Diesel engines produce a number of combustion products including particulates, hydrocarbons (“HC”), carbon monoxide (“CO”), oxides of nitrogen (“NOx”), and oxides of sulfur (“SOx”). Future diesel engines will likely require exhaust aftertreatment systems to reduce emissions of these and other products of combustion. Such exhaust aftertreatment systems may include a number of components including catalytic conversion components, particulate filters, and others which can be operated in a variety of modes. In addition to base modes of operation, from time to time it may be necessary to implement regeneration modes which regenerate various components of exhaust aftertreatment systems. There is a need for apparatuses, systems and methods of flexible fuel injection in the foregoing and other modes.
One embodiment is a system including a controller operable to control fuel injection events. The system is operable in a base mode, and at least one of a deNOx mode, a deSOx mode, and a deSoot mode. The base mode includes a pilot injection pulse, a main injection pulse, a post injection pulse, and a second post injection pulse. The deNOx mode includes a pilot injection pulse, a main injection pulse, and a post injection pulse. The deSOx mode includes a pilot injection pulse, a main injection pulse, a post injection pulse, a second post injection pulse, and a third post injection pulse. The deSoot mode includes a pilot injection pulse, a main injection pulse, a post injection pulse, a second post injection pulse, and a third post injection pulse. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the following description and drawings.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated embodiments, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
With reference to
The diesel oxidation catalyst unit 16 is preferably a flow through device that includes a honey-comb like substrate. The substrate has a surface area that includes a catalyst. As exhaust gas from the engine 12 traverses the catalyst, substances including CO, gaseous HC and liquid HC (unburned fuel and oil) are oxidized. As a result, these substances are converted to carbon dioxide and water. During operation, the diesel oxidation catalyst unit 16 is heated to a desired temperature value.
The NOx adsorber 18 is operable to adsorb NOx and SOx emitted from engine 12 to reduce their emission into the atmosphere. The NOx adsorber 18 preferably includes catalyst sites which catalyze oxidation reactions and storage sites which store compounds. After NOx adsorber 18 reaches a certain storage capacity it is preferably regenerated through deNOx and/or deSOx processes.
The diesel particulate filter 20 may include one or more of several types of particle filters. The diesel particulate filter 20 is utilized to capture unwanted diesel particulate matter from the flow of exhaust gas exiting the engine 12. Diesel particulate matter includes sub-micron size particles found in diesel exhaust, including both solid and liquid particles, and may be classified into several fractions including: inorganic carbon (soot), organic fraction (often referred to as SOF or VOF), and sulfate fraction (hydrated sulfuric acid). The diesel particulate filter 20 may be regenerated by oxidizing the particulates trapped by the diesel particulate filter 20.
With reference to
A first NOx temperature sensor 62 senses the temperature of flow entering or upstream of NOx adsorber 18 and provides a signal to ECU 28. A second NOx temperature sensor 64 senses the temperature of flow exiting or downstream of NOx adsorber 18 and provides a signal to ECU 28. NOx temperature sensors 62 and 64 are used to monitor the temperature of the flow of gas entering and exiting the NOx adsorber 18 and provide signals that are indicative of the temperature of the flow of exhaust gas to the ECU 28. An algorithm may then be used by the ECU 28 to determine the operating temperature of the NOx adsorber 18.
A first universal exhaust gas oxygen (“UEGO”) sensor or lambda sensor 66 is positioned in fluid communication with the flow of exhaust gas entering or upstream from the NOx adsorber 18 and a second UEGO sensor 68 is positioned in fluid communication with the flow of exhaust gas exiting or downstream of the NOx adsorber 18. The UEGO sensors 66, 68 are connected with the ECU 28 and generate electric signals that are indicative of the amount of oxygen contained in the flow of exhaust gas. The UEGO sensors 66, 68 allow the ECU 28 to accurately monitor air-fuel ratios (“AFR”) also over a wide range thereby allowing the ECU 28 to determine a lambda value associated with the exhaust gas entering and exiting the NOx adsorber 18.
Engine 12 includes a fuel injection system 90 that is operatively coupled to, and controlled by, the ECU 28. Fuel injection system 90 delivers fuel into the cylinders of the engine 12. Various types of fuel injection systems may be utilized in the present invention, including, but not limited to, pump-line-nozzle injection systems, unit injector and unit pump systems, common rail fuel injection systems and others. The timing of the fuel injection, the amount of fuel injected, the number and timing of injection pulses, are preferably controlled by fuel injection system 90 and/or ECU.
ECU 28 executes software which includes a number of variables related to fuel injection. In a preferred embodiment the software utilizes some or all of the following variables:
Cylinder_Fueling: The ultimate total fuel going into the cylinder. This variable is the summed quantity of all injections.
Final Fuel: The fueling that comes out of the throttle position versus fueling table.
Injected_Aux_Fuel: The total amount of fuel going in the injection event at the Aux_SOI timing. This variable includes feedforward fueling pulled out of the main injection and part or all of Catalyst Fuel.
Injected_Aux2_Fuel: The total amount of fuel going in the injection event at the Aux2_SOI timing. This variable includes feedforward fueling pulled out of the main injection and part or all of Catalyst Fuel, and part or all of Catalyst Trim Fuel.
Injected_Aux3_Fuel: The total amount of fuel going in the injection event at the Aux3_SOI timing. This variable includes part or all of Catalyst Trim Fuel.
Catalyst Fuel: Extra amount of fuel for a regeneration event. This quantity can be split and put into the Aux and Aux2 injection events. This variable is included in Cylinder_Fueling, but not Final Fuel.
Catalyst Trim Fuel: Extra amount of fuel for a regeneration event. This variable is often closed loop feedback fuel, but can be feedforward from Regen tables. This variable can be split between Aux2 and Aux3 injection events. This variable is included in Cylinder_Fueling, but not Final Fuel.
Injected_Pilot_Fuel: Fuel provided to a pre main injection pulse. This variable is included in Cylinder_Fueling and in Final Fuel.
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
This application claims the benefit of U.S. Application No. 60/876,221 filed Dec. 21, 2006, and the same is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5956942 | Sebastiano et al. | Sep 1999 | A |
6016653 | Glassey et al. | Jan 2000 | A |
6378297 | Ito et al. | Apr 2002 | B1 |
6491016 | Buratti | Dec 2002 | B1 |
6666020 | Tonetti et al. | Dec 2003 | B2 |
6725649 | Yamashita et al. | Apr 2004 | B2 |
6820415 | Abet et al. | Nov 2004 | B2 |
6901747 | Tashiro et al. | Jun 2005 | B2 |
6948476 | Gioannini et al. | Sep 2005 | B2 |
6962045 | Kitahara et al. | Nov 2005 | B2 |
6990951 | Liu et al. | Jan 2006 | B1 |
7036489 | Wu et al. | May 2006 | B1 |
7055311 | Beutel et al. | Jun 2006 | B2 |
7059121 | Coillard | Jun 2006 | B2 |
7063642 | Hu et al. | Jun 2006 | B1 |
7181902 | Naik | Feb 2007 | B2 |
7181908 | Naik | Feb 2007 | B2 |
7191590 | Nagaoka et al. | Mar 2007 | B2 |
7216481 | MacBain et al. | May 2007 | B2 |
20030033800 | Tonetti et al. | Feb 2003 | A1 |
20040040287 | Beutel et al. | Mar 2004 | A1 |
20050050884 | Nagaoka et al. | Mar 2005 | A1 |
20050072141 | Kitahara | Apr 2005 | A1 |
20060107652 | Chaouche et al. | May 2006 | A1 |
20060130460 | Warner | Jun 2006 | A1 |
20060168945 | Samad et al. | Aug 2006 | A1 |
20070144149 | Kolavennu et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
1035314 | Sep 2000 | EP |
WO 2004020807 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080196392 A1 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
60876221 | Dec 2006 | US |