherein the insulation jacket comprises two layers laminated on the top and bottom surfaces of the conductors.
  • 6. The flexible flat cable as claimed in claim 1, wherein the insulation jacket is integratly extruded around the conductors to enclose the conductors therein.
  • 7. The flexible flat cable as claimed in claim 1, further comprising a shielding layer sticked on the top surface of the insulation jacket.
  • 8. The flexible flat cable as claimed in claim 1, wherein the cross section of the conductor is rectangular.
  • 9. A flexible flat cable assembly comprising: a plurality of conductors extending along a lengthwise direction in parallel relation with one another;an insulative layer covering said conductors on two opposite surfaces while exposing front portions of said conductors on one of said surfaces; anddistal front end section of each of said conductors being deflected to form a chamfer while the insulative layer not, so as to result in not only a lower insertion force with regard to the conductor along the lengthwise direction when the cable is inserted into a complementary connector but also lateral restriction with regard to the conductor.
Priority Claims (1)
Number Date Country Kind
200620075533.7 Aug 2006 CN national