Flexible fluid containment vessel featuring a keel-like seam

Information

  • Patent Grant
  • 7775171
  • Patent Number
    7,775,171
  • Date Filed
    Tuesday, January 21, 2003
    21 years ago
  • Date Issued
    Tuesday, August 17, 2010
    14 years ago
  • CPC
  • US Classifications
    Field of Search
    • US
    • 114 0740R0
    • 114 0740T0
    • 114 0740A0
    • 114 256000
    • 220 560000
    • 220 009400
    • 220 009100
    • 220 009200
    • 220 009300
    • 220 677-684
    • 405 015000
    • 405 032000
    • 138 118100
    • 138 119000
    • 138 123000
    • 383 107000
    • 383 108000
    • 383 117000
  • International Classifications
    • B63B25/00
    • B63B25/08
    • B63B25/12
    • B65D88/00
Abstract
A flexible fluid containment vessel (FFCV) including at least one segment made up of a fabric. Two ends of the fabric are beaded and are joined together so as to form a generally cylindrical section. The interface along which the ends of the fabric are joined form a keel that serves to stabilize the completed FFCV when the FFCV is placed in water.
Description
FIELD OF THE INVENTION

The present invention relates to a flexible fluid containment vessel (sometimes hereinafter referred to as “FFCV”) for transporting and containing a large volume of fluid, particularly fluid having a density less than that of salt water, more particularly, fresh water, and the method of making the same.


BACKGROUND OF THE INVENTION

The use of flexible containers for the containment and transportation of cargo, particularly fluids or fluidizable solids, is well known. It is well known to use containers to transport such liquid cargo in water, particularly, salt water. Furthermore, it is common to transport materials which have a density less than that of salt water. If the density of the liquid cargo is less than the density of the liquid cargo, the cargo provides buoyancy for the flexible transport bag when a partially or completely filled bag is placed and towed in salt water. This buoyancy of the cargo provides flotation for the container and facilitates the shipment of the cargo from one seaport to another.


If the cargo is fluid or a fluidized solid that has a density less than salt water; there is no need to use rigid bulk barges, tankers or containment vessels. Rather, flexible containment vessels may be used and towed or pushed from one location to another. Such flexible vessels have obvious advantages over rigid vessels. Moreover, flexible vessels, if constructed appropriately, allow themselves to be rolled up or folded after the cargo has been removed and stored for a return trip.


Throughout the world there are many areas which are in critical need of fresh water. Fresh water is such a commodity that harvesting of the ice cap and icebergs is rapidly emerging as a large business. However, wherever the fresh water is obtained, economical transportation thereof to the intended destination is a concern.


For example, currently an icecap harvester intends to use tankers having 150,000 ton capacity to transport fresh water. Obviously, this involves, not only the cost in using such a transport vehicle, but the added expense of its return trip, unloaded, to pick up fresh cargo. Flexible container vessels, when emptied can be collapsed and stored on, for example, the tugboat that pulled it to the unloading point, reducing the expense in this regard.


Even with such an advantage, economy dictates that the volume being transported in the flexible container vessel be sufficient to overcome the expense of transportation. Accordingly, larger and larger flexible containers are being developed. However, technical problems with regard to such containers persist even though developments over the years have occurred.


SUMMARY OF THE INVENTION

It has been recognized that one of the problems with current FFCVs is the lack of stability they exhibit when being towed in water. That is, FFCVs under tow tend to exhibit sinusoidal movements and/or yaw which interfere with their smooth transport and give rise to undue wear and tear.


Accordingly, it is an object of the present invention to provide an efficient system and method for stabilizing an FFCV under tow in water.


It is a further object of the invention to provide a fabric construction for an FFCV which may be readily varied to meet possible changing requirements for the FFCV.


Still another object of the invention to provide a fabric construction for an FFCV in which seams in the construction may be readily inspected.


In view of the above, an FFCV according to the invention includes at least one segment made up of a fabric. Two ends of the fabric are beaded and are joined together so as to form a generally cylindrical section. The interface, along which the ends of the fabric are joined, forms a keel that serves to stabilize the completed FFCV when the FFCV is placed in water.





BRIEF DESCRIPTION OF THE DRAWINGS

Thus by the present invention, its objects and advantages will be realized the description of which should be taken in conjunction with the drawings wherein:



FIG. 1 is a somewhat general perspective view of a prior art FFCV which is cylindrical having a pointed bow or nose;



FIG. 2 is a somewhat general perspective view of an FFCV which is formed in segments, incorporating the teachings of the present invention;



FIG. 3 is a perspective view useful in describing the formation of an FFCV section incorporating the teachings of the present invention; and



FIG. 4 shows a seam construction in accordance with the present invention; and



FIG. 5 is a schematic diagram showing an illustrative FFCV construction in accordance with the present invention.



FIG. 6 is a cross-sectional view of a waterborne flexible fluid containment vessel in accordance with the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The proposed FFCV 10 is intended to be constructed of an impermeable textile tube. The tube's configuration may vary. For example, as shown in FIG. 2, it would comprise a tube 12 having a substantially uniform diameter (perimeter) and sealed on each end 14 and 16. The respective ends 14 and 16 may be closed, pinched, and sealed in any number of ways. A means for loading and unloading cargo (e.g. fresh water) would be provided. The resulting impermeable structure which is fabricated out of segments or strips of material 18 will be flexible enough to be folded or wound up for transportation and storage.


The ends may be sealed by many different ways. For example, the sealed end can be formed by collapsing the end of the tube 12 and folded over one or more times. One end 14 of the tube 12 can be sealed such that the plane of the sealed surface is, either in the same plane as the seal surface at the other end 16 of the tube. End 14 can also be orthogonal to the plane formed by the seal surface at the other end 16 of the tube, creating a bow which is perpendicular to the surface of the water, similar to that of a ship. For sealing, the ends 14 and 16 of the tube may be collapsed such that a sealing length of a few feet results. Sealing may be facilitated by gluing or sealing the inner surfaces of the flattened tube end with a reactive material or adhesive. In addition, the flattened ends 14 and 16 of the tube can be clamped and reinforced with metal or composite bars that are bolted or secured through the composite structure.


Alternatively, the end 14 of the tube 12 may be collapsed and folded such that the width of the sealed end matches either the diameter of the tube or the width of the tube when the tube is filled with water and floated in sea water. This feature of matching the width of the sealed end with either the width of the tube or diameter of the tube as filled will minimize stress concentration when the FFCV is being towed. The end 14 (collapsed and folded) may be sealed with a reactive polymer sealant or adhesive. The sealed end may also be reinforced as previously discussed with metal or composite bars to secure the sealed end and can be provided with a means for attaching a towing device.


In designing the FFCV to withstand the loads placed thereon, certain factors should be considered. In this regard, in U.S. patent application Ser. No. 09/832,739 filed Apr. 11, 2001, now U.S. Pat. No. 6,860,218, entitled “Flexible Fluid Containment Vessel” and incorporated herein by reference, such factors are set forth in detail, along with possible materials for the fabric, their construction and possible coatings and methodology to apply to it to render the fabric impermeable, in addition to other features which may be desirable with regard to the FFCV. Accordingly, further discussion thereof will not be repeated herein rather reference is made to said application.


Also, the present device may have application with regard to the spiral formed FFCV as disclosed in U.S. patent application Ser. No. 09/908,877 filed Jul. 18, 2001, now U.S. Pat. No. 6,675,734, entitled “Spiral Formed Flexible Fluid Containment Vessel” and incorporated herein by reference. While there is discussed therein means and methods for joining the wound strips together to form an FFCV, an alternative thereto is disclosed in the aforesaid first mentioned patent application for all or part of the joining process. For example, in high load portions of the FFCV, typically the front and rear, one methodology may be used. For less stressful locations another methodology may be used.


In addition, reference is made to U.S. patent application Ser. No. 09/921,617 filed Aug. 3, 2001, now U.S. Pat. No. 6,739,274, entitled “End Portions for a Flexible Fluid Containment Vessel and a Method of Making the Same” which relates to possible construction of the end portions of the FFCV and U.S. patent application Ser. No. 09/923,936 filed Aug. 7, 2001, now U.S. Pat. No. 7,308,862, entitled “Coating for a Flexible Fluid Containment Vessel and a Method of Making the Same” which discloses additional construction for the fabric, in addition to possible coatings therefor. Both Ser. Nos. 09/921,617 and 09/923,936 are, incorporated herein by reference.


The fabric 18 can be that of a patchwork to create the FFCV, wound strip or of other configuration suitable for the purpose. For example, it may be made in segments of flat fabric that has one of its dimensions equal to that of the circumference of the FFCV which is formed into a tube and joined with other so formed segments. The variations are endless.


Turning now to FIG. 3, there is shown a perspective view of an FFCV section formed according to the invention. As can be seen from the figure, a rectangular piece of flat woven fabric 20 is provided. Two opposing ends of the fabric, 22a and 22b, are beaded such that they can be joined through stitching, sintering, cauterizing, gluing, bonding, overlapping, stapling and/or any other suitable joining method. Upon joining of ends 22a and 22b, the FFCV section takes on a generally cylindrical shape.


The preferred method of joining the two ends involves using a “circus-tent” type of stitching, that is a hemming stitch, half-cross stitch, or the like. The ends are brought together by the stitching and then the stitching is covered using a two-part reactive resin system. The covering can be, but is not limited to a sheath laminated by adhesive, or a curable liquid coating applied via spraying. The preferable covering material for the seam is two-part polyurethane. Furthermore, the covering is preferably performed on the inner surface 24a of the generally cylindrical section rather than on the outer surface 24b, creating a water tight seal while leaving the stitching visible and accessible from outside the FFCV. By constructing the section with the stitching visible and accessible from the outside, inspection and maintenance of the seam are facilitated.



FIG. 4 shows a seam 26 formed through circus-tent stitching 28. A two-part covering 30 is included in the figure but is pealed back to reveal the stitching underneath. As can be seen, the two ends 22a and 22b of the flat woven fabric 20 are beaded and include holes for the stitching. As mentioned above, it is preferable that the stitching is visible from outside the FFCV section.


Referring to FIG. 5, there is shown an FFCV 32 constructed in part from segments like that shown in FIG. 3. More specifically, the FFCV shown in FIG. 5 includes four such segments 34, 36, 38 and 40. These segments are joined so as to form and overall generally cylindrical body for the FFCV. One way of joining the segments is to use the same stitching and covering technique used to form the individual segments, as described in connection with FIG. 3. Although, it should be noted that many alternative techniques for joining the segments will apparent to the skilled designer when viewed in light of this disclosure.


In addition, the FFCV includes a bow segment 42, a stern segment 44, a bow cap 46 and a stern cap 48. The stern segment and bow segment are each formed in a manner similar to the segment of FIG. 3, one possible exception being that the stern and bow segments are not formed from rectangular pieces of flat woven fabric, but rather, are formed from curved pieces of the fabric. When formed from curved pieces of fabric, the stern and bow segments take on a generally non-cylindrical shape. The bow and stern segments, as well as the caps, may be joined to the overall body in the same manner that the body segments are joined to each other. The non-cylindrical segment and the cap may be employed for sealing the open ends of the cylindrical segment to form a closed fluid containment vessel.


In any event, each of the segments 34-44 include keel-like seams, respectively denoted as 34s-44s. The seams are aligned so that they form a single keel 50 that is continuous and one piece with the segments and that runs along the greater portion of the FFCV. The keel generally faces downward when the FFCV is placed in a body of water such that the keel is below the surface of the water. In this manner the keel provides stability when the FFCV is under tow, suppressing unwanted snaking and/or yaw.


It should be noted that, if the FFCV is not buoyant, it may be desirable to provide a foamed coating on the inside, outside, or both surfaces of the fabric or otherwise coat it in a manner set forth in the aforesaid applications to render the fabric buoyant.


In view of the closed nature of the FFCV, if it is intended to transport fresh water, as part of the covering/coating process of the inside thereof, it may provide for a coating which includes a germicide or a fungicide so as to prevent the occurrence of bacteria or mold or other contaminants.


In addition, since sunlight also has a degradation effect on fabric, the FFCV may include as part of its coating, or the fiber used to make up the fabric, a UV protecting ingredient in this regard.


While the present invention has been particularly shown and described in conjunction with preferred embodiments thereof, it will be readily appreciated by those of ordinary skill in the art that various changes may be made without departing from the spirit and scope of the invention. Therefore, it is intended that the appended claims be interpreted as including the embodiments described herein as well as all equivalents thereto.

Claims
  • 1. A waterborne flexible fluid containment vessel for the transportation of cargo comprising a fluid or fluidizable material, said vessel comprising: a plurality of segments, each segment being formed by joining two ends of a piece of fabric so that the segment takes on a generally cylindrical shape with open ends and a seam at the interface where the two ends of the fabric are joined, said seam forming a keel, wherein said keel is continuous and one piece with said segment, said segments being joined so as to form an overall generally cylindrical body; andmeans for sealing open ends of bow and stern segments of said overall generally cylindrical body to define a continuous space therebetween and form a closed flexible fluid containment vessel.
  • 2. A vessel in accordance with claim 1 wherein joining said two ends of the fabric includes stitching said ends together.
  • 3. A vessel in accordance with claim 2 wherein said stitching is selected from the group consisting of hemming stitch and half-cross stitching.
  • 4. A vessel in accordance with claim 1 further comprising a covering for said seam to make said seam impervious to fluids.
  • 5. A vessel in accordance with claim 4 wherein said covering is formed of a material comprised of a two-part polyurethane.
  • 6. A vessel in accordance with claim 4 wherein each said segment has an inside and an outside and said covering is applied on the inside of said segment such that said seam remains visible from outside said vessel.
  • 7. A vessel in accordance with claim 1 wherein said seams of said segments are aligned to form said keel along said overall generally cylindrical body.
  • 8. A vessel in accordance with claim 1 wherein said means for sealing the open ends of said overall generally cylindrical body includes a generally non-cylindrical segment and a cap.
  • 9. A vessel in accordance with claim 1 wherein said means for sealing the open ends of said generally cylindrical body includes a generally non-cylindrical segment and a cap.
  • 10. A vessel in accordance with claim 1 wherein said piece of fabric is a piece of flat woven fabric that is impervious to fluids.
  • 11. A method of forming a waterborne flexible fluid containment vessel for the transportation of cargo comprising a fluid or fluidizable material, comprising the steps of: forming a plurality of segments, each segment being formed by joining two ends of a piece of fabric so that the segment takes on a generally cylindrical shape with open ends and a seam at the interface where the two ends of the fabric are joined, said seam forming a keel, wherein said keel is continuous and one piece with said segment;joining said segments to form an overall generally cylindrical body; andsealing open ends of bow and stern segments of said overall generally cylindrical body to define a continuous space therebetween and form a closed flexible fluid containment vessel.
  • 12. A method of forming a vessel in accordance with claim 11 wherein the step of joining two ends of the fabric includes stitching said two ends together.
  • 13. A method of forming a vessel in accordance with claim 12 wherein said step of stitching includes stitching in a fashion selected from the group consisting of hemming stitch and half-cross stitch.
  • 14. A method of forming a vessel in accordance with claim 11 further comprising the step of covering said seam to make said seam impervious to fluids.
  • 15. A method of forming a vessel in accordance with claim 14 wherein said step of covering includes providing a covering formed of a material comprised of a two-part polyurethane.
  • 16. A method of forming a vessel in accordance with claim 14 wherein each said segment has an inside and an outside and said step of covering is involves covering said seam on the inside of said segment such that said seam remains visible from outside said vessel.
  • 17. A method of forming a vessel in accordance with claim 11 further comprising the step of aligning said seams of said segments to form said keel along said overall generally cylindrical body.
  • 18. A method of forming a vessel in accordance with claim 11 wherein said step of sealing the open ends of said overall generally cylindrical body includes using a generally non-cylindrical segment and a cap.
  • 19. A method for forming a vessel in accordance with claim 11 wherein said step of sealing the open ends of said generally cylindrical body includes using a generally non-cylindrical segment and a cap.
  • 20. A method for forming a vessel in accordance with claim 11 wherein said piece of fabric is a piece of flat woven fabric that is impervious to fluids.
US Referenced Citations (130)
Number Name Date Kind
34426 Howard Feb 1862 A
130303 Libby Aug 1872 A
143661 Blake Oct 1873 A
154725 Street Sep 1874 A
389615 Townsend Sep 1888 A
1447981 Henderson Mar 1923 A
1702593 Pierce Feb 1929 A
1723307 Sipe Aug 1929 A
1921015 Young Aug 1933 A
2065480 Soper Dec 1936 A
2115368 Lustberg Apr 1938 A
2350158 Evans May 1944 A
2371404 Mumford Mar 1945 A
2372632 Webb Mar 1945 A
2391926 Scott Jan 1946 A
2406830 Haman et al. Sep 1946 A
2492699 Houwink Dec 1949 A
2595408 Quest May 1952 A
2674287 Smith et al. Apr 1954 A
2685964 Brown Aug 1954 A
2704677 Quest Mar 1955 A
2724358 Harris et al. Nov 1955 A
2725027 Brandon et al. Nov 1955 A
2794192 Paris Jun 1957 A
2854049 Wyllie Sep 1958 A
2939501 Corman et al. Jun 1960 A
2968272 Berglund Jan 1961 A
2979008 Whipple Apr 1961 A
2997973 Hawthorne et al. Aug 1961 A
2998793 Hawthorne et al. Sep 1961 A
3001501 Hawthorne et al. Sep 1961 A
3018748 Denis et al. Jan 1962 A
3050750 Harrison Aug 1962 A
3056373 Hawthorne et al. Oct 1962 A
3067712 Doerpinghaus Dec 1962 A
3150627 Stewart et al. Sep 1964 A
3167103 Hawthorne et al. Jan 1965 A
3224403 Paddington Dec 1965 A
3246621 Copeland Apr 1966 A
3282361 Mackie Nov 1966 A
3289721 Benson Dec 1966 A
3296994 Schirtzinger Jan 1967 A
3502046 Stauber Mar 1970 A
3506516 Baumann Apr 1970 A
3561219 Nishizawa Feb 1971 A
3622437 Hobaica et al. Nov 1971 A
3661693 Pierson May 1972 A
3672319 Platzer Jun 1972 A
3686064 Bonnet et al. Aug 1972 A
3721603 Takeda Mar 1973 A
3739410 Fortin Jun 1973 A
3762108 Pierson Oct 1973 A
3774563 Anderson, Sr. et al. Nov 1973 A
3779196 Knaus et al. Dec 1973 A
3792589 Sayles Feb 1974 A
3797445 Zeimer Mar 1974 A
3812805 Forssell et al. May 1974 A
3839869 Green Oct 1974 A
3839977 Bradberry Oct 1974 A
3922861 Grihangne Dec 1975 A
3952679 Grihangne Apr 1976 A
3955524 Renoux May 1976 A
3974789 DeGroot Aug 1976 A
3998304 Edgerton et al. Dec 1976 A
4108101 Schirtzinger Aug 1978 A
4190010 Bibby Feb 1980 A
4227474 Ullrich Oct 1980 A
4227477 Preus Oct 1980 A
4227478 Preus Oct 1980 A
4230061 Roberts Oct 1980 A
4373462 Fish Feb 1983 A
4399765 Alkner et al. Aug 1983 A
4446181 Wood May 1984 A
4468812 Grosvenor Aug 1984 A
4478661 Lewis Oct 1984 A
4506623 Roper et al. Mar 1985 A
4508582 Fink Apr 1985 A
4509558 Slater Apr 1985 A
4510201 Takeuchi et al. Apr 1985 A
4530868 Shinmi et al. Jul 1985 A
4582756 Niinuma et al. Apr 1986 A
4662386 Pedersen May 1987 A
4668545 Lowe May 1987 A
4726986 Cannady, Jr. et al. Feb 1988 A
4910817 Kita Mar 1990 A
4933231 Seber Jun 1990 A
4998498 Gallichan Mar 1991 A
5082726 Bastiaens et al. Jan 1992 A
5087071 Wallner et al. Feb 1992 A
5194459 Sato et al. Mar 1993 A
5203272 Kassinger et al. Apr 1993 A
5235928 Shank, Jr. Aug 1993 A
5243925 Fortenberry Sep 1993 A
5262230 Becker et al. Nov 1993 A
5355819 Hsia et al. Oct 1994 A
5360656 Rexfelt et al. Nov 1994 A
5391424 Kolzer Feb 1995 A
5413065 Spragg et al. May 1995 A
5421128 Sharpless et al. Jun 1995 A
5431970 Broun et al. Jul 1995 A
5482763 Shaffer Jan 1996 A
5488921 Spragg Feb 1996 A
5503291 Craig Apr 1996 A
5505557 Bradley Apr 1996 A
5544612 Eymard Aug 1996 A
5580185 Ware Dec 1996 A
5657714 Hsia et al. Aug 1997 A
5691390 Harrison et al. Nov 1997 A
5713399 Collette et al. Feb 1998 A
5735083 Brown et al. Apr 1998 A
5780144 Bradley Jul 1998 A
5790304 Sanders et al. Aug 1998 A
5865045 Wagner et al. Feb 1999 A
5885679 Yasue et al. Mar 1999 A
5902070 Bradley May 1999 A
5921421 Fuquan Jul 1999 A
5951345 Perratone et al. Sep 1999 A
6003565 Whittier, II et al. Dec 1999 A
6047655 Cran Apr 2000 A
6056438 Bradley May 2000 A
6086968 Horovitz Jul 2000 A
6101964 Lesesne Aug 2000 A
6168191 Webber et al. Jan 2001 B1
6186701 Kempers Feb 2001 B1
6293217 Savage et al. Sep 2001 B1
6330865 Cran Dec 2001 B1
6497934 Mahn et al. Dec 2002 B1
6550410 Reimers Apr 2003 B2
6675734 Eagles et al. Jan 2004 B2
20030081862 Eagles May 2003 A1
Foreign Referenced Citations (25)
Number Date Country
2413383 Oct 1975 DE
198 21 465 Nov 1999 DE
0 134 706 Mar 1985 EP
0 710 736 Nov 1994 EP
0 687 625 Dec 1995 EP
0 862 870 Sep 1998 EP
0 832 032 Apr 1999 EP
1210934 Oct 1959 FR
1269808 Aug 1961 FR
2 325 837 Apr 1977 FR
2325837 May 1977 FR
2595621 Sep 1987 FR
824 984 Dec 1959 GB
826 301 Dec 1959 GB
826301 Dec 1959 GB
891121 Mar 1962 GB
933 889 Aug 1963 GB
1 079 766 Aug 1967 GB
1117552 Jun 1968 GB
1117553 Jun 1968 GB
1371743 Oct 1974 GB
60 219243 Nov 1985 JP
WO 9714622 Apr 1997 WO
WO 9749541 Dec 1997 WO
WO 9801359 Jan 1998 WO
Related Publications (1)
Number Date Country
20040139898 A1 Jul 2004 US