The instant disclosure relates to high-density mapping catheters for diagnosing, for example, cardiac arrhythmias. In particular, the instant disclosure relates to flexible planar arrays including a plurality of electrodes positioned in a high-density array.
Catheters have been used for cardiac medical procedures for many years. Catheters can be used, for example, to diagnose and treat cardiac arrhythmias, while positioned at a specific location within a body that is otherwise inaccessible without a more invasive procedure.
Conventional mapping catheters may include, for example, a plurality of adjacent ring electrodes encircling the longitudinal axis of the catheter and constructed from platinum or some other metal. These ring electrodes are relatively rigid. Similarly, conventional ablation catheters may comprise a relatively rigid tip electrode for delivering therapy (e.g., delivering RF ablation energy) and may also include a plurality of adjacent ring, electrodes. It can be difficult to maintain good electrical contact with cardiac tissue when using these conventional catheters and their relatively rigid (or nonconforming), metallic electrodes, especially when sharp gradients and undulations are present.
When mapping a cardiac muscle, the beating of the heart, especially if erratic or irregular, makes it difficult to keep adequate contact between electrodes and tissue for a sufficient length of time. These problems are exacerbated on contoured, irregular, or trabeculated surfaces. If the contact between the electrodes and the tissue cannot be sufficiently maintained, quality lesions or accurate mapping are unlikely to result.
The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.
The instant disclosure relates to high-density mapping catheter tips for diagnosing, for example, cardiac arrhythmias. In particular, the instant disclosure relates to catheters with a planar array coupled to a distal end of a catheter shaft. The planar array includes a plurality of electrodes aligned in a high-density array to facilitate high-resolution electrophysiology mapping of tissue in contact with the plurality of electrodes.
Various embodiments of the present disclosure are directed to a planar array catheter including an elongated catheter shaft and a flexible, planar array. The elongated catheter shaft includes a proximal end and a distal end, and defines a catheter longitudinal axis extending between the proximal and distal ends. The flexible, planar array is coupled to the distal end of the catheter shaft, and includes two or more arms extending substantially parallel with the longitudinal axis and laying in a plane. Each of the arms conforms to tissue and includes a plurality of electrodes mounted thereon. The plurality of electrodes are equally spaced along both a length of each arm and across adjacent arms. In some specific embodiments, the plurality of electrodes may sample electrical characteristics of contacted tissue in at least two substantially transverse directions.
Some aspects of the present disclosure are directed to an electrophysiology mapping system including a planar array catheter and controller circuitry. The planar array catheter includes a catheter shaft, and a flexible, planar array coupled to a distal end of the catheter shaft. The planar array conforms to tissue, and includes two or more arms extending substantially parallel with the longitudinal axis and laying in a plane. Each of the arms have a plurality of electrodes mounted thereon with equal spacing along a length of each arm and across adjacent arms. The controller circuitry is communicatively coupled to each of the plurality of electrodes, and samples electrical signals received from each of the plurality of electrodes. In specific embodiments, the plurality of electrodes sample electrical characteristics of the contacted tissue, and the controller circuitry processes the sampled electrical characteristics of the contacted tissue through an OIS/OT algorithm. The controller circuitry may produce an output indicative of the true electrical characteristics of the contacted tissue, independent of the orientation of the planar array catheter relative to the contacted tissue.
The foregoing and other aspects, features, details, utilities, and advantages of the present disclosure will be apparent from reading the following description and claims, and from reviewing the accompanying drawings.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
Various example embodiments may be more completely understood in consideration of the following detailed description in connection with the accompanying drawings, in which:
While various embodiments discussed herein are amenable to modifications and alternative forms, aspects thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the scope of the disclosure including aspects defined in the claims. In addition, the term “example” as used throughout this application is only by way of illustration, and not limitation.
Various embodiments of the present disclosure are directed to flexible, high-density mapping catheters. In general, the tip portions of these high-density mapping catheters comprise an underlying support framework that is adapted to conform to and remain in contact with tissue (e.g., a beating heart wall).
Aspects of the present disclosure are directed toward planar array catheters with substantially uniform spacing, and/or known and constant spacing, between electrodes which form bipole pairs for electrophysiology mapping. More advanced embodiments of the present disclosure may utilize orientation independent sensing/omnipolar technology (“OIS/OT”) and related algorithms to mitigate the need for substantially square electrode arrays. OIS/OT and related algorithms are discussed in more detail in U.S. provisional application No. 61/944,426, filed 25 Feb. 2014, U.S. application Ser. No. 15/118,522, filed 25 Feb. 2015, and international application no. PCT/US2014/011940, filed 16 Jan. 2014, which are hereby incorporated by referenced as though fully disclosed herein.
While some electrophysiology mapping catheters may consist of equally spaced electrodes along a length of a planar array arm, the present disclosure is directed toward planar arrays with equal spacing of electrodes along both a length of the arms of the array, as well as between arms (i.e., x and y directions).
In some specific aspects of the present disclosure a planar array catheter including 7 arms is disclosed. Each of the arms may be aligned with, and extend parallel to, a longitudinal axis of the catheter shaft. Each arm is coupled to the other arms of the planar array at proximal and distal ends. The arms each include a row of electrodes extending along a length of the arm. The electrodes are evenly distributed along the length of the arm and between adjacent arms of the planar array.
Uniform spacing between adjacent electrodes in an array (in two or more directions) facilitates simplified and robust OIS/OT-like assessments of orientation-specific electrical characteristics of myocardial tissue, for example. In some embodiments, orthogonal and identical spacing directly permits 2-directional assessments of electrical activation direction and maximum voltage amplitude of sampled tissue. Moreover, uniform electrode spacing allows for the use of diagonal bipole pairs which are orthogonal. (relative to one another), and substantially measure the electrical characteristics of the same tissue area. The variation in readings between the orthogonal bipole pairs may be attributed to orientation-specific electrical characteristics of the contacted tissue. Embodiments of the present disclosure may further facilitate reduced complexity decimation by skipping intermediate electrodes, and forming bipole pairs with larger electrode spacing configurations than created by adjacent electrodes in the array. Decimation may be used to determine electrical characteristics of tissue at a less granular resolution. Further, a clinician may assess situational performance of the planar array at various bipole spacings. In various embodiments consistent with the present disclosure, adjacent bipole pairs may have various spacings, and be oriented in such a way as to facilitate various spatial orientations relative to one another.
The benefits of equal electrode spacing along two or more perpendicular directions include an effective and simplified compensation scheme for signals received from a clique (group) of electrodes, and six degrees of freedom (“DOF”) orientation and position information in an impedance-based navigation system's coordinate frame (e.g., the NavX™ navigation system manufactured by St. Jude Medical, Inc.). The six DOF orientation and position information may be based on the determined position of the electrodes within the patient's body. A simplified computation of the electric field vector for cliques may be determined based only on average bipole voltages in the x, y (and possibly z) directions. Equal electrode spacing may also facilitate OIS/OT-like methods that generate bipolar electrogram signals at various orientations with respect to wavefronts so that a clinician may employ arbitrary catheter orientations. Finally, the equal electrode spacing of the array facilitates a balanced and integrated view of voltage, fractionation, and/or activation patterns, which may be readily sampled from adjacent electrodes with known/equal spacing. This information may then be used to compute a divergence and curl (i.e., to detect/locate foci and rotor cores from activation directions).
In some specific embodiments of an electrophysiology planar array catheter in accordance with the present disclosure, the planar array may include 7 arms, each arm having 8 electrodes extending along a length of the arm with 2 millimeter (“mm”) spacing. The spacing between electrodes of adjacent arms also being 2 mm.
The electrodes disclosed herein may be ring electrodes, and/or printed electrodes on substrates (e.g., flexible circuit boards). Advantageously, printed electrodes may be spaced more closely than ring electrodes. In some embodiments, for example, printed electrodes spaced 0.1 mm apart have been successfully deployed in a planar array catheter. More typically, ring electrodes and printed electrodes have been advantageously spaced 0.5 mm to 4 mm apart. It has been found that such electrode spacing facilitates desirable electrophysiology mapping granularity in a number of cardiovascular applications, for example.
Short interelectrode spacing (e.g., 2 mm×2 mm) may be desirable to sample electrical characteristics of tissue (e.g., voltages) indicative of ablation line gaps. In testing, embodiments of the present disclosure including short interelectrode spacings of the electrode array detected ablation line gaps via the sampling of low voltage paths between lesions only separated by a few millimeters. Prior art electrophysiology mapping arrays, which lack the high-density electrode array and OIS/OT algorithm-based electrogram signal processing of the present disclosure, are not capable of detecting such minute ablation line gaps.
Aspects of the present disclosure are directed toward planar array catheters and basket catheters for electrophysiology mapping. More specifically, many embodiments of the present disclosure utilize printed circuit boards (e.g., flexible printed circuit boards) to form the planar array arms and/or basket splines. Further, aspects of the present disclosure include a plurality of electrodes positioned along the planar array arms and/or basket splines. In such embodiments, the planar array arms and/or basket splines may have electrodes conductively coupled to the flexible circuit board(s) that at least partially comprise structures of the arms and/or splines. The resulting cliques (or groups) of independently addressable electrodes facilitate electrophysiology measurements of tissue, in contact with the electrodes, which are orientation independent. That is, measurements may be taken across bipole pairs of electrodes within each clique (with a known distance therebetween) to capture measurements in at least two orientations. In more advanced 3D electrogram analysis, electrophysiology measurements may be captured in all three orientations. In some embodiments, it may be desirable for the electrodes of a clique to be placed equidistant one another to facilitate enhanced electrogram fidelity. This equidistant positioning of electrodes on a flexible circuit board may be accomplished by existing circuit board assembly techniques (e.g., surface mount technology component placement systems, commonly referred to as “pick-and-place” machines and circuit board printing techniques).
Conventional mapping catheter designs employ bipole electrode configurations to detect, measure, and display electrical signals from the heart. However, such conventional mapping catheter designs may be prone to error associated with the orientation of the bipole electrode pairs relative to an electrical wavefront of the heart, and result in displayed signals and mapping results that may be orientation dependent, and may not actually reflect the true (or desired) tissue properties. To mitigate this risk, aspects of the present disclosure are directed to signal processing techniques which may sample a plurality of bipole electrode pair configurations, with varying orientations, to produce accurate electrophysiology mapping results. To facilitate such signal processing techniques, electrophysiology mapping catheters consistent with the present disclosure (e.g., linear, planar array, and basket) may utilize cliques of electrodes that maintain spacing throughout various tissue contact configurations.
Inventors of the present disclosure have discovered that certain bipole electrode pair arrangements, such as those aligned with an activation direction of the electrical signals within the heart, show large amplitude signals reflecting depolarization traveling through normal or near normal tissue in contact with the bipole electrodes. Other alignments of the bipole pairs, for example, where the bipole pairs are aligned perpendicular to an activation direction of the electrical signals, or near scar tissue, may show lower amplitude fractionated signals. Various aspects of the present disclosure are directed to OIS/OT-like signal processing algorithms which separate signal amplitude and signal directionality despite poorly controlled catheter-wavefront orientation of the planar array.
For example, a first bipole pair of electrodes in an example clique samples an electrical signal passing through the contact tissue in an x-orientation, and a second bipole pair of electrodes in the clique samples a second electrical signal passing through the contact tissue in a y-orientation. Signal processing circuitry may then be used to determine the true 2-dimensional electrical signal for that location. The two bipole pairs, though substantially in the same location and in contact with the same tissue volume, may sample different electrical characteristics of the tissue due to the directionality of the electrical activation wavefronts traveling through the heart. For example, the electrical activation wavefronts that typically emanate from a sinoatrial node, and atrioventricular node. However, interfering electrical signals may also emanate from one or more of the pulmonary veins (e.g., arithmetic foci in the pulmonary vein(s)).
Importantly, to facilitate determination of important electrical characteristics of the tissue (e.g., impedance), the distance between a first bipole pair and the distance between a second bipole pair must be known and constant. In
The use of high-density electrode arrays, disclosed herein, facilitates the sampling of voltage measurements, for example, that are independent of effects associated with relative orientation of the catheter and electrical wavefront, making electrophysiology mapping of a cardiac muscle (and scar borders) much more reliable and precise. Moreover, embodiments of the present disclosure benefit from the collection of electrical signal timing information which is substantially independent from the electrode distribution. The high-density array of electrodes may also be used to verify sampled electrical signals from bipole pairs, by comparing the sampled electrical signal with other electrical signals sampled from adjacent (or nearby) bipole pairs. The regular spacing of electrodes in the high-density array further improves the accuracy of various metrics which are output from the OIS/OT algorithms and/or other signal processing techniques; for example, the En value (the estimate of the perpendicular bipole signal), an output of the Laplace equation, activation direction, conduction velocity, etc. Such aspects of the present disclosure are disclosed in more detail in U.S. provisional application No. 61/944,426, filed 25 Feb. 2014, U.S. application Ser. No. 15/118,522, filed 25 Feb. 2015, and international application no. PCT/US2014/011940, filed 16 Jan. 2014, which are hereby incorporated by referenced as though fully disclosed herein.
Details of the various embodiments of the present disclosure are described below with specific reference to the figures.
As shown in
Although the electrophysiology mapping catheter 101 in
In some embodiments, the electrodes 1021-N can be used in diagnostic, therapeutic, and/or mapping procedures. For example and without limitation, the electrodes 102 may be used for electrophysiological studies, pacing, cardiac mapping, and ablation, in some embodiments, the electrodes 102 can perform unipolar or bipolar ablation e.g., via the use of bipole pairs of electrodes 104 and 104′). This unipolar or bipolar ablation can create specific lines or patterns of lesions. In some embodiments, the electrodes 102 can receive electrical signals from the heart, which can be used for electrophysiological studies. Importantly, as the electrode spacing between adjacent electrodes on an arm 103, and those on adjacent arms, are the same, bipole pairs 104 and 104′ with varying relative orientations may be sampled to determine electrical characteristics of the tissue in contact with the bipole pairs. The sampled electrical characteristics may be processed to remove catheter orientation-based signal effects. In some embodiments, the electrodes 102 can perform a location or position sensing function related to cardiac mapping; alternatively, ring electrodes 111 on a distal end of the catheter shaft 107 may be used to determine location and/or orientation of the catheter 101.
The flexible tip portion 110 of the catheter 101 is coupled to a distal end of a catheter shaft 107 at a bushing 106 (also referred to as a connector). The catheter shaft 107 may also define a catheter shaft longitudinal axis aa, as depicted in
The planar array 110 may be adapted to conform to tissue (e.g., cardiac tissue). For example, when the planar array 110 contacts tissue, each arm 1031-7 may independently deflect to conform to the tissue. The ability for the planar array to deflect in response to tissue may be particularly beneficial when the planar array comes into contact with contoured, irregular, or trabeculated tissue. In some embodiments, the arms (or the understructure of the arms) may be constructed from a flexible or spring-like material such as nitinol and/or a flexible substrate. The construction of the planar array arms 1031-7 (including, for example, the length and/or diameter of the arms, and material) may be adjusted or tailored to achieve desired resiliency, flexibility, foldability, conformability, and stiffness characteristics. Moreover, in some embodiments it may be desirable to vary one or more characteristics from the proximal end of an arm to the distal end of the arm, or between or among the plurality of arms forming the planar array 110. The foldability of materials such as nitinol and/or a flexible substrate provides the added benefit of facilitating insertion of the planar array into a delivery sheath or introducer, whether dining delivery of the catheter into the body or removal of the catheter from the body at the end of a procedure.
Planar array catheters including the high-density electrode array positioned thereon may be used for, for example: (1) defining regional propagation maps of particularly sized areas (e.g., one centimeter square areas) on the walls of the heart; (2) identifying complex fractionated atrial electrograms for ablation; (3) identifying localized, focal potentials between the microelectrodes for higher electrogram resolution; and/or (4) more precisely targeting areas for ablation. Electrophysiology mapping catheters, in accordance with the present disclosure, may be constructed to conform to, and remain in contact with, cardiac tissue despite potentially erratic cardiac motion. Such enhanced stability of the catheter on a heart wall during cardiac motion provides more accurate mapping due to sustained tissue-electrode contact. Additionally, the catheters described herein may find application in epicardial and/or endocardial use. For example, the planar array embodiments depicted herein may be used in epicardial procedures where the planar array of electrodes is positioned between the myocardial surface and the pericardium. Alternatively the planar array embodiments may be used in endocardial procedure to sweep and/or analyze the inner surfaces of the myocardium and create high-density maps of the heart tissue's electrical properties.
While various embodiments of the planar array 110 disclosed in the present disclosure are depicted with ring electrodes 1021-N coupled to the arms 1031-7 (e.g.,
In embodiments of the planar array including ring electrodes, the ring electrodes of the high-density electrode array may include the same type of electrode or a variety of various electrode types. For example, electrodes with smaller surface area may be used exclusively for electrophysiology mapping, while larger surface area electrodes may be used for mapping, tissue ablation, and/or localization. In some specific embodiments, a most-distal ring electrode 102 on a first outboard arm 1031 may be slightly enlarged as is the most-proximal ring electrode on a second outboard arm 1037. These slightly enlarged electrodes may be used, for example, for more precise localization of the flexible array in mapping and navigation systems. It may also be possible to drive ablation current between these enlarged electrodes, if desired, for bipolar ablation, or, alternatively to drive ablation current in unipolar mode between one or both of these enlarged ring electrodes and, for example, a patch electrode located on a patient (e.g., on the patient's back). Similarly, the electrodes 1021-N in some embodiments may all be capable of performing unipolar or bipolar ablation therapies. Alternatively or concurrently, current could travel between one or more of the enlarged electrodes and any one or all of the electrodes. This unipolar or bipolar ablation therapy technique may be used to create specific lesion lines or lesion patterns. As also seen in
Upon receiving and processing electrogram data from the various bipole pairs of electrodes, the visualization 400 may be updated to color-code 441 a surface of the cardiac muscle model displayed in the visualization (often referred to as an electrophysiology map). The electrophysiology map may facilitate diagnosis by a clinician. For example, the clinician may use the mapped electrophysiology data to diagnose a cardiac arrhythmia (e.g., atrial fibrillation). To enable relative placement of the color-coded data 441 on the cardiac muscle model 442 in the visualization, controller circuitry associates the electrogram data from each bipole pair 4401-N with a location the data was collected. Determination of the planar array's position within a cardiac muscle may be facilitated by an impedance-based, electromagnetic, and/or hybrid localization system.
The electrophysiology data streams 556 of the first bipole pairs 5401-N show an increase in signal amplitude from the top left of the planar array 510 to the bottom right. The larger amplitude signals are indicative of depolarization traveling through normal or near normal myocardial tissue in contact with the bipole electrodes. Accordingly, the top-left of the planar array is color-coded 541 red to indicate less healthy tissue, with the more healthy tissue to the right and bottom of the screen being coded with greens and blues to indicate mare healthy tissue. The red coded tissue may be (near) scar tissue, for example, and may be a point of interest for clinicians.
The red electrophysiology data streams 555 show (fractionated) electrograms with low amplitude thresholds across the planar array 510. This is because the bipole pairs in the second configuration 540′1-N are aligned perpendicular to the activation direction 543 of the electrical signals. Due to the undesirable orientation, substantially orthogonal, between the second configuration of bipole pairs 540′1-N and the activation direction 543 of electrical signals through the cardiac muscle, the red electrophysiology data streams 555 do not represent the greatest possible local bipole voltage and thus may misrepresent a scar.
The false-positive region 704C in the vertical map 705′ is less severe than the false-positive region 704D in the horizontal map 710′ as the pacing source is positioned at the top-right of the map (see epicenter 799 in
As shown in
While various embodiments of high-density electrode catheters are disclosed herein, the teachings of the present disclosure may be readily applied to various other catheter embodiments as disclosed, for example, in the following patents and patent applications which are hereby incorporated by reference: U.S. provisional application No. 61/753,429, filed 16 Jan. 2013; U.S. provisional application No. 60/939,799, filed 23 May 2007; U.S. application Ser. No. 11/853,759 filed 11 Sep. 2007, now U.S. Pat. No. 8,187,267, issued 29 May 2012; U.S. provisional application No. 60/947,791, filed 3 Jul. 2007; U.S. application Ser. No. 12/167,736, filed 3 Jul. 2008, now U.S. Pat. No. 8,206,404, issued 26 Jun. 2012; U.S. application Ser. No. 12/667,338, filed 20 Jan. 2011 (371 date), published as U.S. patent application publication no. US 2011/0118582 A1; U.S. application Ser. No. 12/651,074, filed 31 Dec. 2009, published as U.S. patent application publication no. US 2010/0152731 A1; U.S. application Ser. No. 12/436,977, filed 7 May 2009, published as U.S. patent application publication no. US 2010/0286684 A1; U.S. application Ser. No. 12/723,110, filed 12 Mar. 2010 published as U.S. patent application publication no. US 2010/0174177; U.S. provisional application No. 61/355,242, filed 16 Jun. 2010; U.S. application Ser. No. 12/982,715, filed 30 Dec. 2010, published as U.S. patent application publication no. US 2011/0288392 A1: U.S. application Ser. No. 13/159,446, filed 14 Jun. 2011, published as U.S. patent application publication no. US 2011/0313417 A1; international application no. PCT/US2011/040629, filed 16 Jun. 2011, published as international publication no. WO 2011/159861 A2; U.S. application Ser. No. 13/162,392, filed 16 Jun. 2011 published as U.S. patent application publication no. US 2012/0010490 A1; U.S. application Ser. No. 13/704,619, filed 16 Dec. 2012, which is a national phase of international patent application no. PCT/US2011040781, filed 16 Jun. 2011, published as international publication no. WO 2011/159955 A1.
While various embodiments of the present disclosure are directed to the use of high-density electrode catheters in conjunction with OIS/OT algorithms, the teachings of the present disclosure may be readily applied to various other algorithm types. For example, embodiments consistent with the present disclosure may utilize the electrode signal post-processing techniques, and electrophysiology mapping algorithms disclosed in the following publications, which are hereby incorporated by reference: Magtibay et al. JAHA 2017 (J Am Heart Assoc. 2017; 6:e006447, DOI: 10.1161/JAHA.117.006447) (see, e.g., pages 6 and 7, and section titled “Omnipoles Provide the Largest Possible Bipolar Voltages”); and Haldar et al. Circulation AE 2017 (Circ Arrhythm Electrophysiol. 2017; 10:e005018.DOI: 10.1161/CIRCEP.117.005018) (see, e.g., page 6, section titled “Omnipolar Voltage Amplitude Correlates to Largest Measurable Bipolar Vpp,” and
Although several embodiments have been described above with a certain degree of particularity, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit of the present disclosure. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the present teachings. The foregoing description and following claims are intended to cover all such modifications and variations.
Various embodiments are described herein of various apparatuses, systems, and methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” “in an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
The present application is a continuation of application Ser. No. 15/793,093, filed 25 May 2017, now U.S. Pat. No. 11,172,858, which claims priority to U.S. provisional application No. 62/414,634, filed 28 Oct. 2016, which is are hereby incorporated by reference as though fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4522212 | Gelinas et al. | Jun 1985 | A |
5224939 | Holman et al. | Jul 1993 | A |
5380301 | Prichard et al. | Jan 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5456254 | Pietroski et al. | Oct 1995 | A |
5626136 | Webster, Jr. | May 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5715817 | Stevens-Wright et al. | Feb 1998 | A |
5715832 | Koblish et al. | Feb 1998 | A |
5827278 | Webster, Jr. | Oct 1998 | A |
5876373 | Giba et al. | Mar 1999 | A |
5964757 | Ponzi | Oct 1999 | A |
6029091 | de la Rama et al. | Feb 2000 | A |
6071282 | Fleischman | Jun 2000 | A |
6074379 | Prichard | Jun 2000 | A |
6123699 | Webster, Jr. | Sep 2000 | A |
6171277 | Ponzi | Jan 2001 | B1 |
6183463 | Webster, Jr. | Feb 2001 | B1 |
6198974 | Webster, Jr. | Mar 2001 | B1 |
6210407 | Webster | Apr 2001 | B1 |
6267746 | Bumbalough | Jul 2001 | B1 |
6273404 | Holman et al. | Aug 2001 | B1 |
6415187 | Kuzma et al. | Jul 2002 | B1 |
6491681 | Kunis et al. | Dec 2002 | B1 |
6522932 | Kuzma et al. | Feb 2003 | B1 |
6554794 | Mueller et al. | Apr 2003 | B1 |
6652515 | Maguire et al. | Nov 2003 | B1 |
6658302 | Kuzma et al. | Dec 2003 | B1 |
6961602 | Fuimaono et al. | Nov 2005 | B2 |
7004937 | Lentz et al. | Feb 2006 | B2 |
7027851 | Mejia | Apr 2006 | B2 |
7089045 | Fuimaono et al. | Aug 2006 | B2 |
7099712 | Fuimaono et al. | Aug 2006 | B2 |
7214220 | McGlinch et al. | May 2007 | B2 |
7217256 | Di Palma | May 2007 | B2 |
7228164 | Fuimaono et al. | Jun 2007 | B2 |
7257435 | Plaza | Aug 2007 | B2 |
7412274 | Mejia | Aug 2008 | B2 |
7429261 | Kunis et al. | Sep 2008 | B2 |
7561907 | Fuimaono et al. | Jul 2009 | B2 |
7608063 | Le et al. | Oct 2009 | B2 |
7625365 | McGlinch et al. | Dec 2009 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7959601 | McDaniel et al. | Jun 2011 | B2 |
7985215 | Guo et al. | Jul 2011 | B2 |
8103327 | Harlev et al. | Jan 2012 | B2 |
8137321 | Argentine | Mar 2012 | B2 |
8157848 | Zhang et al. | Apr 2012 | B2 |
8187267 | Pappone et al. | May 2012 | B2 |
8206404 | de la Rama et al. | Jun 2012 | B2 |
8221390 | Pal et al. | Jul 2012 | B2 |
8271099 | Swanson | Sep 2012 | B1 |
8273016 | O'Sullivan | Sep 2012 | B2 |
8376990 | Ponzi et al. | Feb 2013 | B2 |
8391947 | Urman et al. | Mar 2013 | B2 |
8447377 | Harlev et al. | May 2013 | B2 |
8486063 | Werneth et al. | Jul 2013 | B2 |
8565894 | Vetter et al. | Oct 2013 | B2 |
8603069 | Selkee | Dec 2013 | B2 |
8608703 | Riles et al. | Dec 2013 | B2 |
8649880 | Parker, Jr. | Feb 2014 | B1 |
8700120 | Koblish | Apr 2014 | B2 |
8706193 | Govari et al. | Apr 2014 | B2 |
8744599 | Tegg | Jun 2014 | B2 |
8755861 | Harlev et al. | Jun 2014 | B2 |
8777929 | Schneider et al. | Jul 2014 | B2 |
8792962 | Esguerra et al. | Jul 2014 | B2 |
8814824 | Kauphusman et al. | Aug 2014 | B2 |
8814825 | Tegg et al. | Aug 2014 | B2 |
8882705 | McDaniel et al. | Nov 2014 | B2 |
8894610 | Macnamara et al. | Nov 2014 | B2 |
8996091 | de la Rama et al. | Mar 2015 | B2 |
9017308 | Klisch et al. | Apr 2015 | B2 |
9033917 | Magana et al. | May 2015 | B2 |
9044245 | Condie et al. | Jun 2015 | B2 |
9050010 | Bui et al. | Jun 2015 | B2 |
9101733 | McDaniel | Aug 2015 | B2 |
9204929 | Solis | Dec 2015 | B2 |
9216056 | Datta et al. | Dec 2015 | B2 |
9247990 | Kauphusman et al. | Feb 2016 | B2 |
9326815 | Watson | May 2016 | B2 |
9339631 | Graham et al. | May 2016 | B2 |
9433751 | Ponzi et al. | Sep 2016 | B2 |
9433752 | Jimenez et al. | Sep 2016 | B2 |
9468495 | Kunis et al. | Oct 2016 | B2 |
9486280 | Koblish et al. | Nov 2016 | B2 |
9486282 | Solis | Nov 2016 | B2 |
9532703 | Huszar et al. | Jan 2017 | B2 |
9539413 | Ogle | Jan 2017 | B2 |
9649158 | Datta et al. | May 2017 | B2 |
9687166 | Subramaniam et al. | Jun 2017 | B2 |
9693733 | Altmann et al. | Jul 2017 | B2 |
9694159 | Schneider et al. | Jul 2017 | B2 |
9694161 | Selkee | Jul 2017 | B2 |
9713418 | Huszar et al. | Jul 2017 | B2 |
9788895 | Solis | Oct 2017 | B2 |
9820664 | Hoitink et al. | Nov 2017 | B2 |
9833608 | Masson | Dec 2017 | B2 |
9844645 | Pai et al. | Dec 2017 | B2 |
9848795 | Marecki et al. | Dec 2017 | B2 |
9907480 | Basu et al. | Mar 2018 | B2 |
9919132 | Tegg et al. | Mar 2018 | B2 |
9949656 | Wu et al. | Apr 2018 | B2 |
9986949 | Govari et al. | Jun 2018 | B2 |
10004877 | Tegg | Jun 2018 | B2 |
10034637 | Harlev et al. | Jul 2018 | B2 |
10052457 | Nguyen et al. | Aug 2018 | B2 |
10065019 | Hamuro et al. | Sep 2018 | B2 |
10099036 | Heideman et al. | Oct 2018 | B2 |
10118022 | Helgeson et al. | Nov 2018 | B2 |
10143394 | Solis | Dec 2018 | B2 |
10285610 | Wu | May 2019 | B2 |
10322261 | Pai et al. | Jun 2019 | B2 |
10362952 | Basu et al. | Jul 2019 | B2 |
10362954 | de la Rama et al. | Jul 2019 | B2 |
10376170 | Quinn et al. | Aug 2019 | B2 |
10384036 | Romoscanu | Aug 2019 | B2 |
10398500 | Huszar et al. | Sep 2019 | B2 |
10478325 | Syed | Nov 2019 | B2 |
10506938 | Wu et al. | Dec 2019 | B2 |
10537259 | Wu et al. | Jan 2020 | B2 |
10542899 | Wu et al. | Jan 2020 | B2 |
10556091 | Truhler et al. | Feb 2020 | B2 |
10575742 | Wu et al. | Mar 2020 | B2 |
10575745 | Solis | Mar 2020 | B2 |
10595738 | Sterrett et al. | Mar 2020 | B2 |
10595740 | Hoitink et al. | Mar 2020 | B2 |
10602948 | Wu et al. | Mar 2020 | B2 |
10646692 | Tegg et al. | May 2020 | B2 |
10653423 | Starnes | May 2020 | B2 |
10702177 | Aujla | Jul 2020 | B2 |
10702677 | Okamura et al. | Jul 2020 | B2 |
10737060 | Gupta et al. | Aug 2020 | B2 |
10835712 | Wada | Nov 2020 | B2 |
10842990 | de la Rama et al. | Nov 2020 | B2 |
10857349 | de la Rama et al. | Dec 2020 | B2 |
10869992 | Pai et al. | Dec 2020 | B2 |
10898685 | Tegg | Jan 2021 | B2 |
10912925 | Houck | Feb 2021 | B2 |
10953196 | Raab et al. | Mar 2021 | B2 |
10966623 | Wu et al. | Apr 2021 | B2 |
10966753 | Coyle et al. | Apr 2021 | B2 |
10967150 | Helgeson et al. | Apr 2021 | B2 |
10987045 | Basu et al. | Apr 2021 | B2 |
11033715 | Beeckler et al. | Jun 2021 | B2 |
11039772 | Wu et al. | Jun 2021 | B2 |
11039773 | Sterrett et al. | Jun 2021 | B2 |
11083400 | Hoitink et al. | Aug 2021 | B2 |
11116436 | Wu et al. | Sep 2021 | B2 |
11141568 | Hsueh et al. | Oct 2021 | B2 |
11160482 | Solis | Nov 2021 | B2 |
11272886 | Harlev et al. | Mar 2022 | B2 |
20020165484 | Bowe et al. | Nov 2002 | A1 |
20050159741 | Paul et al. | Jul 2005 | A1 |
20090198300 | Zhang et al. | Aug 2009 | A1 |
20100152731 | de la Rama et al. | Jun 2010 | A1 |
20100174177 | Wu | Jul 2010 | A1 |
20100286684 | Hata et al. | Nov 2010 | A1 |
20110118582 | De la Rama et al. | May 2011 | A1 |
20110118726 | de la Rama et al. | May 2011 | A1 |
20110288392 | de la Rama et al. | Nov 2011 | A1 |
20120010490 | Kauphusman et al. | Jan 2012 | A1 |
20120271302 | Behl et al. | Oct 2012 | A1 |
20120296232 | Ng | Nov 2012 | A1 |
20130085479 | de la Rama et al. | Apr 2013 | A1 |
20130253504 | Fang | Sep 2013 | A1 |
20130274582 | Afonso et al. | Oct 2013 | A1 |
20140100639 | Lee et al. | Apr 2014 | A1 |
20140200639 | de la Rama | Jul 2014 | A1 |
20140269602 | Kawagishi | Sep 2014 | A1 |
20140296846 | Huszar et al. | Oct 2014 | A1 |
20140296902 | Huszar et al. | Oct 2014 | A1 |
20140316496 | Masson et al. | Oct 2014 | A1 |
20140336636 | Huszar et al. | Nov 2014 | A1 |
20140350564 | Huszar et al. | Nov 2014 | A1 |
20150105645 | Subramaniam et al. | Apr 2015 | A1 |
20150119911 | Mckenzie | Apr 2015 | A1 |
20150141785 | Hayam et al. | May 2015 | A1 |
20150159741 | Versteyhe et al. | Jun 2015 | A1 |
20150351652 | Marecki et al. | Dec 2015 | A1 |
20160143588 | Hoitink et al. | May 2016 | A1 |
20160213423 | Kauphusman et al. | Jul 2016 | A1 |
20160213916 | de la Rama | Jul 2016 | A1 |
20160278851 | Mannion et al. | Sep 2016 | A1 |
20160317094 | Byrd et al. | Nov 2016 | A1 |
20160331471 | Deno et al. | Nov 2016 | A1 |
20160331933 | Knutsen | Nov 2016 | A1 |
20160374582 | Wu et al. | Dec 2016 | A1 |
20160374753 | Wu et al. | Dec 2016 | A1 |
20170000365 | Wu et al. | Jan 2017 | A1 |
20170042449 | Deno et al. | Feb 2017 | A1 |
20170049348 | Deno et al. | Feb 2017 | A1 |
20170112404 | de la Rama et al. | Apr 2017 | A1 |
20170112405 | Sterrett et al. | Apr 2017 | A1 |
20170273738 | Wu | Sep 2017 | A1 |
20170319269 | Oliverius et al. | Nov 2017 | A1 |
20170367756 | Sliwa et al. | Dec 2017 | A1 |
20180042667 | Pappone et al. | Feb 2018 | A1 |
20180050190 | Masson | Feb 2018 | A1 |
20180056038 | Aujla | Mar 2018 | A1 |
20180070845 | Hoitink et al. | Mar 2018 | A1 |
20180085064 | Auerbach et al. | Mar 2018 | A1 |
20180235496 | Wu et al. | Aug 2018 | A1 |
20180303361 | Wu et al. | Oct 2018 | A1 |
20190175043 | Wu et al. | Jun 2019 | A1 |
20190192826 | Wada | Jun 2019 | A1 |
20200077912 | Wu et al. | Mar 2020 | A1 |
20200138378 | de La Rama et al. | May 2020 | A1 |
20200155021 | Wu et al. | May 2020 | A1 |
20200221966 | Wu et al. | Jul 2020 | A1 |
20200229727 | Hoitink et al. | Jul 2020 | A1 |
20200253496 | Deno et al. | Aug 2020 | A1 |
20200329989 | Aujla | Oct 2020 | A1 |
20200405166 | Wu et al. | Dec 2020 | A1 |
20210145342 | Wang | May 2021 | A1 |
20210187246 | Houck | Jun 2021 | A1 |
20210204871 | Goedeke et al. | Jul 2021 | A1 |
20210228137 | Aujla | Jul 2021 | A1 |
20210268234 | Helgeson et al. | Sep 2021 | A1 |
20210298656 | Wu et al. | Sep 2021 | A1 |
20210361216 | Hoitink et al. | Nov 2021 | A1 |
20210401345 | Wu et al. | Dec 2021 | A1 |
20220023594 | Pai | Jan 2022 | A1 |
20220054066 | Solis | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
2015202258 | May 2015 | AU |
2015202258 | Jun 2016 | AU |
2016204351 | Jan 2017 | AU |
2016204353 | Jan 2017 | AU |
2016204355 | Jan 2017 | AU |
2934209 | Dec 2016 | CA |
2934211 | Dec 2016 | CA |
2934214 | Dec 2016 | CA |
101797181 | Aug 2010 | CN |
101927053 | Jan 2015 | CN |
103157168 | Apr 2015 | CN |
101797181 | Dec 2015 | CN |
105960201 | Sep 2016 | CN |
106264715 | Jan 2017 | CN |
106264716 | Jan 2017 | CN |
106308790 | Jan 2017 | CN |
106859765 | Jun 2017 | CN |
206880930 | Jan 2018 | CN |
104958824 | Dec 2018 | CN |
104434083 | Apr 2019 | CN |
104968261 | May 2019 | CN |
105592778 | Jul 2019 | CN |
111657866 | Sep 2020 | CN |
106264715 | Nov 2020 | CN |
106264716 | Nov 2020 | CN |
106308790 | Jun 2021 | CN |
107529958 | Jul 2021 | CN |
109310469 | Jul 2021 | CN |
109641121 | Sep 2021 | CN |
109952123 | Sep 2021 | CN |
110559544 | Sep 2021 | CN |
113425304 | Sep 2021 | CN |
105615994 | Oct 2021 | CN |
109963610 | Nov 2021 | CN |
108289709 | Mar 2022 | CN |
0889744 | Jan 2004 | EP |
1254641 | Nov 2008 | EP |
1690564 | Apr 2009 | EP |
1723981 | Aug 2010 | EP |
2135634 | Oct 2011 | EP |
2018203 | Jun 2012 | EP |
1814450 | Jan 2013 | EP |
2269532 | Mar 2013 | EP |
2664295 | Nov 2013 | EP |
2604306 | Jan 2014 | EP |
2732843 | May 2014 | EP |
2747680 | Jul 2014 | EP |
2752153 | Jul 2014 | EP |
2907462 | Aug 2015 | EP |
2915555 | Sep 2015 | EP |
2732843 | Jan 2016 | EP |
1968679 | Sep 2016 | EP |
2241279 | Sep 2016 | EP |
3114987 | Jan 2017 | EP |
2796103 | Feb 2017 | EP |
3222209 | Sep 2017 | EP |
2792322 | Oct 2017 | EP |
2792323 | Oct 2017 | EP |
3115076 | Oct 2017 | EP |
3117863 | Oct 2017 | EP |
3287092 | Feb 2018 | EP |
3111871 | Mar 2018 | EP |
3111872 | Apr 2018 | EP |
3057488 | May 2018 | EP |
2848226 | Jul 2018 | EP |
3363397 | Aug 2018 | EP |
2907462 | Sep 2018 | EP |
3391928 | Oct 2018 | EP |
3122276 | Nov 2018 | EP |
3398549 | Nov 2018 | EP |
1759668 | Dec 2018 | EP |
3037122 | Dec 2018 | EP |
2234537 | Jan 2019 | EP |
2569040 | Feb 2019 | EP |
3023052 | Mar 2019 | EP |
3466363 | Apr 2019 | EP |
2550989 | Jun 2019 | EP |
3512589 | Jul 2019 | EP |
3512590 | Jul 2019 | EP |
3527125 | Aug 2019 | EP |
3434218 | Feb 2020 | EP |
2908723 | Mar 2020 | EP |
3114987 | Aug 2020 | EP |
3178516 | Sep 2020 | EP |
3738508 | Nov 2020 | EP |
3738509 | Nov 2020 | EP |
3340916 | Dec 2020 | EP |
3750475 | Dec 2020 | EP |
2155301 | Apr 2021 | EP |
3432820 | Apr 2021 | EP |
2809254 | Jun 2021 | EP |
3508245 | Jul 2021 | EP |
3858277 | Aug 2021 | EP |
3791820 | Apr 2022 | EP |
246415 | Dec 2019 | IL |
201614021431 | Dec 2016 | IN |
201614021432 | Dec 2016 | IN |
201614021450 | Dec 2016 | IN |
4545384 | Jul 2010 | JP |
4887810 | Feb 2012 | JP |
4940332 | Mar 2012 | JP |
2012055602 | Mar 2012 | JP |
2012200509 | Oct 2012 | JP |
5154031 | Feb 2013 | JP |
5193190 | May 2013 | JP |
5372314 | Dec 2013 | JP |
2014014713 | Jan 2014 | JP |
5550150 | May 2014 | JP |
5762697 | Jun 2015 | JP |
5856712 | Feb 2016 | JP |
5908270 | Apr 2016 | JP |
5944331 | Jul 2016 | JP |
6050522 | Dec 2016 | JP |
2017012750 | Jan 2017 | JP |
2017012755 | Jan 2017 | JP |
2017038919 | Feb 2017 | JP |
2017051211 | Mar 2017 | JP |
2017104552 | Jun 2017 | JP |
6246742 | Dec 2017 | JP |
6342524 | Jun 2018 | JP |
6434495 | Dec 2018 | JP |
6445509 | Dec 2018 | JP |
6445742 | Dec 2018 | JP |
6466114 | Feb 2019 | JP |
6515084 | Apr 2019 | JP |
6528010 | May 2019 | JP |
6655655 | Feb 2020 | JP |
6776021 | Oct 2020 | JP |
6776025 | Oct 2020 | JP |
6786275 | Nov 2020 | JP |
6821812 | Jan 2021 | JP |
2021007772 | Jan 2021 | JP |
6843502 | Mar 2021 | JP |
6920312 | Aug 2021 | JP |
6926306 | Aug 2021 | JP |
6932484 | Aug 2021 | JP |
6980386 | Nov 2021 | JP |
2022020838 | Feb 2022 | JP |
2016124794 | Dec 2017 | RU |
2016124801 | Dec 2017 | RU |
2016125763 | Jan 2018 | RU |
9843530 | Oct 1998 | WO |
0168178 | Sep 2001 | WO |
2008091197 | Jul 2008 | WO |
2011159861 | Dec 2011 | WO |
2011159955 | Dec 2011 | WO |
2014113612 | Jul 2014 | WO |
2015057521 | Apr 2015 | WO |
2015095577 | Jun 2015 | WO |
2015130824 | Sep 2015 | WO |
2016001015 | Jan 2016 | WO |
2017098198 | Jun 2017 | WO |
2018053148 | Mar 2018 | WO |
2018053164 | Mar 2018 | WO |
Entry |
---|
Haldar et al., “Omnipolar Voltage Amplitude Correlates to Largest Measurable Bipolar Vpp”, Circulation: Arrhythmia and Electrophysiology, Sep. 2017, pp. 6. |
Magtibay et al., “Omnipoles Provide the Largest Possible Bipolar Voltages”, Journal of the American Heart Association, 2017, pp. 6-7. |
Number | Date | Country | |
---|---|---|---|
20220061727 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62414634 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15793093 | Oct 2017 | US |
Child | 17501982 | US |