Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)

Information

  • Patent Grant
  • 9602210
  • Patent Number
    9,602,210
  • Date Filed
    Wednesday, September 16, 2015
    9 years ago
  • Date Issued
    Tuesday, March 21, 2017
    7 years ago
Abstract
Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules (RIMs) and optical interface modules (OIMs) in an optical fiber-based distributed antenna system (DAS) are disclosed. In one embodiment, the flexible head-end chassis includes a plurality of module slots each configured to receive either a RIM or an OIM. A chassis control system identifies an inserted RIM or OIM to determine the type of module inserted. Based on the identification of the inserted RIM or OIM, the chassis control system interconnects the inserted RIM or OIM to related combiners and splitters in head-end equipment for the RIM or OIM to receive downlink communication signals and uplink communications signals for processing and distribution in the optical fiber-based DAS. In this manner, the optical fiber-based DAS can easily be configured or reconfigured with different combinations of RIMs and OIMs to support the desired communications services and/or number of remote units.
Description
BACKGROUND

The technology of the present disclosure relates generally to an optical fiber-based distributed antenna system (DAS), and more particularly to a flexible head-end chassis that includes a plurality of module slots each configured to flexibly receive either a radio interface module (RIM) or an optical interface module (OIM), and provide automatic identification and interconnection of the received RIM or OIM in the optical-fiber based DAS.


Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, local area wireless services (e.g., so-called “wireless fidelity” or “WiFi” systems) and wide area wireless services are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed communications or antenna systems communicate with wireless devices called “clients,” “client devices,” or “wireless client devices,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device. Distributed antenna systems are particularly useful to be deployed inside buildings or other indoor environments where client devices may not otherwise be able to effectively receive radio-frequency (RF) signals from a source, such as a base station for example. Example applications where distributed antenna systems can be used to provide or enhance coverage for wireless services include public safety, cellular telephony, wireless local access networks (LANs), location tracking, and medical telemetry inside buildings and over campuses.


One approach to deploying a distributed antenna system involves the use of RF antenna coverage areas, also referred to as “antenna coverage areas.” Antenna coverage areas can be formed by remotely distributed antenna units, also referred to as remote units (RUs). The remote units each contain or are configured to couple to one or more antennas configured to support the desired frequency(ies) to provide the antenna coverage areas. Antenna coverage areas can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of remote units creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there typically may be only a few users (clients) per antenna coverage area. This arrangement generates a uniform high quality signal enabling high throughput supporting the required capacity for the wireless system users.


As an example, FIG. 1 illustrates distribution of communications services to coverage areas 10(1)-10(N) of a DAS 12, wherein ‘N’ is the number of coverage areas. These communications services can include cellular services, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples. The coverage areas 10(1)-10(N) may be remotely located. In this regard, the remote coverage areas 10(1)-10(N) are created by and centered on remote antenna units 14(1)-14(N) connected to a central unit 16 (e.g., a head-end controller or head-end unit). The central unit 16 may be communicatively coupled to a base station 18. If the DAS 12 is a broadband DAS, the central unit 16 receives downlink communications signals 20D in multiple frequency bands for different communications services from the base station 18 to be distributed to the remote antenna units 14(1)-14(N). The remote antenna units 14(1)-14(N) are configured to receive downlink communications signals 20D from the central unit 16 over a communications medium 22 to be distributed as downlink communications signals 20D to the respective coverage areas 10(1)-10(N) of the remote antenna units 14(1)-14(N). Each remote antenna unit 14(1)-14(N) may include an RF transmitter/receiver (not shown) and a respective antenna 24(1)-24(N) operably connected to the RF transmitter/receiver to wirelessly distribute the downlink communications signals 20D to client devices 26 within their respective coverage areas 10(1)-10(N). The remote antenna units 14(1)-14(N) in the DAS 12 are also configured to receive uplink communications signals 20U in multiple frequency bands from the client devices 26 in their respective coverage areas 10(1)-10(N). The uplink communications signals 20U can be filtered, amplified, and/or combined together into the combined uplink communications signals 20U to be distributed to the central unit 16, and separated into respective bands to distribute to the base station 18.


Optical fiber can also be employed in the DAS 12 in FIG. 1 to communicatively couple the central unit 16 to the remote antenna units 14(1)-14(N) for distribution of the downlink communications signals 20D and the uplink communications signals 20U. Benefits of optical fibers include extremely wide bandwidth and low noise operation. In this regard, FIG. 2 is a schematic diagram of an exemplary optical fiber-based DAS 30 (hereinafter “DAS 30”). The DAS 30 in this example is comprised of three (3) main components. One or more radio interfaces provided in the form of radio interface modules (RIMs) 32(1)-32(M) are provided in a central unit 34 to receive and process received electrical downlink communications signals 36D(1)-36D(R) prior to optical conversion into optical downlink communications signals. The notations “1-R” and “1-M” indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided. Each RIM 32(1)-32(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the central unit 34 and the DAS 30 to support the desired radio sources. The electrical downlink communications signals 36D(1)-36D(R) are provided from the RIMs 32(1)-32(M) to a plurality of optical interfaces provided in the form of optical interface modules (OIMs) 38(1)-38(N). The OIMs 38(1)-38(N) each include electrical-to-optical (E/O) converters (not shown) to convert the electrical downlink communications signals 36D(1)-36D(R) into the downlink optical communications signals 40D(1)-40D(R). The optical downlink communications signals 40D(1)-40D(R) are communicated over optical downlink fiber communications medium 42D to a plurality of remote units 44(1)-44(S), which may be remote antenna units. The notation “1-S” indicates that any number of the referenced component, 1-S, may be provided. Optical-to-electrical (0/E) converters (not shown) provided in the remote units 44(1)-44(S) convert the optical downlink communications signals 40D(1)-40D(R) back into the electrical downlink communications signals 36D(1)-36D(R), which are provided to antennas 48(1)-48(S) in the remote units 44(1)-44(S) to client devices (not shown) in the reception range of the antennas 48(1)-48(S).


With continuing reference to FIG. 2, E/O converters (not shown) are also provided in the remote units 44(1)-44(S) to convert received electrical uplink communications signals 50U(1)-50U(S) received from client devices (not shown) through the antennas 48(1)-48(S) into optical uplink communications signals 40U(1)-40U(S). The remote units 44(1)-44(S) communicate the optical uplink communications signals 40U(1)-40U(S) over an uplink optical fiber communications medium 42U to the OIMs 38(1)-38(N) in the central unit 34. The OIMs 38(1)-38(N) include O/E converters (not shown) that convert the received uplink optical communications signals 40U(1)-40U(S) into electrical uplink communications signals 52U(1)-52U(S), which are processed by the RIMs 32(1)-32(M) and provided as electrical uplink communications signals 52U(1)-52U(S). The central unit 34 may provide the electrical uplink communications signals 52U(1)-52U(S) to a base station or other communications system.


With continuing reference to FIG. 2, the central unit 34 includes a dedicated RIM chassis 54 configured to house and support the RIMs 32(1)-32(M) and a dedicated OIM chassis 56 to house and support the OIMs 38(1)-38(N) as modular components. For example, the RIMs 32(1)-32(M) may be provided as circuit board cards that can be installed in circuit board card slots in the RIM chassis 54. When the RIMs 32(1)-32(M) are fully inserted in the RIM chassis 54, the RIMs 32(1)-32(M) connect to a backplane that provides interconnectivity within the optical fiber-based DAS 30. The OIMs 38(1)-38(N) may also be provided as circuit board cards that can be installed in circuit board card slots in the OIM chassis 56. When the OIMs 38(1)-38(N) are fully inserted in the OIM chassis 56, the OIMs 38(1)-38(N) connect to a backplane that provides interconnectivity within the optical fiber-based DAS 30. The number of RIMs 32(1)-32(M) provided in the central unit 34 is based on the number of communications services and/or remote units to be supported in the optical fiber-based DAS 30. The number of OIMs 38(1)-38(M) provided in the central unit 34 is based on the number of remote units 44(1)-44(S) supported by the optical fiber-based DAS 30. It may be desired to change the configuration of the optical fiber-based DAS 30 such that more RIMs 32(1)-32(M) or OIMs 38(1)-38(N) need to be provided in the central unit 34. However, if the RIM chassis 54 or OIM chassis 56 is full, it is not possible to install additional RIMs 32(1)-32(M) or OIMs 38(1)-38(N), respectively, without reconfiguring the optical fiber-based DAS 30, such as by providing additional chassis.


No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.


SUMMARY

Embodiments disclosed herein include flexible head-end chassis supporting automatic identification and interconnection of radio interface modules (RIMs) and optical interface modules (OIMs) in an optical fiber-based distributed antenna system (DAS). Related methods and DASs are also disclosed. The flexible head-end chassis is provided as part of head-end equipment in an optical fiber-based DAS. In one embodiment, the flexible head-end chassis includes a plurality of module slots. Each of the module slots is configured to receive either a RIM or an OIM. The flexible head-end chassis includes a backplane configured to be interconnected with a RIM or OIM fully inserted into a module slot of the flexible head-end chassis. When a RIM or OIM is inserted into a module slot of the flexible head-end chassis and interconnected to the backplane, a chassis control system identifies the inserted RIM or OIM to determine which type of module is inserted in the module slot. Based on the identification of the inserted RIM or OIM, the chassis control system interconnects the inserted RIM or OIM to related signal routing circuitry (e.g., combiners and splitters) in the head-end equipment needed for the RIM or OIM to be capable of receiving downlink communications signals and uplink communications signals for processing and distribution in the optical fiber-based DAS. In this manner, the optical fiber-based DAS can easily be configured or reconfigured with different numbers and combinations of RIMs and OIMs, as needed or desired, for the optical fiber-based DAS to support the desired communications services and/or number of remote units.


One embodiment of the disclosure relates to a head-end chassis for an optical fiber-based DAS. The head-end chassis comprises a housing. The head-end chassis also comprises a plurality of module slots disposed in the housing. Each module slot among the plurality of module slots is configured to receive a connected module comprised of a radio interface module (RIM) or an optical interface module (OIM). The head-end chassis also comprises a backplane disposed in the housing. The backplane comprises a plurality of backplane interconnects each associated with a module slot among the plurality of module slots, each backplane interconnect among the plurality of backplane interconnects configured to interconnect with the connected module inserted into the module slot associated with the backplane interconnect. Each backplane interconnect among the plurality of backplane interconnects comprises a backplane downlink input configured to receive an electrical downlink communications signal from a RIM, a backplane downlink output configured to provide an electrical split downlink communications signal to an OIM, a backplane uplink input configured to receive an electrical uplink communications signal from an OIM, and a backplane uplink output configured to provide an electrical split uplink communications signal to a RIM. The backplane also comprises a plurality of combiner downlink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects. The plurality of combiner downlink inputs is configured to receive a plurality of electrical downlink communications signals from a plurality of RIMs, combine the received plurality of electrical downlink communications signals into an electrical combined downlink communications signal, and provide the electrical combined downlink communications signal on a combiner downlink output. The backplane also comprises a downlink splitter comprising a splitter downlink input. The splitter downlink input is configured to receive the electrical combined downlink communications signal from the combiner downlink output, split the received electrical combined downlink communications signal into a plurality of electrical split downlink communications signals, and provide the plurality of electrical split downlink communications signals on a plurality of splitter downlink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects. The backplane also comprises an uplink combiner comprising a plurality of combiner uplink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects. The plurality of combiner uplink inputs is configured to receive a plurality of electrical uplink communications signals from at least one OIM, combine the received plurality of electrical uplink communications signals into an electrical combined uplink communications signal, and provide the electrical combined uplink communications signal on a combiner uplink output. The backplane also comprises an uplink splitter comprising a splitter uplink input. The splitter uplink input is configured to receive the electrical combined uplink communications signal from the combiner uplink output, split the received electrical combined uplink communications signal into a plurality of electrical split uplink communications signals, and provide the plurality of electrical split uplink communications signals on a plurality of splitter uplink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects.


The backplane also comprises a plurality of downlink switches each configured to selectively couple, in response to a downlink switch selector, either the backplane downlink input of a backplane interconnect connected to a RIM, to a corresponding combiner downlink input among the plurality of combiner downlink inputs to provide the electrical downlink communications signal from the RIM to the downlink combiner; or the backplane downlink output of the backplane interconnect connected to an OIM, to a corresponding splitter downlink output among the plurality of splitter downlink outputs to provide the electrical split downlink communications signal to the OIM. The backplane also comprises a plurality of uplink switches each configured to selectively couple, in response to an uplink switch selector, either the backplane uplink output of a backplane interconnect connected to the RIM, to a corresponding splitter uplink output among the plurality of splitter uplink outputs to provide the electrical split uplink communications signal to the RIM; or the backplane uplink input of the backplane interconnect connected to the OIM, to a corresponding combiner uplink input among the plurality of combiner uplink inputs to provide the electrical uplink communications signal from the OIM to the uplink combiner.


Another embodiment of the disclosure relates to a method for interconnecting a connected module in a head-end chassis with head-end equipment in an optical fiber-based DAS. The method comprises detecting a connection of a connected module comprised of a RIM or an OIM, to a backplane interconnect of a module slot among a plurality of module slots in a head-end chassis. The method also comprises determining if the connected module in the module slot is a RIM or an OIM. If the connected module in the module slot is determined to be a RIM, the method comprises coupling the backplane interconnect connected to the RIM to a downlink combiner. The downlink combiner is configured to receive an electrical downlink communications signal from the RIM, combine the received electrical downlink communications signal into an electrical combined downlink communications signal and provide the electrical combined downlink communications signal to a downlink splitter. The method also comprises coupling the backplane interconnect connected to the RIM to an uplink splitter. The uplink splitter is configured to receive an electrical combined uplink communications signal from an uplink combiner, split the electrical combined uplink communications signal into the plurality of electrical split uplink communications signals, and provide the electrical split uplink communications signal to the RIM. If the connected module in the module slot is determined to be an OIM, the method comprises coupling the backplane interconnect connected to the OIM to a downlink splitter. The downlink splitter is configured to receive the electrical combined downlink communications signal from the downlink combiner, split the received electrical combined downlink communications signal into an electrical split downlink communications signal, and provide the electrical split downlink communications signal to the OIM. The method also comprises coupling the backplane interconnect connected to the OIM to an uplink combiner. The uplink combiner is configured to receive an electrical uplink communications signal from the OIM, combine the received electrical uplink communications signal into the electrical combiner uplink communications signal, and provide the electrical combined uplink communications signal to the uplink splitter.


Another embodiment of the disclosure relates to an optical fiber-based DAS. The optical fiber-based DAS comprises a central unit. The central unit comprises a plurality of RIMs each configured to receive an electrical downlink communications signal and receive an electrical split uplink communications signal from at least one OIM. The central unit also comprises a plurality of OIMs. Each OIM is configured to receive an electrical split downlink communications signal, convert the received electrical split downlink communications signal into an optical split downlink communications signal, distribute the optical split downlink communications signal to a plurality of remote units, receive a plurality of optical uplink communications signals from the plurality of remote units, and convert the received plurality of optical uplink communications signals to a plurality of electrical uplink communications signals. Each of the plurality of remote units is configured to receive the optical split downlink communications signal from the central unit, convert the received optical split downlink communications signal into an electrical split downlink communications signal, distribute the electrical split downlink communications signal to at least one client device, receive an electrical uplink communications signal from the at least one client device, convert the received electrical uplink communications signal into an optical uplink communications signal, and distribute the optical uplink communications signal to the central unit.


The central unit further comprises a head-end chassis. The head-end chassis comprises a housing. The head-end chassis also comprises a plurality of module slots disposed in the housing. Each module slot among the plurality of module slots configured to receive a connected module comprised of a RIM among the plurality of RIMs or an OIM among the plurality of OIMs. The head-end chassis further comprises a backplane disposed in the housing. The backplane comprises a plurality of backplane interconnects each associated with a module slot among the plurality of module slots. Each backplane interconnect among the plurality of backplane interconnects is configured to interconnect with the connected module inserted into the module slot associated with the backplane interconnect. Each backplane interconnect among the plurality of backplane interconnects comprises a backplane downlink input configured to receive the electrical downlink communications signal from a RIM among the plurality of RIMs, a backplane downlink output configured to provide an electrical split downlink communications signal to an OIM among the plurality of OIMs, a backplane uplink input configured to receive an electrical uplink communications signal from the OIM, and a backplane uplink output configured to provide an electrical split uplink communications signal to the RIM. The head-end chassis also comprises a downlink combiner comprising a plurality of combiner downlink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects. The plurality of combiner downlink inputs is configured to receive a plurality of electrical downlink communications signals from the plurality of RIMs, combine the received plurality of electrical downlink communications signals into an electrical combined downlink communications signal, and provide the electrical combined downlink communications signal on a combiner downlink output. The head-end chassis also comprises a downlink splitter comprising a splitter downlink input. The splitter downlink input is configured to receive the electrical combined downlink communications signal from the combiner downlink output, split the received electrical combined downlink communications signal into a plurality of electrical split downlink communications signals, and provide the plurality of electrical split downlink communications signals on a plurality of splitter downlink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects. The head-end chassis also comprises an uplink combiner comprising a plurality of combiner uplink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects. The plurality of combiner uplink inputs is configured to receive a plurality of electrical uplink communications signals from the plurality of OIMs, combine the received plurality of electrical uplink communications signals into an electrical combined uplink communications signal, and provide the electrical combined uplink communications signal on a combiner uplink output. The head-end chassis also comprises an uplink splitter comprising a splitter uplink input. The splitter uplink input is configured to receive the electrical combined uplink communications signal from the combiner uplink output, split the received electrical combined uplink communications signal into a plurality of electrical split uplink communications signals, and provide the plurality of electrical split uplink communications signals on a plurality of splitter uplink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects.


The head-end chassis also comprises a plurality of downlink switches each configured to selectively couple, in response to a downlink switch selector, either the backplane downlink input of a backplane interconnect connected to a RIM, to a corresponding combiner downlink input among the plurality of combiner downlink inputs to provide the electrical downlink communications signal from the RIM to the downlink combiner; or the backplane downlink output of the backplane interconnect connected to an OIM, to a corresponding splitter downlink output among the plurality of splitter downlink outputs to provide the electrical split downlink communications signal to the OIM. The head-end chassis also comprises a plurality of uplink switches each configured to selectively couple, in response to an uplink switch selector, either the backplane uplink output of a backplane interconnect connected to the RIM, to a corresponding splitter uplink output among the plurality of splitter uplink outputs to provide the electrical split uplink communications signal to the RIM; or the backplane uplink input of the backplane interconnect connected to the OIM, to a corresponding combiner uplink input among the plurality of combiner uplink inputs to provide the electrical uplink communications signal from the OIM to the uplink combiner.


Additional features and advantages will be set forth in the detailed description which follows, and in part, will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.


The accompanying drawings are included to provide a further understanding and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain the principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of an exemplary distributed antenna system (DAS) capable of distributing radio-frequency (RF) communications services to client devices;



FIG. 2 is a schematic diagram of an exemplary optical fiber-based DAS including head-end equipment that includes remote interface modules configured to receive and process electrical communications signals in supported frequency bands and optical interface modules providing an optical interface for the electrical communications signals;



FIG. 3 is a schematic diagram of a flexible head-end chassis in an optical fiber-based DAS, wherein the flexible head-end chassis includes a plurality of module slots each configured to flexibly receive either a radio interface module (RIM) or an optical interface module (OIM), and provide automatic interconnection of the received RIM or OIM in the optical fiber-based DAS;



FIG. 4 is a schematic diagram of an exemplary optical fiber-based DAS employing the flexible head-end chassis in FIG. 3 and illustrating exemplary interconnectivity of RIMs and OIMs through a backplane of the flexible head-end chassis;



FIG. 5 is a schematic diagram illustrating exemplary detail of a flexible head-end chassis configured to be provided in an optical fiber-based DAS, wherein the flexible head-end chassis includes a plurality of module slots each configured to flexibly receive either a RIM or an OIM, and provide automatic interconnection of the received RIM or OIM according to the exemplary interconnectivity of RIMs and OIMs in head-end equipment of the optical fiber-based DAS illustrated in FIG. 4;



FIG. 6 is a schematic diagram illustrating additional exemplary detail of a chassis controller that can be provided in the flexible head-end chassis in FIG. 5 to provide automatic identification and interconnection of received RIMs and OIMs in an optical-fiber based DAS according to the exemplary interconnectivity of RIMs and OIMs in head-end equipment in FIG. 4;



FIG. 7 is a flowchart illustrating an exemplary process of the chassis controller in FIG. 6 automatically identifying and interconnecting a received RIM or OIM in an optical fiber-based DAS according to the exemplary interconnectivity of RIMs and OIMs in head-end equipment in FIG. 4;



FIG. 8 is a partially schematic cut-away diagram of an exemplary building infrastructure in which an optical fiber-based DAS employing a flexible head-end chassis configured to flexibly receive either a RIM or an OIM, and provide automatic interconnection of the received RIM or OIM in the optical fiber-based DAS can be employed; and



FIG. 9 is a schematic diagram of an exemplary representation of a chassis controller for automatically identifying and interconnecting a received RIM or OIM in a flexible head-end chassis for an optical fiber-based DAS, wherein the exemplary computer system is adapted to execute instructions from an exemplary computer readable medium.





DETAILED DESCRIPTION

Various embodiments will be further clarified by the following examples.


Embodiments disclosed herein include flexible head-end chassis supporting automatic identification and interconnection of radio interface modules (RIMs) and optical interface modules (OIMs) in an optical fiber-based distributed antenna system (DAS). Related methods and DASs are also disclosed. The flexible head-end chassis is provided as part of head-end equipment in an optical fiber-based DAS. In one embodiment, the flexible head-end chassis includes a plurality of module slots (e.g., circuit board card slots). Each of the module slots is configured to receive either a RIM or an OIM. The flexible head-end chassis includes a backplane configured to be interconnected with a RIM or OIM fully inserted into a module slot of the flexible head-end chassis. When a RIM or OIM is inserted into a module slot of the flexible head-end chassis and interconnected to the backplane, a chassis control system identifies the inserted RIM or OIM to determine which type of module is inserted in the module slot. Based on the identification of the inserted RIM or OIM, the chassis control system interconnects the inserted RIM or OIM to related signal routing circuitry (e.g., combiners and splitters) in the head-end equipment needed for the RIM or OIM to be capable of receiving downlink communications signals and uplink communications signals for processing and distribution in the optical fiber-based DAS. In this manner, the optical fiber-based DAS can easily be configured or reconfigured with different numbers and combinations of RIMs and OIMs, as needed or desired, for the optical fiber-based DAS to support the desired communications services and/or number of remote units.


In this regard, FIG. 3 is a top view of an exemplary flexible head-end chassis 60 that can be provided in an optical fiber-based DAS. As will be discussed in more detail below, the flexible head-end chassis 60 is configured to be provided as part of head-end equipment in an optical fiber-based DAS in FIG. 4 to support both RIMs and OIMs. As shown in FIG. 3, the flexible head-end chassis 60 includes a housing 62 that includes a plurality of module slots 64(1)-64(Q) each configured to receive a RIM 66 or an OIM 68. The notation “1-Q” indicates that any number of the referenced component, 1-Q, may be provided. In this example, the housing 62 of the flexible head-end chassis 60 has eight (8) module slots 64(1)-64(8) to support any combination of eight RIMs 66 and OIMs 68. A backplane 70 is provided in the rear section 72 of the housing 62. The backplane 70 includes a backplane interconnect 74(1)-74(8),74(Q) for each module slot 64(1)-64(8),64(Q) to support an interconnection with a RIM 66 or OIM 68 fully inserted into a module slot 64(1)-64(Q). In this example, two RIMs 66(1), 66(2) are inserted into module slots 64(7) and 64(8) and interconnected with a backplane interconnects 74(7), 74(8). The RIMs 66(1), 66(2) are configured to receive electrical downlink communications signals 76E-D from outside of a DAS, such as from a base station (not shown). The RIMs 66(1), 66(2) process and distribute the received electrical downlink communications signal 76E-D through the respective backplane interconnects 74(7), 74(8) to the OIMs 68(1)-68(6). The OIMs 68(1)-68(6) provided in the module slots 64(1)-64(6) are interconnected to respective backplane interconnects 74(1)-74(6). The OIMs 68(1)-68(6) are configured to receive electrical downlink communications signals 76E-D from the RIMs 66(1), 66(2) through the backplane 70 and convert the received electrical downlink communications signals 76E-D into optical downlink communications signals 760-D. The OIMs 68(1)-68(6) are configured to distribute the optical downlink communications signals 760-D over an optical fiber communications medium 90 to remote units (not shown). The six (6) OIMs 68(1)-68(6) are also configured to receive optical uplink communications signals 760-U from the remote units, convert the received optical uplink communications signals 760-U into electrical uplink communications signals 76E-U, and distribute the electrical uplink communications signals 76E-U through the backplane interconnects 74(1)-74(6) to the RIMs 66(1), 66(2).


As will be discussed in more detail below, when a RIM 66 or OIM 68 is inserted into a particular module slot 64 of the flexible head-end chassis 60 in FIG. 3, a chassis control system described below detects which type of module is inserted in the module slot 64. Based on the identification of the inserted RIM 66 or OIM 68 in the module slot 64, the chassis control system configures the backplane interconnect 74 corresponding to the module slot 64 to interconnect the inserted RIM 66 or OIM 68 to related combiners and splitters in the head-end equipment needed for the RIM 66 or OIM 68 to be capable of receiving downlink communications signals 76D and uplink communications signals 76U for processing and distribution in an optical fiber-based DAS. In this manner, an optical fiber-based DAS employing the flexible head-end chassis 60 can easily be configured or reconfigured with different numbers and combinations of RIMs 66 and OIMs 68, as needed or desired, for the optical fiber-based DAS to support the desired communications services and/or number of remote units.


In this regard, FIG. 4 is a schematic diagram of an optical fiber-based DAS 78 employing the flexible head-end chassis 60 in FIG. 3. The flexible head-end chassis 60 can be provided in a central unit of the optical fiber-based DAS 78. FIG. 4 illustrates exemplary interconnectivity of the RIMs 66(1), 66(2) and OIMs 68(1)-68(4) to be provided through the backplane interconnects 74(1)-74(8) (shown in FIG. 3) of the backplane 70 of the flexible head-end chassis 60 to provide the optical fiber-based DAS 78. Note that only four OIMs 68(1)-68(4) are illustrated as being installed in the flexible head-end chassis 60 in FIG. 4 for illustrative purposes. FIGS. 5-7 will be described below to discuss examples of how the flexible head-end chassis 60 can be configured to automatically identify RIMs 66 and OIMs 68 inserted in the flexible head-end chassis 60 and automatically configure the backplane interconnects 74 to accomplish the exemplary interconnectivity illustrated in FIG. 4.


First, with reference to the RIMs 66(1), 66(2) in FIG. 4, the RIMs 66(1), 66(2) inserted in the flexible head-end chassis 60 are shown as interfacing with respective cells 80(1), 80(2) outside of the optical fiber-based DAS 78. For example, cell 80(1) may provide a first electrical downlink communications signal 76E-D(1) to RIM 66(1), and cell 80(2) may provide a second electrical downlink communications signal 76E-D(2) to RIM 66(2). RIM 66(1) may be configured to support a first frequency band supported by cell 80(1), and RIM 66(2) may be configured to support a second frequency band, which may be different than the first frequency band, supported by cell 80(2). The RIMs 66(1), 66(2) are configured to distribute the electrical downlink communications signals 76E-D(1), 76E-D(2) through the optical fiber-based DAS 78 to remote units 82 as the optical downlink communications signals 760-D. As will be discussed below, the RIMs 66(1), 66(2) also receive electrical uplink communications signals 70E-U(1), 70E-U(2) as a result of the remote units 82 receiving electrical uplink communications signals 76E-U from client devices (not shown), to be distributed to the cells 80(1), 80(2).


With continuing reference to FIG. 4, for the RIMs 66(1), 66(2) inserted in the flexible head-end chassis 60, it is desired in the optical fiber-based DAS 78 to combine the multiple electrical downlink communications signals 76E-D(1), 76E-D(2) in a downlink combiner 84D into an electrical combined downlink communications signal 76E-D(C), which is then split in a downlink splitter 86D into multiple electrical split downlink communications signals 76E-D(S) each to be distributed to the OIMs 68(1)-68(4). To facilitate this interconnectivity in the flexible head-end chassis 60, the backplane interconnects 74(7), 74(8) (shown in FIG. 3) connected to the RIMs 66(1), 66(2) each include a backplane downlink input 88DI(1), 88DI(2) configured to receive the electrical downlink communications signals 76E-D(1), 76E-D(2) from the RIMs 66(1), 66(2). The RIMs 66(1), 66(2) are interconnected to the backplane downlink inputs 88DI(1), 88DI(2) as a result of the RIMs 66(1), 66(2) being interconnected to the backplane 70 when installed in the flexible head-end chassis 60. Note that in this example, all multiple electrical downlink communications signals 76E-D(1), 76E-D(2) are combined into a single electrical combined downlink communications signal 76E-D(C). However, note that the downlink combiner 84D could also be configured to selectively combine electrical downlink communications signals 76E-D(1), 76E-D(2), such as if it is desired to configured the optical fiber-based DAS 78 to different combinations/sectors of electrical downlink communications signals 76E-D to remote units 82.


With continuing reference to FIG. 4, the OIMs 68(1)-68(4) inserted in the flexible head-end chassis 60 are shown as interfacing with the remote units 82. In this example, each OIM 68(1)-68(4) interfaces with up to three remote units 82 over optical fiber communications medium 90. In this example, a separate downlink optical fiber communications medium 90D for distribution of optical downlink communications signals 76-D and a separate uplink optical fiber communications medium 90U for distribution of optical uplink communications signals 76-O is provided, but such is not required. For example, a common optical fiber communication medium could be employed using wave-division multiplexing (WDM). Thus, for example, OIM 68(1) interfaces with three (3) remote units 82(1)(1)-82(1)(3). OIM 68(4) interfaces with three (3) remote units 82(4)(1)-82(4)(3). The OIMs 68(1)-68(4) receive and convert the received electrical split downlink communications signals 76E-D(S), received over respective backplane downlink outputs 88DO(1)-88DO(4) provided in the backplane interconnects 74(1)-74(4) (FIG. 3), as a result of the interconnection of the OIMs 68(1)-68(4) to the backplane 70, to respective optical split downlink communications signals 760-D(S). The optical split downlink communications signals 760-D(S) are distributed over the downlink optical fiber communication medium 80D to remote units 82(1)(1)-82(4)(3) in this example. Note that the flexible head-end chassis 60 could alternatively be configured to selectively deliver the optical split downlink communications signals 760-D(S) to different remote units 82(1)(1)-82(4)(3).


With continuing reference to FIG. 4, the remote units 82(1)(1)-82(4)(3) are each configured to receive electrical uplink communications signals, which are then converted to corresponding optical uplink communications signals 760-U(1)(1)-760-U(4)(3) and distributed to respective OIMs 68(1)-68(4) inserted in the flexible head-end chassis 60 over the uplink optical fiber communications medium 90U. The OIMs 68(1)-68(4) convert the received optical uplink communications signals 760-U(1)(1)-760-U(4)(3) into corresponding electrical uplink communications signals 76E-U(1)-76E-U(4), which are provided in backplane uplink inputs 88UI(1)-88U1(4) in the backplane interconnects 74(1)-74(4) (FIG. 3) connected to the OIMs 68(1)-68(4) as a result of the interconnection of the OIMs 68(1)-68(4) to the backplane 70. It is also desired in this exemplary optical fiber-based DAS 78 to combine the multiple electrical uplink communications signals 76E-U(1)-76E-U(4) in an uplink combiner 84U into an electrical combined uplink communications signal 76E-U(C), which is then split in an uplink splitter 86U into multiple electrical split uplink communications signals 76E-U(S). Each of the electrical split uplink communications signals 76E-U(S) are distributed over backplane uplink outputs 88UO(1)-88UO(2) as part of the backplane interconnects 74(7), 74(8) (FIG. 3) to the RIMs 66(1), 66(2) as a result of the interconnection of the RIMs 66(1), 66(2) to the backplane 70. The RIMs 66(1), 66(2) are each configured to filter the received electrical split uplink communications signals 76E-U(S) in their supported frequency band into respective electrical uplink communications signals 76E-U(1), 76E-U(2) to be distributed to their respective cells 80(1), 80(2).


Thus in summary, as illustrated in FIG. 4 and described above, each backplane interconnect 74(1)-74(8) (FIG. 3) in the backplane 70 corresponding to a module slot 64(1)-64(8) (FIG. 3) in the flexible head-end chassis 60 contains a backplane downlink input 88DI, a backplane downlink output 88DO, a backplane uplink input 88UI, and a backplane uplink output 88UO to allow for either a RIM 66 or OIM 68 to be flexibly installed in any module slot 64 (FIG. 3). If a RIM 66 is installed in a given module slot 64, backplane downlink input 88DI and backplane uplink output 88UO of the corresponding backplane interconnect 74 are configured to be connected to the installed RIM 66. This is so that the downlink combiner 84D receives electrical downlink communications signals 76E-D from the installed RIM 66, and so that the installed RIM 66 receives the electrical split uplink communications signal 76E-U(S) from the uplink splitter 86U. However, if an OIM 68 is installed in a given module slot 64 instead of a RIM 66, the backplane downlink output 88DO and the backplane uplink input 88UI of the corresponding backplane interconnect 74 are configured to be connected to the installed OIM 68. This is so that the uplink combiner 84U receives the electrical uplink communications signal 76E-U from the installed OIM 68, and so that the installed OIM 68 receives the electrical split downlink communications signal 76E-D(S) from the downlink splitter 86D. In this manner, a RIM 66 or OIM 68 may be installed in any module slot 64 in the flexible head-end chassis 60 and the desired interconnectivity with the backplane 70 and its distribution components to provide the optical fiber-based DAS 78 can be achieved in either case.



FIG. 5 is a schematic diagram illustrating exemplary detail of the flexible head-end chassis 60 to illustrate components that can be provided in the backplane 70 to allow backplane interconnects 74(1)-74(8) to automatically be configured to provide the interconnectivity for either a RIM 66 or an OIM 68, based on whether a RIM 66 or OIM 68 is inserted into a corresponding module slot 64(1)-64(8). Later below with regard to FIGS. 6 and 7, an exemplary chassis control system that can be provided in the backplane 70 is described to identify an installed RIM 66 or OIM 68 in a module slot 64 of the flexible head-end chassis 60. The chassis control system is configured to automatically configure the interconnectivity of a backplane downlink input 88DI, a backplane downlink output 88DO, an backplane uplink input 88UI, and a backplane uplink output 88UO for a given backplane interconnect 74, with regard to the downlink combiner 84D, downlink splitter 86D, uplink combiner 84U, and uplink splitter 86U, to allow for either a RIM 66 or OIM 68 to be flexibly installed in a given, corresponding module slot 64 according to the exemplary interconnectivity provided in FIG. 4.


With reference to FIG. 5, the downlink combiner 84D in the backplane 70 includes combiner downlink inputs 92DI(1)-92D1(8) for each backplane interconnect 74(1)-74(8). The combiner downlink inputs 92DI(1)-92D1(8) are each configured to receive an electrical downlink communications signals 76E-D from a RIM 66 if a RIM 66 is installed in the module slot 64 corresponding to the backplane interconnect 74(1)-74(8). The downlink combiner 84D is configured to combine received plurality of electrical downlink communications signals 76E-D from RIMs 66 installed in any module slots 64(1)-64(8) into the electrical combined downlink communications signal 76E-D(C), and provide the electrical combined downlink communications signal 76E-D(C) on a combiner downlink output 92DO to be provided to the downlink splitter 86D. The downlink splitter 86D in the backplane 70 includes splitter downlink outputs 94DO(1)-94DO(8) for each backplane interconnect 74(1)-74(8). The splitter downlink outputs 94DO(1)-94DO(8) are each configured to provide the electrical split downlink communications signal 76E-D(S) from the combiner downlink output 92DO of the downlink combiner 84D to an OIM 68 if an OIM 68 is installed in the module slot 64 corresponding to the backplane interconnect 74(1)-74(8).


To provide the proper downlink connectivity between the module, whether it is a RIM 66 or OIM 68, inserted in a given module slot 64, a plurality of downlink switches 96(1)-96(8) are provided in the backplane 70 for each backplane interconnect 74(1)-74(8). Each downlink switch 96(1)-96(8) is configured to selectively couple either a respective backplane downlink input 88DI(1)-88D1(8) or a respective backplane downlink output 88DO(1)-88DO(8) to the installed module. If the installed module is a RIM 66, the downlink switch 96 is configured to couple a respective backplane downlink input 88DI to a RIM downlink output 98DO for the downlink combiner 84D to receive the electrical downlink communications signal 76E-D from the RIM 66. However, if the installed module is an OIM 68, the downlink switch 96 is configured to couple a respective backplane downlink output 88DO to an OIM downlink input 100DI to receive the electrical split downlink communications signal 76E-D(S) from the downlink splitter 86D.


To provide the proper uplink connectivity between the module, whether it is a RIM 66 or OIM 68, inserted in a given module slot 64, a plurality of uplink switches 102(1)-102(8) are provided in the backplane 70 for each backplane interconnect 74(1)-74(8). Each uplink switch 102(1)-102(8) is configured to selectively couple either a respective backplane uplink output 88UO(1)-88UO(8) or a respective backplane uplink input 88UI(1)-88U1(8) to the installed module. If the installed module is a RIM 66, the uplink switch 102 is configured to couple a respective backplane uplink output 88UO to a RIM uplink input 98UI, to couple the RIM uplink input 98UI to a splitter uplink output 94UO of the uplink splitter 86U for the uplink splitter 86U, to provide the electrical split uplink communications signal 76E-U(S) from the uplink splitter 86U to the RIM 66. However, if the installed module is an OIM 68, the uplink switch 102 is configured to couple a respective backplane uplink input 88UI to an OIM uplink output 100UO, to couple the OIM uplink output 100UO to a combiner uplink input 92UI of the uplink combiner 84U, for the OIM 68 to provide an electrical uplink communications signal 76E-U to the uplink combiner 84U.



FIG. 6 is a schematic diagram illustrating additional exemplary detail of a chassis control system 103 that can be provided in the flexible head-end chassis 60 in FIG. 5 to provide automatic identification and interconnection of installed RIMs 66 and OIMs 68 in the optical fiber-based DAS 78 according to the exemplary interconnectivity of RIMs 66 and OIMs 68 in head-end equipment in FIG. 4. More specifically, as discussed in more detail below, the chassis control system 103 include a chassis controller 104 that is configured to cause the downlink switches 96(1)-96(8) and the uplink switches 102(1)-102(8) to be set to provide the correct interconnectivity between the installed module and the respective backplane interconnects 74(1)-74(8) based on whether a RIM 66 or OIM 68 is identified as the module inserted into a respective module slot 64(1)-64(8). Only module slots 64(1) and 64(8) are shown in FIG. 6 to simply the illustration and discussion of the exemplary chassis controller 104, but note that such is applicable for the other module slots 64(2)-64(7) as well.


With reference to FIG. 6, the chassis controller 104 is an electronic controller in this example that includes a module ID reader 106 and a switch controller 108. The module ID reader 106 is configured to identify the type of module inserted into each of the module slots 64(1)-64(8). For example, when the OIM 68 was installed in module slot 64(1), as shown in FIG. 6, the module ID reader 106 receives a signal on a module ID input 109(1) provided as part of the backplane interconnect 74(1) that interconnected with a module ID pin 110 on the OIM 68 when installed. The module ID reader 106 is able to determine that the OIM 68 is installed in module slot 64(1) based on the module ID signal 114 generated by the OIM 68 on module ID pin 110 coupled to the module ID input 109(1). The module ID reader 106 provides an indication of the detected OIM 68 in module slot 64(1) to the chassis controller 104. Similarly, when the RIM 66 was installed in module slot 64(8), as shown in FIG. 6, the module ID reader 106 receives a module ID signal 114 on a module ID input 109(8) provided as part of the backplane interconnect 74(8) that interconnected with a module ID pin 112 on the RIM 66 when installed. The module ID reader 106 is able to determine that the RIM 66 is installed in module slot 64(8) based on the module ID signal 114 generated by the RIM 66 on module ID pin 112 coupled to the module ID input 109(8). The module ID reader 106 provides an indication of the detected RIM 66 in module slot 64(8) to the chassis controller 104. As non-limiting examples, the activation of the module ID reader 106 to detect the module ID signal 114 may be poll driven or interrupt driven.


With continuing reference to FIG. 6, when the chassis controller 104 receives an indication of an installed module in a module slot 64 from the module ID reader 106 and the type of module installed in the module slot 64, the chassis controller 104 is configured to set the downlink and uplink switches 96, 102. The chassis controller 104 is configured to set the downlink and uplink switches 96, 102 corresponding to the module slot 64 with the newly installed module to provide the interconnectivity for the installed module based on whether the installed module is a RIM 66 or OIM 68. In this regard, in this example, the chassis control system 103 includes the switch controller 108. The switch controller 108 is configured to provide respective downlink switch selectors 105D(1)-105D(8) to each of the plurality of downlink switches 96(1)-96(8), and uplink switch selectors 105U(1)-105U(8) to each of the plurality of uplink switches 102(1)-102(8). As discussed above, if an installed module in a module slot 64 is a RIM 66, the chassis controller 104 is configured to cause the switch controller 108 to generate the downlink switch selector 105D corresponding to the module slot 64 to cause the downlink switch 96 corresponding to the module slot 64 with the installed RIM 66 to couple the backplane downlink input 88DI of the corresponding backplane interconnect 74 (FIG. 5) to the corresponding combiner downlink input 92DI. The chassis controller 104 is also configured to cause the switch controller 108 to generate the uplink switch selector 105U to cause the uplink switch 102 corresponding to the module slot 64 with the installed RIM 66 to couple the backplane uplink output 88UO of the corresponding backplane interconnect 74 (FIG. 5) with the installed RIM 66 to the corresponding splitter uplink output 94UO.


With continuing reference to FIG. 6, if an installed module in a module slot 64 is an OIM 68 instead of a RIM 66, the chassis controller 104 is configured to cause the switch controller 108 to generate the downlink switch selector 105D to cause the downlink switch 96 corresponding to the module slot 64 with the installed OIM 68 to couple the backplane downlink output 88DO of the corresponding backplane interconnect 74 (FIG. 5) to the corresponding splitter downlink output 94DO. The chassis controller 104 is also configured to cause the switch controller 108 to generate the uplink switch selector 105U to cause the uplink switch 102 corresponding to the module slot 64 with the installed OIM 68 to couple the backplane uplink input 88UI of the corresponding backplane interconnect 74 (FIG. 5) with the installed OIM 68 to the corresponding combiner uplink input 92UI.



FIG. 7 is a flowchart illustrating an exemplary process of the chassis controller 104 in FIG. 6 automatically identifying and interconnecting a received RIM 66 or OIM 68 in the flexible head-end chassis 60 in the optical fiber-based DAS 78 according to the exemplary interconnectivity in FIG. 4. In this regard, as illustrated in FIG. 7, after the flexible head-end chassis 60 is powered up (block 120), the chassis controller 104 reads the module ID for each module slot 64 in the flexible head-end chassis 60 (block 122). For each module slot 64, the chassis controller 104 determines if the module slot 64 has a RIM 66 installed, an OIM 68 installed, or no module installed (block 124). If the current module slot 64 is determined to have an installed RIM 66, as discussed above, the chassis controller 104 is configured to cause the switch controller 108 to generate the downlink switch selector 105D corresponding to the module slot 64 to cause the downlink switch 96 corresponding to the module slot 64 with the installed RIM 66 to couple the backplane downlink input 88DI of the corresponding backplane interconnect 74 to the corresponding combiner downlink input 92DI of the downlink combiner 84D (block 126). The chassis controller 104 is also configured to cause the switch controller 108 to generate the uplink switch selector 105U to cause the uplink switch 102 corresponding to the module slot 64 with the installed RIM 66 to couple the backplane uplink output 88UO of the corresponding backplane interconnect 74 with the installed RIM 66 to the corresponding splitter uplink output 94UO of the uplink splitter 86U (block 128).


With continuing reference to FIG. 7, the process continues by the chassis controller 104 reading the module slots 64 (block 130) to determine if a new module has been installed in the module slot 64 (block 132). If no new module has been installed in the module slot 64, the chassis controller 104 incurs a delay (block 134) before again determining if any new modules have been installed in any of the module slots 64 (block 130).


With continuing reference to FIG. 7, if current module slot 64 is determined to have an installed OIM 68 in block 124, as discussed above, the chassis controller 104 is configured to cause the switch controller 108 to generate the downlink switch selector 105D to cause the downlink switch 96 corresponding to the module slot 64 with the installed OIM 68 to couple the backplane downlink output 88DO of the corresponding backplane interconnect 74 to the corresponding splitter downlink output 94DO of the downlink splitter 86D (block 136). The chassis controller 104 is also configured to cause the switch controller 108 to generate the uplink switch selector 105U to cause the uplink switch 102 corresponding to the module slot 64 with the installed OIM 68 to couple the backplane uplink input 88UI of the corresponding backplane interconnect 74 with the installed OIM 68 to the corresponding combiner uplink input 92UI of the uplink combiner 84U (block 138). The process in blocks 130, 132, and 134 described above is carried out by the chassis controller 104 thereafter.


With continuing reference to FIG. 7, if current module slot 64 is determined to not have any installed module, in the example process in FIG. 7, the chassis controller 104 is configured to configure the downlink switch 96 and the uplink switch 102 corresponding to the backplane interconnect 74 for the module slot 64 as if a RIM 66 were installed. In this regard, the chassis controller 104 carries out the tasks in blocks 140 and 142, which are the same as tasks in blocks 126 and 128, respectively, in this example. Alternatively, the chassis controller 104 could be configured to treat a module slot 64 without an installed module as if an OIM 68 were installed in the module slot 64. In this alternative scenario, the chassis controller 104 would perform tasks in blocks 136 and 138 described above as if the module slot 64 has an installed OIM 68, in response to detection of no module installed in the module slot 64.


The flexible head-end chassis 60 for supporting the RIMs 66 and OIMs 68 provided in an optical fiber-based DAS 78 and automatically identifying and interconnecting a received RIM 66 or OIM 68, may be provided in an optical fiber-based DAS 150 in an indoor environment, as illustrated in FIG. 8. In this regard, FIG. 8 is a partially schematic cut-away diagram of a building infrastructure 152 employing a flexible head-end chassis having feature(s) like those described above. The building infrastructure 152 in this embodiment includes a first (ground) floor 154(1), a second floor 154(2), and a third floor 154(3). The floors 154(1)-154(3) are serviced by the central unit 156 to provide the antenna coverage areas 158 in the building infrastructure 152. The flexible head-end chassis 60 is provided as part of the central unit 156. The central unit 156 is communicatively coupled to the base station 160 to receive electrical downlink communications signals 76E-D from the base station 160. The central unit 156 is communicatively coupled to the remote units 162 to receive the electrical uplink communications signals 76E-U from the remote units 162. The electrical downlink and uplink communications signals 76E-D, 76E-U communicated between the central unit 156 and the remote units 162 are carried over a riser cable 164. The riser cable 164 may be routed through interconnect units (ICUs) 166(1)-166(3) dedicated to each floor 154(1)-154(3) that route the electrical downlink and uplink communications signals 76E-D, 76E-U to the remote units 162 and also provide power to the remote units 162 via array cables 168.


In one embodiment, the central unit 156 is configured to support up to twelve (12) RIMs 66. Each RIM 66 can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the central unit 156 and the optical fiber-based DAS 150 to support the desired radio sources. For example, one RIM 66 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 66 may be configured to support the 700 MHz radio band. In this example, by inclusion of these RIMs 66, the central unit 156 could be configured to support and distribute communications signals on both PCS and LTE 700 radio bands, as an example. RIMs 66 may be provided in the central unit 156 that support any frequency bands desired, including but not limited to the US Cellular band, Personal Communication Services (PCS) band, Advanced Wireless Services (AWS) band, 700 MHz band, Global System for Mobile communications (GSM) 900, GSM 1800, and Universal Mobile Telecommunication System (UMTS). The RIMs 66 may also be provided in the central unit 156 that support any wireless technologies desired, including but not limited to Code Division Multiple Access (CDMA), CDMA200, 1×RTT, Evolution-Data Only (EV-DO), UMTS, High-speed Packet Access (HSPA), GSM, General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), Time Division Multiple Access (TDMA), Long Term Evolution (LTE), iDEN, and Cellular Digital Packet Data (CDPD).


The RIMs 66 may be provided in the central unit 156 that support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink), EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink).



FIG. 9 is a schematic diagram representation of additional detail illustrating a computer system 170 that could be employed in the chassis control system 103 or the chassis controller 104 discussed with regard to FIG. 6 above for automatically identifying and interconnecting a received RIM 66 or OIM 68 in the flexible head-end chassis 60 in an optical fiber-based DAS, including optical fiber-based DAS 78, 150 discussed above. In this regard, the computer system 170 is adapted to execute instructions from an exemplary computer-readable medium to perform these and/or any of the functions or processing described herein.


In this regard, the computer system 170 in FIG. 9 may include a set of instructions that may be executed to automatically identify and interconnect a received RIM 66 or OIM 68 in the flexible head-end chassis 60. The computer system 170 may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. While only a single device is illustrated, the term “device” shall also be taken to include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The computer system 170 may be a circuit or circuits included in an electronic board card, such as, a printed circuit board (PCB), a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer.


The exemplary computer system 170 in this embodiment includes a processing device or processor 172, a main memory 174 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM), such as synchronous DRAM (SDRAM), etc.), and a static memory 176 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via a data bus 178. Alternatively, the processor 172 may be connected to the main memory 174 and/or static memory 176 directly or via some other connectivity means. The processor 172 may be a controller, and the main memory 174 or static memory 176 may be any type of memory.


The processor 172 represents one or more general-purpose processing devices, such as a microprocessor, central processing unit, or the like. More particularly, the processor 172 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or other processors implementing a combination of instruction sets. The processor 172 is configured to execute processing logic in instructions for performing the operations and steps discussed herein.


The computer system 170 may further include a network interface device 180. The computer system 170 also may or may not include an input 182, configured to receive input and selections to be communicated to the computer system 170 when executing instructions. The computer system 170 also may or may not include an output 184, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).


The computer system 170 may or may not include a data storage device that includes instructions 188 stored in a computer-readable medium 190. The instructions 188 may also reside, completely or at least partially, within the main memory 174 and/or within the processor 172 during execution thereof by the computer system 170, the main memory 174 and the processor 172 also constituting computer-readable medium. The instructions 188 may further be transmitted or received over a network 192 via the network interface device 180.


While the computer-readable medium 190 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding, or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical medium, and magnetic medium.


The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be formed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.


The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes: a machine-readable storage medium (e.g., ROM, random access memory (“RAM”), a magnetic disk storage medium, an optical storage medium, flash memory devices, etc.); and the like.


Unless specifically stated otherwise and as apparent from the previous discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing,” “computing,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data and memories represented as physical (electronic) quantities within the computer system's registers into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission, or display devices.


The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatuses to perform the required method steps. The required structure for a variety of these systems will appear from the description above. In addition, the embodiments described herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the embodiments as described herein.


Those of skill in the art will further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the distributed antenna systems described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends on the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present embodiments.


The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Furthermore, a controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration).


The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in RAM, flash memory, ROM, Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.


It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. Those of skill in the art will also understand that information and signals may be represented using any of a variety of technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips, that may be references throughout the above description, may be represented by voltages, currents, electromagnetic waves, magnetic fields, or particles, optical fields or particles, or any combination thereof.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the invention. Since modifications combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. A head-end chassis for an optical fiber-based distributed antenna system (DAS), comprising: a housing;a plurality of module slots disposed in the housing, each module slot among the plurality of module slots configured to receive a connected module comprised of a radio interface module (RIM) or an optical interface module (OIM);a backplane disposed in the housing, the backplane comprising: a plurality of backplane interconnects each associated with a module slot among the plurality of module slots, each backplane interconnect among the plurality of backplane interconnects configured to interconnect with the connected module inserted into the module slot associated with the backplane interconnect; each backplane interconnect among the plurality of backplane interconnects comprises: a backplane downlink input configured to receive an electrical downlink communications signal from a RIM;a backplane downlink output configured to provide an electrical split downlink communications signal to an OIM;a backplane uplink input configured to receive an electrical uplink communications signal from an OIM; anda backplane uplink output configured to provide an electrical split uplink communications signal to a RIM;a downlink combiner comprising a plurality of combiner downlink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects, the plurality of combiner downlink inputs configured to receive a plurality of electrical downlink communications signals from a plurality of RIMs, combine the received plurality of electrical downlink communications signals into an electrical combined downlink communications signal, and provide the electrical combined downlink communications signal on a combiner downlink output;a downlink splitter comprising a splitter downlink input configured to receive the electrical combined downlink communications signal from the combiner downlink output, split the received electrical combined downlink communications signal into a plurality of electrical split downlink communications signals, and provide the plurality of electrical split downlink communications signals on a plurality of splitter downlink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects;an uplink combiner comprising a plurality of combiner uplink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects, the plurality of combiner uplink inputs configured to receive a plurality of electrical uplink communications signals from at least one OIM, combine the received plurality of electrical uplink communications signals into an electrical combined uplink communications signal, and provide the electrical combined uplink communications signal on a combiner uplink output;an uplink splitter comprising a splitter uplink input configured to receive the electrical combined uplink communications signal from the combiner uplink output, split the received electrical combined uplink communications signal into a plurality of electrical split uplink communications signals, and provide the plurality of electrical split uplink communications signals on a plurality of splitter uplink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects;a plurality of downlink switches each configured to selectively couple, in response to a downlink switch selector, either the backplane downlink input of a backplane interconnect connected to a RIM, to a corresponding combiner downlink input among the plurality of combiner downlink inputs to provide the electrical downlink communications signal from the RIM to the downlink combiner; or the backplane downlink output of the backplane interconnect connected to an OIM, to a corresponding splitter downlink output among the plurality of splitter downlink outputs to provide the electrical split downlink communications signal to the OIM; anda plurality of uplink switches each configured to selectively couple, in response to an uplink switch selector, either the backplane uplink output of a backplane interconnect connected to the RIM, to a corresponding splitter uplink output among the plurality of splitter uplink outputs to provide the electrical split uplink communications signal to the RIM; or the backplane uplink input of the backplane interconnect connected to the OIM, to a corresponding combiner uplink input among the plurality of combiner uplink inputs to provide the electrical uplink communications signal from the OIM to the uplink combiner.
  • 2. The head-end chassis of claim 1, further comprising a chassis control system configured to: provide the downlink switch selector to each of the plurality of downlink switches; andprovide the uplink switch selector to each of the plurality of uplink switches.
  • 3. The head-end chassis of claim 2, wherein the chassis control system comprises: a chassis controller; anda switch controller configured to provide the downlink switch selector to each of the plurality of downlink switches, and provide the uplink switch selector to each of the plurality of uplink switches;the chassis controller configured to: detect a connection of the connected module to a backplane interconnect of a module slot in the plurality of module slots;determine if the connected module is a RIM or an OIM;if the connected module is a RIM, the chassis controller configured to: instruct the switch controller to: generate the downlink switch selector to cause a downlink switch corresponding to the module slot to couple the backplane downlink input of the backplane interconnect connected to the RIM, to the corresponding combiner downlink input; andgenerate the uplink switch selector to cause an uplink switch corresponding to the module slot to couple the backplane uplink output of the backplane interconnect connected to the RIM, to the corresponding splitter uplink output;if the connected module is an OIM, the chassis controller configured to: instruct the switch controller to: generate the downlink switch selector to cause the downlink switch corresponding to the module slot to couple the backplane downlink output of the backplane interconnect connected to the OIM, to the corresponding splitter downlink output; andgenerate the uplink switch selector to cause the uplink switch corresponding to the module slot to couple the backplane uplink input of the backplane interconnect connected to the OIM to the corresponding combiner uplink input.
  • 4. The head-end chassis of claim 3, wherein the chassis controller is configured to automatically: detect the connection of the connected module to a backplane interconnect of a module slot in the plurality of module slots;determine if the connected module is a RIM or an OIM; andinstruct the switch controller to generate the downlink switch selector and the uplink switch selector.
  • 5. The head-end chassis of claim 3, wherein the chassis controller is configured to: detect the connection of the connected module to a backplane interconnect of a module slot in the plurality of module slots and determine if the connected module is a RIM or an OIM for each module slot among the plurality of module slots; andinstruct the switch controller to generate the downlink switch selector and the uplink switch selector corresponding to each module slot among the plurality of module slots, based on whether the connected module is a RIM or an OIM.
  • 6. The head-end chassis of claim 3, each backplane interconnect among the plurality of backplane interconnects further comprises a module ID input configured to interconnect with a module ID output from a RIM or OIM inserted into the module slot associated with the backplane interconnect; the chassis controller configured to: detect the connection of the connected module to the backplane interconnect of the module slot in the plurality of module slots based on a module ID signal received from the module ID output on the module ID input; anddetermine if the connected module is a RIM or an OIM based on the module ID signal received on the module ID input.
  • 7. The head-end chassis of claim 3, wherein the chassis control is further configured to: determine if a backplane interconnect for a module slot among the plurality of module slots is unconnected; andif the backplane interconnect for the module slot is unconnected, the chassis controller is further configured to instruct the switch controller to: generate the downlink switch selector to cause the downlink switch corresponding to the module slot to couple the backplane downlink input of the unconnected backplane interconnect to the corresponding combiner downlink input; andgenerate the uplink switch selector to cause the uplink switch corresponding to the module slot to couple the backplane uplink output of the unconnected backplane interconnect to the corresponding splitter uplink output.
  • 8. The head-end chassis of claim 3, wherein the chassis control is further configured to: determine if a backplane interconnect for a module slot among the plurality of module slots is unconnected; andif the backplane interconnect for the module slot is unconnected, the chassis controller is further configured to instruct the switch controller to: generate the downlink switch selector to cause the downlink switch corresponding to the module slot to couple the backplane downlink output of the unconnected backplane interconnect to the corresponding splitter downlink output; andgenerate the uplink switch selector to cause the uplink switch corresponding to the module slot to couple the backplane uplink input of the unconnected backplane interconnect to the corresponding combiner uplink input.
  • 9. The head-end chassis of claim 1 provided in an indoor optical fiber-based DAS.
  • 10. A method for interconnecting a connected module in a head-end chassis with head-end equipment in an optical fiber-based distributed antenna system (DAS) comprising: detecting a connection of a connected module comprised of a radio interface module (RIM) or an optical interface module (OIM), to a backplane interconnect of a module slot among a plurality of module slots in a head-end chassis;determining if the connected module in the module slot is a RIM or an OIM;if the connected module in the module slot is determined to be a RIM, coupling the backplane interconnect connected to the RIM to: a downlink combiner configured to receive an electrical downlink communications signal from the RIM, combine the received electrical downlink communications signal into an electrical combined downlink communications signal and provide the electrical combined downlink communications signal to a downlink splitter;an uplink splitter configured to receive an electrical combined uplink communications signal from an uplink combiner, split the electrical combined uplink communications signal into the plurality of electrical split uplink communications signals, and provide the electrical split communications signal to the RIM; andif the connected module in the module slot is determined to be an OIM, coupling the backplane interconnect connected to the OIM to: a downlink splitter configured to receive the electrical combined downlink communications signal from the downlink combiner, split the received electrical combined downlink communications signal into an electrical split downlink communications signal, and provide the electrical split downlink communications signal to the OIM; andan uplink combiner configured to receive an electrical uplink communications signal from the OIM, combine the received electrical uplink communications signal into the electrical combined uplink communications signal, and provide the electrical combined uplink communications signal to the uplink splitter.
  • 11. The method of claim 10, further comprising automatically: detecting the connection of the connected module to the backplane interconnect of the module slot among the plurality of module slots in the head-end chassis;determining if the connected module in the module slot is the RIM or the OIM;if the connected module in the module slot is determined to be the RIM, coupling the backplane interconnect to the RIM; andif the connected module in the module slot is determined to be the OIM, coupling the backplane interconnect to the OIM.
  • 12. The method of claim 10, further comprising, for each of the plurality of module slots: detecting the connection of the connected module to the backplane interconnect of the module slot among the plurality of module slots in the head-end chassis;determining if the connected module in the module slot is the RIM or the OIM;if the connected module in the module slot is determined to be the RIM, coupling the backplane interconnect to the RIM; andif the connected module in the module slot is determined to be the OIM, coupling the backplane interconnect to the OIM.
  • 13. The method of claim 10, wherein: detecting the connection of the connected module comprises detecting the connection of the connected module to the backplane interconnect of the module slot in the plurality of module slots based on a module ID signal received from the connected module; anddetermining if the connected module is a RIM or an OIM based on the module ID signal.
  • 14. The method of claim 10, further comprising: determining if a backplane interconnect for a module slot among the plurality of module slots is unconnected; andif the backplane interconnect for the module slot is unconnected, coupling the unconnected backplane interconnect to the downlink combiner and the uplink splitter.
  • 15. The method of claim 10, further comprising: determining if a backplane interconnect for a module slot among the plurality of module slots is unconnected; andif the backplane interconnect for the module slot is unconnected, coupling the unconnected backplane interconnect to the downlink splitter and the uplink combiner.
  • 16. An optical fiber-based distributed antenna system (DAS), comprising: a central unit, comprising: a plurality of radio interface modules (RIMs) each configured to: receive an electrical downlink communications signal;receive an electrical split uplink communications signal from at least one optical interface module (OIM);a plurality of OIMs each configured to: receive an electrical split downlink communications signal;convert the received electrical split downlink communications signal into an optical split downlink communications signal;distribute the optical split downlink communications signal to a plurality of remote units;receive a plurality of optical uplink communications signals from the plurality of remote units;convert the received plurality of optical uplink communications signals to a plurality of electrical uplink communications signals;each of the plurality of remote units configured to: receive the optical split downlink communications signal from the central unit;convert the received optical split downlink communications signal into an electrical split downlink communications signal;distribute the electrical split downlink communications signal to at least one client device;receive an electrical uplink communications signal from the at least one client device;convert the received electrical uplink communications signal into an optical uplink communications signal; anddistribute the optical uplink communications signal to the central unit;the central unit further comprising a head-end chassis, comprising: a housing;a plurality of module slots disposed in the housing, each module slot among the plurality of module slots configured to receive a connected module comprised of a RIM among the plurality of RIMs or an OIM among the plurality of OIMs;a backplane disposed in the housing, the backplane comprising: a plurality of backplane interconnects each associated with a module slot among the plurality of module slots, each backplane interconnect among the plurality of backplane interconnects configured to interconnect with the connected module inserted into the module slot associated with the backplane interconnect; each backplane interconnect among the plurality of backplane interconnects comprises: a backplane downlink input configured to receive the electrical downlink communications signal from a RIM among the plurality of RIMs; a backplane downlink output configured to provide an electrical split downlink communications signal to an OIM among the plurality of OIMs; a backplane uplink input configured to receive an electrical uplink communications signal from the OIM; a backplane uplink output configured to provide an electrical split uplink communications signal to the RIM;a downlink combiner comprising a plurality of combiner downlink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects, the plurality of combiner downlink inputs configured to receive a plurality of electrical downlink communications signals from the plurality of RIMs, combine the received plurality of electrical downlink communications signals into an electrical combined downlink communications signal, and provide the electrical combined downlink communications signal on a combiner downlink output;a downlink splitter comprising a splitter downlink input configured to receive the electrical combined downlink communications signal from the combiner downlink output, split the received electrical combined downlink communications signal into a plurality of electrical split downlink communications signals, and provide the plurality of electrical split downlink communications signals on a plurality of splitter downlink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects;an uplink combiner comprising a plurality of combiner uplink inputs each corresponding to a backplane interconnect among the plurality of backplane interconnects, the plurality of combiner uplink inputs configured to receive a plurality of electrical uplink communications signals from the plurality of OIMs, combine the received plurality of electrical uplink communications signals into an electrical combined uplink communications signal, and provide the electrical combined uplink communications signal on a combiner uplink output;an uplink splitter comprising a splitter uplink input configured to receive the electrical combined uplink communications signal from the combiner uplink output, split the received electrical combined uplink communications signal into a plurality of electrical split uplink communications signals, and provide the plurality of electrical split uplink communications signals on a plurality of splitter uplink outputs each corresponding to a backplane interconnect among the plurality of backplane interconnects;a plurality of downlink switches each configured to selectively couple, in response to a downlink switch selector, either the backplane downlink input of a backplane interconnect connected to a RIM, to a corresponding combiner downlink input among the plurality of combiner downlink inputs to provide the electrical downlink communications signal from the RIM to the downlink combiner; or the backplane downlink output of the backplane interconnect connected to an OIM, to a corresponding splitter downlink output among the plurality of splitter downlink outputs to provide the electrical split downlink communications signal to the OIM; anda plurality of uplink switches each configured to selectively couple, in response to an uplink switch selector, either the backplane uplink output of a backplane interconnect connected to the RIM, to a corresponding splitter uplink output among the plurality of splitter uplink outputs to provide the electrical split uplink communications signal to the RIM; or the backplane uplink input of the backplane interconnect connected to the OIM, to a corresponding combiner uplink input among the plurality of combiner uplink inputs to provide the electrical uplink communications signal from the OIM to the uplink combiner.
PRIORITY APPLICATION

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application No. 62/054,543, filed on Sep. 24, 2014, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (801)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebolt Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green, Sr. et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai et al. Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers et al. Feb 1999 A
5867763 Dean et al. Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6088381 Myers, Jr. Jul 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Martin et al. Mar 2003 B1
6556551 Schwartz Apr 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright et al. Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Karnik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6847856 Bohannon Jan 2005 B1
6850510 Kubler Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius et al. May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8135102 Wiwel et al. Mar 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox et al. Jul 2012 B2
8235349 Conklin et al. Aug 2012 B1
8238463 Arslan et al. Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346278 Wala et al. Jan 2013 B2
8385850 Thompson et al. Feb 2013 B1
8428201 McHann, Jr. et al. Apr 2013 B1
8428510 Stratford et al. Apr 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8929288 Stewart et al. Jan 2015 B2
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020009070 Lindsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood Smith et al. Jun 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070009266 Bothwell Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel et al. Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II et al. Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat, Jr. et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200328 In De Betou et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268449 Berlin Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120052892 Braithwaite Mar 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130070816 Aoki et al. Mar 2013 A1
20130071112 Melester et al. Mar 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130095870 Phillips et al. Apr 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130252651 Zavadsky et al. Sep 2013 A1
20130260705 Stratford Oct 2013 A1
20140016583 Smith Jan 2014 A1
20140022914 Leimeister Jan 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
Foreign Referenced Citations (117)
Number Date Country
645192 Oct 1992 AU
731180 Mar 1998 AU
2065090 Feb 1998 CA
2242707 Jan 1999 CA
101389148 Mar 2009 CN
101547447 Sep 2009 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0461583 Mar 1997 EP
851618 Jul 1998 EP
0687400 Nov 1998 EP
0993124 Apr 2000 EP
1037411 Sep 2000 EP
1179895 Feb 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1530316 May 2005 EP
1511203 Mar 2006 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1227605 Jan 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
1056226 Apr 2009 EP
1357683 May 2009 EP
2276298 Jan 2011 EP
1570626 Nov 2013 EP
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
H4189036 Jul 1992 JP
05260018 Oct 1993 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2002353813 Dec 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
20010055088 Jul 2001 KR
9603823 Feb 1996 WO
9810600 Mar 1998 WO
0042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006046088 May 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
2006077569 Jul 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008116014 Sep 2008 WO
2010090999 Aug 2010 WO
2010132739 Nov 2010 WO
2011023592 Mar 2011 WO
2011100095 Aug 2011 WO
2011139939 Nov 2011 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2013122915 Aug 2013 WO
Non-Patent Literature Citations (46)
Entry
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
Author Unknown, “Suspended Ceiling T Wireless Access Point & DAS rem,” Oberon Product Catalog, Jun. 4, 2014, 6 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages.
Author Unknown, RFID Technology Overview, Date Unknown, 11 pages.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Hang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Duantum Electronics, Optical Society of America, May 2008, 2 pages.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Nireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Related Publications (1)
Number Date Country
20160087725 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
62054543 Sep 2014 US