This patent generally relates to insulated doors and, more specifically, to doors that include a flexible panel such as an insulated curtain.
Cold storage rooms are refrigerated areas in a building that are commonly used for storing perishable foods. Cold storage rooms are typically large enough for forklifts and other material handling equipment to enter. Access to the room is often through a power actuated insulated door that separates the room from the rest of the building. To minimize thermal losses when someone enters or leaves the room, the door preferably opens and closes as quickly as possible.
Vertically operating roll-up doors and similar doors with flexible curtains are perhaps some of the fastest operating doors available. When such a door opens, its curtain usually bends upon traveling from its closed position in front of the doorway to its open position on an overhead storage track or take-up roller.
Such bending is not a problem if the curtain is relatively thin. However, an insulated curtain may not bend as well due to the required thickness of the insulation. When a take-up roller or curved track bends a thick curtain, relative translation may occur between opposite faces of the curtain. Designing a thick, insulated curtain that can accommodate such translation can be challenging.
Moreover, if an insulated curtain becomes temporarily creased or locally compressed along the horizontal line where the curtain bends, such a crease or compression might trap a pocket of air inside the curtain, and that trapped air might cause the curtain to bulge and adversely affect the door's operation.
Certain examples are shown in the above-identified figures and described in detail below. In describing these examples, like or identical reference numbers are used to identify the same or similar elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic for clarity and/or conciseness. Additionally, several examples have been described throughout this specification. Any features from any example may be included with, a replacement for, or otherwise combined with other features from other examples.
With the exception of door panel 12 itself, the structure, operation and other details of door 10 are described and illustrated in U.S. Patent Application Publication No. US 2008/0110580 A1, which is hereby incorporated herein by reference in its entirety. Generally, a powered drive sprocket 18 (
Publication No. US 2008/0110580 A1 also explains the benefit of equipping an insulated door panel with an evacuation blower. However, unlike that published application, the example apparatus described herein enables the door panel 12 to be advantageously utilized without such a blower and associated hardware.
Instead of using an evacuation blower, door panel 12 includes a plurality of pliable baffles 26 (
While the division of large chamber 32 into smaller, more manageable chambers 34 helps solve the problems caused by air trapped in door panel 12, baffles 26 used for this purpose may have other desirable properties. For example, baffles 26 may be sufficiently flexible to accommodate some relative translation between sheets 28 and 30 as door panel 12 bends over mandrel 16. The flexibility of baffles 26 may also enable door panel 12 to restorably break away if something were to accidentally collide with the door. Additionally or alternatively, baffles 26 may be sufficiently flexible to conformingly mate with the lateral edges or vertical seams 33 of sheets 28 and 30 so that there is minimal leakage or air exchange between chambers 34. Further, in some examples, baffles 26 preferably are sufficiently stiff to maintain a desired spacing between sheets 28 and 30, particularly in examples where insulation is not used for maintaining such spacing. Further yet, in some examples, baffles 26 preferably have a thermal conductivity that generally is less than or equal to that of sheets 28 and 30. The R-value of air enhanced with insulation in chambers 34 may be sufficient for preventing frost from forming on door panel 12. However, if baffles 26 have relatively high thermal conductivity, frost lines might form on sheet 28 or 30 where baffles 26 connect to those sheets.
Although the actual construction of door panel 12 may vary, the illustrated examples have sheets 28 and 30 being made of any suitable polymeric or natural fabric material that is preferably pliable and can be joined along their outer perimeter by adhesion, tape, melting/fusing/welding, sewing, hook-and-loop fastener, snaps, rivets, zipper, etc. Substantially the entire outer perimeter, including seams 33 and the upper and lower edges of door panel 12, is preferably sealed to prevent appreciable amounts of air from flowing in and out of chamber 32. Inhibiting moist air from repeatedly entering chamber 32 prevents mold-promoting moisture from condensing inside chamber 32 on a panel sheet that is facing, for example, a cold storage room.
Baffles 26 can be made of a material similar to or different than that of sheets 28 and 30. The flexibility of sheets 28 and 30 enables door panel 12 to bend over mandrel 16, while the flexibility of baffles 26 enables limited relative translation between sheets 28 and 30 as door 10 opens and closes. As door 10 opens or closes and door panel 12 travels and bends across mandrel 16, this action urges relative vertical translation between sheets 28 and 30. Thermal insulation 38, such as porous foam pads or polyester mats, preferably is installed within chambers 34.
For the illustrated examples, baffles 26 are horizontally elongate, which enable them to not only restrict vertical airflow within door panel 12 but also to accommodate relative vertical translation between sheets 28 and 30. In other examples, door panel 12 is provided with vertically elongate baffles or a combination of vertical and horizontal baffles.
To effectively restrict airflow within door panel 12, horizontally elongate baffles 26 preferably extend along at least most of the full width 40 of door panel 12. To facilitate manufacturing, however, baffles 26 can be made slightly shorter than the panel's full width 40 to make it easier to join the lateral vertical edges of sheets 28 and 30 together. Baffles 26 being a little shorter than full width 40 of door panel 12 places the plurality of air chambers 34 in fluid communication with each other. Thus, as door 10 opens and door panel 12 travels across mandrel 16, some air within door panel 12 will be temporarily redistributed to at least one of the lower chambers (e.g., air chamber 34′) of the plurality of chambers 34, thereby slightly increasing the air pressure within chamber 34′ temporarily, but not really detrimentally.
Although door panel 12 could be manufactured by several different methods,
An outer perimeter of sheet 28 is fused, sewn or otherwise connected to sheet 30 as schematically depicted by the block at reference number 46 of
At least some of the aforementioned examples include one or more features and/or benefits including, but not limited to, the following:
In some examples, a door panel is comprised of two pliable sheets with a plurality of pliable baffles therebetween, wherein the baffles are horizontally elongate to not only restrict airflow within the panel but also to accommodate relative vertical translation between the two sheets.
In some examples, the baffles are sufficiently flexible or pliable to enable the two sheets to pinch together as the panel bends over a mandrel.
In some examples, a door panel is comprised of two pliable, generally parallel sheets to create an overall air chamber. The panel also includes a plurality of baffles that divide the overall air chamber into a plurality of smaller, more manageable chambers.
In some examples, the smaller, more manageable chambers are in fluid communication with each other.
In some examples, the horizontal baffles do not extend the full width of the door panel so that the perimeter of the panel's outer sheets can be readily joined to each other.
In some examples, the horizontal baffles extend as wide as possible to minimize fluid communication between the smaller chambers.
In some examples, the air pressure within the lower chamber temporarily increases as the door opens.
In some examples, the internal baffles are fused rather than sewn to the outer sheets for ease of manufacturing and to minimize air leakage between the interior and exterior of the door panel.
Although certain example methods, apparatus and articles of manufacture have been described herein, the scope of the coverage of this patent is not limited thereto. On the contrary, this patent covers all methods, apparatus and articles of manufacture fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.