The present application is related to triggers for firearms and more specifically to triggers that use a flexure hinge.
Beneficial aspects of firearm design including incorporating lighter weight components, designing less complicated components, and incorporating firearm parts that require less maintenance. Typical hinges include a bore in which a pin is inserted. Hinges with a bore and pin can require a substantial amount of space. More so, traditional hinges with pins typically require lubrication or hysteresis, which can take up further space and may allow little to no tensile movement. Traditional hinges also may require the use of springs to, for example, return the shoe of a trigger back into a repeated position, as typical hinge and pin systems do not return to one position. Thus, there is a need for an improved hinge mechanism used in firearms.
The detailed description is set forth with reference to the accompanying drawings illustrating examples of the disclosure, in which use of the same reference numerals indicates similar or identical items. Certain examples of the present disclosure may include elements, components, and/or configurations other than those illustrated in the drawings, and some of the elements, components, and/or configurations illustrated in the drawings may not be present in certain examples.
The present invention relates to a mechanism using flexure hinges as part of the trigger and/or safety mechanism of a firearm. Flexure hinges provide relative motion between two stiff members by the elastic deformation of an arbitrarily shaped flexible connector often implemented in metallic and composite materials. Living hinges are often associated with plastic materials and function in a very similar fashion but with different underlying deformation physics.
The present disclosure contemplates all types of relatively thin connecting elements between relatively stiff members to form a flexure, with the connecting elements and flexure being made of the same material, such that the flexure provides an approximately rotational degree of freedom that is substantially equivalent in application. The thin connecting elements and the stiff members may be monolithic and homogeneous, e.g., formed from a single piece, separable or discrete elements, or any combination thereof. Motion of flexure-based mechanisms is typically confined in a single plane. Accordingly, flexure-based mechanisms possess relatively high stiffness out of the plane. Additionally or alternatively, multiple flexure-based mechanisms may be combined to achieve any desired type of motion, e.g., in more than one plane.
The present disclosure relates to a mechanism of using flexures as part of the trigger and/or safety mechanism. Unlike pin and hinge systems, flexures are more tamper resistant. The flexure mechanism is typically difficult to modify given the monolithic parts or non-separable parts that comprise the mechanism. For safety purposes, modifications to critical systems of a firearm like the trigger assembly may be desired. The flexure also provides more precise motion, with certain embodiments including XY stages with nanometer travel. Flexure hinges are also easier to produce and assemble given the simplicity of the parts. The lack of a sliding motion between pins and hinges also reduces friction within the firearm, so that flexure hinges have less wear than pins and hinges. Further, pins and hinges are more susceptible than flexures to corrosion and contaminants due to the bores trapping foreign matter.
Flexure mechanisms as currently produced may have less travel ability than pin and hinges, but this can be designed around by changing key elements of the flexible element, such as materials, connection method, width b, length of the thin member 1, and total length F. Combinations of traditional parts or hinges with flexures is thus also embodied within. In addition, firearm components and specifically firearm triggers are often limited of travel by design, such as due to safeties or trigger stops. Thus, flexure based designs as specifically applied to firearms overcome the issue of travel ability.
Flexure based trigger mechanisms also are compatible with many typical manufacturing processes, including, but not limited to, electrical discharge machining, traditional subtractive machining, additive manufacturing, molding, and extruding.
Flexure Hinge Based Trigger system
The at least one flexure link 102 can connect any two relatively stiff members that are configured to allow movement. The at least one flexure link 102 can, for example, connect the shoe 104 to the housing 106, a first link 102A to a trigger bar 112, the shoe 104 to a base plate, the shoe 104 to a safety, a safety to the base plate, the base plate to the housing 106, the base plate to the trigger bar 112, or any other combination between two relatively stiff members configured to allow movement. The at least one flexure link 102 has multiple dimensions shown in
The first flexure link 102A extend from the trigger component 150 to the housing 106. The first flexure link 102A is connected to the trigger component 150, in this case the shoe 104 on one end with a flexure hinge 140. The first flexure link 102A is also connected to the housing 106 by a second flexure hinge 142. The first flexure link may be any shape. In one embodiment, the first flexure link is as shaped in
The second flexure link 102B may extend from the trigger component 150 to the housing 106. The second flexure link 102B is connected to the trigger component 150, in this case the shoe 104 on one end with a flexure hinge 146. The second flexure link 102B is also connected to the housing 106 by a second flexure hinge 144. The second flexure link may be any shape. In one embodiment, the second flexure link is as shaped in
In some embodiments, the trigger component 150 is the shoe 104. The shoe 104 of the trigger system allows for movement of the entire trigger system by actuating the shoe 104 between a first position and a second position. The first and second position are shown in solid and phantom lines respectively in
The housing 106 of the trigger system provides linkages and structure to allow for the pivoting of the shoe 104 and the at least one flexure links 102. The housing may be a separate structure within the trigger assembly. The housing 106 can also comprise a mechanism to limit the travel of the shoe 104 and flexure hinges, such as a trigger stop. The housing 106 may be configured to not move at all or may be configured to move less than the movement of the shoe 104 to cause movement of the trigger bar 112.
The trigger bar 112 connects the rest of the trigger system 112 to a firing mechanism within the rest of the firearm (not shown). The trigger bar may be connected to the rest of the trigger system by a flexure hinge between the trigger bar 112 and any of the at least one flexure links 102, or can be connected to the shoe 104. The trigger bar 112 can be any trigger bar suitable for use in a firearm.
The at least one flexure link 202 can connect any two relatively stiff members that are configured to allow movement. The at least one flexure link 202 can, for example, connect the plate 216 to the housing 206, a first link 202 to a trigger bar 212, the shoe 204 to a base plate 216, the shoe 204 to a safety 220, a safety 220 to the base plate 216, the base plate 216 to the housing 206, the base plate 216 to the trigger bar 112, or any other combination between two relatively stiff members configured to allow movement. The at least one flexure link 202 has multiple dimensions shown in
The first flexure link 202A extend from the trigger component 250 to the housing 206. The first flexure link 202A is connected to the trigger component 250, in this case the plate 216 on one end with a flexure hinge 240. The first flexure link 202A is also connected to the housing 206 by a hinge with a pin 242. The first flexure link 202A may be any shape. In one embodiment, the flexure link is shaped as shown in
The second flexure link 202B may extend from the trigger component 250 to the housing 206. The second flexure link 202B is connected to the trigger component 250, in this case the plate 216 on one end with a flexure hinge 246. The second flexure link 202B is also connected to the housing 206 by a second flexure hinge 244. The second flexure link may be any shape. In one embodiment, the flexure link is shaped as shown in
The shoe 204 of the trigger system allows for movement of the entire trigger system by actuating the shoe 204 between a first position and a second position. The first and second position are shown respectively in
The housing 206 of the trigger system provides linkages and structure to allow for the pivoting of the plate 216 and the at least one flexure links 202. The housing 206 may be a separate structure within the trigger assembly. The housing 206 can also contain a mechanism to limit the travel of the shoe 204 and flexure hinges, such as a trigger stop 218 or backstop.
The trigger bar 212 connects the rest of the trigger system 212 to a firing mechanism within the rest of the firearm (not shown). The trigger bar may be connected to the rest of the trigger system by third flexure link 202C with a flexure hinge or a hinge with a pin 248 between the trigger bar 212 and any of the at least one flexure links 202A, 202B with a flexure hinge (not shown), or can be connected to the shoe 204 or base plate 216 via either a flexure hinge or a hinge with a pin (not shown). The trigger bar 212 can be any trigger bar 212 suitable for use in a firearm.
A plate 216 of the trigger system may be connected to the at least one flexure links 202. The plate 216 may be flat, curved, or any shape configured to attach to the at least one flexure links. The plate 216 may be an integral part of the shoe 204, or may fit inside of the shoe 204. The plate 216 may move with movement of the shoe 204 or the safety 220. The plate 216 may be coupled to the safety 220 by another flexure link or by another attachment means.
A trigger stop 218 may form a part of the housing 206. The trigger stop 218 may be configured to limit the travel of a trigger component 250, such as the plate 216, shoe 204, and safety 220, and thereby prevent overstressing the flexure hinges.
A safety 220 may be coupled to the shoe 204 via a pin, screw, or other method. In one embodiment, as shown in
In some embodiments, as shown in
The at least one flexure link 302 can connect any two relatively stiff members that are configured to allow movement. The at least one flexure link 302 can, for example, connect the plate 316 to the housing 306, a first link 302 to a trigger bar, the shoe 304 to a base plate 316, the shoe 304 to a safety 320, a safety 320 to the base plate 316, the base plate 316 to the housing 306, the base plate 316 to the trigger bar, or any other combination between two relatively stiff members configured to allow movement. The at least one flexure link 302 has multiple dimensions, including a width b, a length of the thinner or varying section L, and a total length from connection to connection of F. The at least one flexure link 302 can be adjusted by varying the aforementioned dimensions, or adjusted by changing the materials and various shapes. Possible materials include metal, composite, plastics, or combinations thereof. Virtually any shape can be used for a flexure hinge, but the typical shape here is a thin flat piece 308 L connected to a thicker piece 310. This particular shape helps reduce lateral movement, but other shapes can be used if other movement is either desired or not an issue. Some of the at least one flexure links 302 may have a section 314 where the thin flat piece 308 L transitions to a thicker piece 310. One flexure link can contain multiple thin flat pieces 308. This particular shape may have a stronger connection than a sharp transition from thin to thick.
The first flexure link 302A extend from the trigger component 350 to the hinge with a pin 342 connected to the housing 306. The first flexure link 302A is connected to the trigger component 350, in this case the plate 316 on one end with a flexure hinge 340. The first flexure link 302A is also connected to the housing 306 by a hinge with a pin 342, where the first flexure link 302A has another flexure hinge 370 between the first flexure link 302A and the hinge with a pin 342. The first flexure link 302A may be any shape. In one embodiment, the flexure link is shaped as shown in
The second flexure link 302B may extend from the trigger component 350 to the housing 306. The second flexure link 302B is connected to the trigger component 350, in this case the plate 316 on one end with a flexure hinge 346. The second flexure link 302B is also connected to the housing 306 by a second flexure hinge 344. The second flexure link may be any shape. In one embodiment, the flexure link is shaped as shown in
The shoe 304 of the trigger system allows for movement of the entire trigger system by actuating the shoe 304 between a first position and a second position. The shoe 304 may fit over a plate 316 that is connected to the at least one flexure link 302. The shoe 304 may be the trigger alone or may be the trigger in combination with a safety mechanism. As shown in
The housing 306 of the trigger system provides linkages and structure to allow for the pivoting of the plate 316 and the at least one flexure links 302. The housing may be a separate structure within the trigger assembly. The housing can also contain a mechanism to limit the travel of the shoe 304 and flexure hinges, such as a trigger stop.
The trigger bar (not shown) connects the rest of the trigger system to a firing mechanism within the rest of the firearm (not shown). The trigger bar may be connected to the rest of the trigger system by a flexure hinge or a regular hinge 348 between the trigger bar and one of the at least one flexure links 302A, 302B, can be connected to the hinge and pin 342 connecting the housing 306 and the first flexure link 302, or can be connected to the shoe 304 or base plate 316. The trigger bar can be any trigger bar suitable for use in a firearm.
A plate 316 of the trigger system may be connected to the at least one flexure links 302. The plate 316 may be flat, curved, or any shape configured to attach to the at least one flexure links. The plate 316 may be an integral part of the shoe 304, or may fit inside of the shoe 304. The plate 316 may move with movement of the shoe 304 or the safety 320. The plate 316 may be coupled to the safety by another flexure link or by another attachment means. The plate may contain a hinge and pin 352 to connect the shoe 304 to the rest of the trigger system.
A safety 320 may be coupled to the shoe 304 via a pin, screw, or other method. The safety 320 may be configured such that in order for the shoe 304 to move and thus move the flexure links 302, the safety 320 must first be actuated. The safety 320 may be formed by a flexure link 360 with a flexure hinge 362 between the flexure link 360 and the plate 316 and a hinge 364 between the flexure link 360 and the safety 320. The safety 320 may actuate until a portion of the safety 322 is stopped by the plate 316, wherein the portion of the safety 322 acts similarly to the backstop 218 to prevent overstress of the flexure links. The safety 320 may be the trigger alone or may be the trigger in combination with a shoe 304.
The system may also have a gap 330, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
Although specific examples of the disclosure have been described, numerous other modifications and alternative examples are within the scope of the disclosure. For example, any of the functionality described with respect to a particular device or component may be performed by another device or component. Further, while specific device characteristics have been described, examples of the disclosure may relate to numerous other device characteristics. Further, although examples have been described in language specific to structural features and/or methodological acts, it is to be understood that the disclosure is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as illustrative forms of implementing the examples. Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain examples could include, while other examples may not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more examples.
The disclosure claims priority to and the benefit of U.S. application Ser. No. 17/508,936, filed Oct. 22, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 63/106,618, filed Oct. 28, 2020, which are all hereby incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
63106618 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17508936 | Oct 2021 | US |
Child | 18349238 | US |