Current intraosseous access devices include rigid, stainless steel obturators to prevent bone fragments and other tissues from blocking the needle lumen during a placement event. Obturators in intraosseous (“I.O.”) needles prevent a hollow needle from coring the bone as it is drilled through the bone. The obturator is disposed within the needle lumen and extends flush with the needle bevel. This blocks the inner lumen of the needle and prevents the needle from becoming blocked by bone fragments as it is drilled through the bone.
While stainless steel obturators are not intentionally provided with a distal cutting edge, the tip of the obturator is ground flush with the bevel of the needle to prevent any pockets forming that might collect bone fragments and the like. As shown for example, in
Briefly summarized, embodiments disclosed herein are directed to apparatus and methods for a flexible obturator for use with an intraosseous device, which resolves the previously stated problems. Disclosed herein is an access assembly for use with an intraosseous access device including, a needle including a rounded distal region communicating with a beveled distal opening, and an obturator formed of a flexible material, the obturator including a radially symmetrical elongate body designed for insertion in a lumen of the needle.
In some embodiments the elongate body is deformable when disposed in the lumen of the needle to conform to an inner profile of the lumen. The obturator comprises a distal surface extending perpendicular to a longitudinal axis. The obturator comprises a curved distal surface. In some embodiments the elongate body further includes a beveled distal surface configured to align with the beveled distal opening of the needle. The flexible material displays relatively low columnar strength, low shear strength and high compressive strength. The flexible material includes one of a plastic, polymer, thermoplastic, Polytetrafluoroethylene (“PTFE”), Polyethylene (“PE”), Polyurethane (“PU”), rubber, silicone, metal, alloy, or Nitinol.
In some embodiments the elongate body further includes a needle hub configured to support the needle and define a hub lumen that communicates with the needle lumen, and an obturator hub configured to support the obturator, wherein a distal tip of the obturator extends through the needle lumen and extends distally of a distal tip of the needle when the obturator hub engages the needle hub. In some embodiments the elongate body further includes a lumen clearing mechanism, configured to advance the obturator relative to the needle lumen to clear material from a distal portion of the needle lumen. The lumen clearing mechanism is automatically triggered when the obturator is removed from the needle lumen.
Also disclosed is a method of manufacturing an access assembly including, providing a needle supported by a needle hub and defining a lumen, providing an obturator supported by an obturator hub, advancing the obturator through the needle lumen until a distal tip extends distally of a distal tip of the needle, trimming a distal portion of the obturator to provide a distal surface that is flush with a beveled distal surface of the needle.
In some embodiments, the obturator hub engages the needle hub when the distal tip of the obturator extends distally of the distal tip of the needle. In some embodiments the method further includes adhering the obturator to the obturator hub prior to advancing the obturator through the needle lumen. The obturator is formed of a flexible material that displays relatively low columnar strength, low shear strength and high compressive strength. The flexible material includes one of a plastic, polymer, thermoplastic, Polytetrafluoroethylene (“PTFE”), Polyethylene (“PE”), Polyurethane (“PU”), rubber, silicone, metal, alloy, or Nitinol. The obturator defines a radially symmetrical elongate body. Providing an obturator includes the obturator defining a distal surface extending perpendicular to a longitudinal axis of the obturator. Providing an obturator includes the obturator defining a radially symmetrical curved distal surface. In some embodiments the method further includes a lumen clearing mechanism, configured to advance the obturator relative to the needle lumen to clear material from a distal portion of the needle lumen. The lumen clearing mechanism is automatically triggered when the obturator hub is detached from the needle hub.
A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a needle disclosed herein includes a portion of the needle intended to be near a clinician when the needle is used on a patient. Likewise, a “proximal length” of, for example, the needle includes a length of the needle intended to be near the clinician when the needle is used on the patient. A “proximal end” of, for example, the needle includes an end of the needle intended to be near the clinician when the needle is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the needle can include the proximal end of the needle; however, the proximal portion, the proximal end portion, or the proximal length of the needle need not include the proximal end of the needle. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the needle is not a terminal portion or terminal length of the needle.
With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a needle disclosed herein includes a portion of the needle intended to be near or in a patient when the needle is used on the patient. Likewise, a “distal length” of, for example, the needle includes a length of the needle intended to be near or in the patient when the needle is used on the patient. A “distal end” of, for example, the needle includes an end of the needle intended to be near or in the patient when the needle is used on the patient. The distal portion, the distal end portion, or the distal length of the needle can include the distal end of the needle; however, the distal portion, the distal end portion, or the distal length of the needle need not include the distal end of the needle. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the needle is not a terminal portion or terminal length of the needle.
As shown in
The present disclosure generally relates to intraosseous (“IO”) access devices, systems, and methods thereof.
In an embodiment, the system includes a driver 101 and an access assembly 109. The driver 101 can be used to rotate the access assembly 109 into a bone of a patient. In embodiments, the driver 101 can be automated or manual. In an embodiment, the driver 101 is an automated driver 108. For example, the automated driver 108 can be a drill that achieves high rotational speeds. The intraosseous access system 100 can further include an obturator assembly 102, a shield 105, and a needle assembly 202, which may be referred to, collectively, as the access assembly 109. In an embodiment, the obturator assembly 102 includes an obturator 104 and an obturator hub 103. In an embodiment, the obturator hub 103 is attached to the obturator 104 in any suitable manner (e.g., one or more adhesives or overmolding). The obturator hub 103 can be configured to interface with the driver 101.
In an embodiment, the shield 105 is configured to couple with the obturator 104. The coupling can allow longitudinal movement between the obturator 104 and the shield 105, when the shield 105 is in a first operational mode. In a second operational mode, the longitudinal movement between the obturator 104 and the shield 105 can be prevent.
For example, in the first operational mode, the obturator 104 maintains the shield 105 in an unlocked state. The obturator 104 can then be moved to a position where the shield 105 is no longer maintained in the unlocked state, and the shield 105 may automatically transition to the second operational mode, i.e. a locked state, in which little or no longitudinal movement is permitted between the shield 105 and the obturator 104. In the second operational mode, the shield 105 can inhibit inadvertent contact with a distal tip of the obturator 104 and prevent accidental needle stick injuries. In an embodiment, the shield 105 may be configured to rotate relative to the obturator 104, about a longitudinal axis, one of the first operational mode or the second operational mode.
The automated driver 108 may take any suitable form. The driver 108 may include a handle 110 that may be gripped by a single hand of a user. The driver 108 may further include an actuator 111, e.g. trigger actuator, of any suitable variety via which a user may selectively actuate the driver 108 to effect rotation of a coupling interface 112. For example, the actuator 111 may comprise a button, as shown, or a switch or other mechanical or electrical element for actuating the driver 108. In an embodiment, the coupling interface 112 is formed as a socket 113 that defines a cavity 114. The coupling interface 112 can be configured to couple with the obturator hub 103. In an embodiment, the socket 113 includes sidewalls that substantially define a hexagonal cavity into which a hexagonal protrusion of the obturator hub 103 can be received. Other suitable connection interfaces are contemplated.
The automated driver 108 can include an energy source 115 of any suitable variety that is configured to energize the rotational movement of the coupling interface 112. For example, in some embodiments, the energy source 115 may comprise one or more batteries that provide electrical power for the automated driver 108. In other embodiments, the energy source 115 can comprise one or more springs (e.g., a coiled spring) or other biasing member that may store potential mechanical energy that may be released upon actuation of the actuator 111. The energy source 115 may be coupled with the coupling interface 112 in any suitable manner. For example, in an embodiment, the automated driver 108 includes an electrical, mechanical, or electromechanical coupling 116 to a gear assembly 117. In some embodiments, the coupling 116 may include an electrical motor that generates mechanical movement from electrical energy provided by an electrical energy source 115. In other embodiments, the coupling 116 may include a mechanical linkage that mechanically transfers rotational energy from a mechanical (e.g., spring-based) energy source 115 to the gear assembly 117. The automated driver 108 can include a mechanical coupling 118 of any suitable variety to couple the gear assembly 117 with the coupling interface 112. In other embodiments, the gear assembly 117 may be omitted.
In embodiments, the automated driver 108 can rotate the coupling interface 112, and thereby, can rotate the access assembly 109 at rotational speeds significantly greater than can be achieved by manual rotation of the access assembly 109. For example, in various embodiments, the automated driver 108 can rotate the access assembly 109 at speeds of between 200 and 3,000 rotations per minute (rpm). However, it will be appreciated that lesser or greater rotational speeds are also contemplated.
As shown in
As discussed herein, the obturator 104 is formed of a rigid material, e.g. stainless steel, to inhibit tissue and/or bone from entering a lumen of the needle 204 during an access event. Although not intentionally provided with a cutting distal edge, the rigid obturator 104 is ground flush with the beveled opening of the needle to provide a flush surface. Further the rigid material sufficiently rigid and strong to inhibit tissue and/or bone from entering a lumen of the needle 204 during an access event. As such, the obturator tip 146 is sufficiently sharpened to provide a risk of needle stick injuries, and the shield 105 is provided to engage the obturator 104, and prevent accidental needle stick injuries. Further details and embodiments of the intraosseous access system 100 can be found in WO 2018/075694, WO 2018/165334, WO 2018/165339, and US 2018/0116693, each of which is incorporated by reference in its entirety into this application.
The distal face 147 of the obturator 104 is slightly recessed relative to the distal face 247 of the needle 204. Additionally, the distal faces 147, 247 of the obturator 104 and the needle 204, respectively, are substantially parallel to each other. In some embodiments, the obturator 104 does not cut either through skin or bone during an insertion event. In other embodiments, the distal faces 147, 247 may be substantially flush with each other. The obturator 104 can substantially fill or otherwise block passage into the lumen 251 of the needle 204. For example, in the illustrated embodiment, the distal face 147 of the obturator 104 is substantially the same size as an opening into a distal end of the lumen 251. In various embodiments, an area of the distal face 147 of the obturator 104 is no greater than 5, 10, 15, or 20 percent smaller than an area defined by an inner edge of the distal face 247 of the needle 204. The obturator 104 can inhibit or prevent tissue and/or bone material from entering and/or progressing into the lumen 251 of the needle 204.
The interior surface 253 of the needle 204 and an exterior surface of the obturator 104 can be complementarily shaped and/or otherwise configured to prevent or inhibit ingress of tissue, bone, and/or other matter. In further embodiments, a fit between the obturator 104 and the needle 204 can permit the obturator 104 to be readily removed from needle 204. For example, a snug fit, a loose fit, or a minimal gap may be provided between at least a portion between the obturator 104 and the needle 204. During assembly of the access assembly 109, the arms or projections 132 of the obturator hub 103 can be advanced over the skirt 228 of the needle hub 203. The snap interface or inward protrusions 134 of the projections 132 can grip an underside of the skirt 228 to maintain the obturator hub 103 and the needle hub 203 in a coupled state. The skirt 228 is shaped substantially as an outward protrusion, and the inner surface of the arm 132 substantially defines a recess into which the protrusion is received. In other embodiments, the protrusion/recess interface may be reversed. For example, the arm 132 may define a protrusion is received into a recess defined by the skirt 228 to couple the obturator hub 103 with the needle hub 203.
The projection 132 and the skirt 228 may collectively be referred to as a releasable engagement mechanism 262. The releasable engagement mechanism 262 may be configured to keep the obturator hub 103 and the needle hub 203 coupled together during general manipulation of the access assembly 109, such as during removal from packaging and/or coupling thereof with the automated driver 108. The releasable engagement mechanism 262 may, however, provide a relatively weak coupling that is capable of being released upon application of sufficient removal force to the obturator hub 103 in a proximal direction, relative to the needle hub 203. For example, the releasable engagement mechanism 262 may provide a coupling force that tends to keep the obturator hub 103 engaged with the needle hub 203. When a proximally directed force on the obturator hub 103 exceeds the coupling force of the releasable engagement mechanism 262, the releasable engagement mechanism 262 can disengage and permit the obturator hub 103 to be withdrawn from the needle hub 203. In various embodiments, the coupling force (i.e., the force that counteracts a proximally directed force on the obturator hub 103) can be no greater than about 0.25, 0.5, 0.75, 1.0, 1.5, or 2.0 pounds.
In certain embodiments, the releasable engagement mechanism 262 provides a coupling force that is significantly lower than an embedding force between the needle 204 and a bone within which the needle 204 is inserted. The releasable engagement mechanism 262 can be configured to permit the obturator hub 103 to be decoupled from the needle hub 203, after the needle hub 203 has been introduced into the bone, by imparting a proximally directed force on the obturator hub 103 that is smaller in magnitude than a force imparted on the cannula 204 by the bone that maintains the cannula 204 positioned in the bone. Accordingly, in some embodiments, after introducing the access assembly 109 into the bone, a user may simply pull back, or proximally, on the obturator hub 103 with any amount of force that exceeds the coupling force of the releasable engagement mechanism 262, and the obturator hub 103 will automatically disengage from the needle hub 203. Further, the obturator hub 103 can be withdrawn from the needle hub 203 and the patient, and the needle 204 can remain in the bone. In some instances, the user can remove the obturator hub 103 from the needle hub 203 using a single hand after the access assembly 109 has been introduced into the bone. Other suitable arrangements of the releasable engagement mechanism 262 are contemplated.
When the access assembly 109 is in the assembled state, the shield 105 can be coupled with each of the obturator 104 and the needle hub 204 in an unlocked state, in which the arms 162, 163 are deflected outwardly away from the longitudinal axis. In particular, the proximal end 140 of the obturator 104, which can define a larger diameter than does the recess 150, can extend through an entirety of the shield 105. The proximal end 140 of the obturator 104 extends through the lateral extensions 172, 173 and the collar 160. This larger diameter region of the obturator 104 can maintain the shield 105 in the unlocked state to permit the obturator 104 to translate relative to the shield 105 in a proximal direction when the user desires to remove the obturator hub 103 from the needle hub 204.
When the shield 105 is in the unlocked state, the arms are deflected outwardly, which can seat or otherwise position the outward protrusions 178, 179 of the arms 162, 163 respectively within the groove 227 of the needle hub 203. The outward protrusions 178, 179 thus can cooperate with the groove 227 to maintain the shield 105 in a fixed longitudinal position relative to the needle hub 203 during the initial stages of withdrawal of the obturator 104 through the shield 105. In other embodiments, the groove 227 and the outward protrusions 178, 179 can be reversed. For example, in some embodiments, an inner surface of the needle hub 203 may define one or more inward protrusions, and the arms 162, 163 may define inward recesses into which the inward protrusions are received when the shield 105 is in the unlocked state (relative to the obturator 104) and in the coupled state relative to the needle hub 203.
When the shield 105 is in the locked state, portions of the lateral extensions 172, 173 that define the constricted portions of the openings 174, 175 enter into the recess 150 to secure the shield 105 to the obturator 104. When the shield 105 is locked to the obturator 104, movement of the shield 105 relative to the obturator 104 can be prevented or delimited in one or more directions (e.g., longitudinally and/or rotationally). In some embodiments, interference between the lateral extensions 172, 173 and proximal and distal faces of the recess 150, respectively, can delimit longitudinal movement of the shield 105 relative to the obturator 104. When the arms 162, 163 automatically transition to the locked state relative to the obturator 104, the arms 162, 163 substantially simultaneously decouple the shield from the needle hub 203. In particular, the inward movement of the arms 162, 163 causes the outward protrusions to exit the groove 227 of the needle hub 203. This frees the shield 105 to move relative to the needle hub 203, such as for proximal movement in the longitudinal direction to exit the lumen 224. The shield 105 naturally remains in the locked state relative to the obturator 104 and restricts access to the distal tip 146 of the obturator 104.
As shown in
In an embodiment, as shown in
In an embodiment, an obturator 304 can be formed of a flexible plastic that displays elastic properties and can readily deform or bend when a force is applied and return to an undeformed shape when the force is removed. In an embodiment, the obturator 304 can be formed of a material that displays a combination of mechanical properties including a relatively high flexibility, high elasticity, as well as a high compressive strength. In an embodiment, the obturator 304 can be formed of a plastic, polymer, thermoplastic, Polytetrafluoroethylene (“PTFE”), Polyethylene (“PE”), Polyurethane (“PU”), rubber, silicone, metal, alloy, Nitinol or similar material.
For example, as shown in
As shown in
It will be appreciated that the needle 204, formed of a rigid material, e.g. stainless steel, provides the necessary columnar strength and sheer strength to resist deformation of the needle 204/obturator 304 assembly. Further, the obturator 304, which is constrained within the needle lumen 251 displays sufficient compressive strength to resist a longitudinal force, e.g. to resist any bone fragments from being forced proximally into the needle lumen 251 during an insertion event. In an embodiment, the obturator 304 displays minimal compressive deformation that allows some retraction of the distal tip 346 into the needle lumen 251. In an embodiment, the elasticity of the obturator 304 then resumes the original, undeformed shape when the force is removed, i.e. when the needle penetrates the cortex layer of bone, and ejects any bone fragments or other material from the needle lumen 251.
Advantageously, due to the compressive strength of the obturator 304, the obturator 304 prevents bone material from entering the needle lumen during an insertion event. Further, when the obturator 304 is removed from needle 204, there is a reduced risk of needle stick injuries due to the flexible properties of the obturator 304. For example, when the flexible obturator 304, by itself, is subjected to longitudinal or lateral forces, the mechanical properties are configured allow the obturator 304 to flex, preventing breakage of the skin. Similarly, although the tip 346 of the obturator presents a sharpened point, the mechanical properties are configured allow the obturator 304 to deform, preventing breakage of the skin.
An exemplary method of manufacturing an access assembly 109, using the flexible obturator 304, is provided. An elongate cylinder of flexible material is provided to form a body 343 of the obturator 304 and defines a circular cross sectional shape. The outer diameter of the body 343 of the obturator 304 is configured to fit tightly within an inner diameter of the needle lumen 251. A proximal end of the obturator body 343 can be attached to an obturator hub 103 using welding, bonding, adhesive, or the like. A longitudinal length of the obturator 304 can be the same or longer than the longitudinal length of the needle lumen 251. As such, when the obturator hub 103 engages the needle hub 203, a distal tip of the obturator 304 can extend distally of the lumen opening 260. In an embodiment, the distal tip 346 can be cut or ground down to provide a beveled surface 347 to the obturator 304 that is flush with the beveled face 247, as shown in
Advantageously, the obturator 304 also provides a simplified manufacturing process. Initially, there is no requirement for a shield 105 since the flexibility of the obturator 304 prevents needle stick injuries. This simplifies the manufacture process, and provides a smaller access assembly 109. The manufacture of the obturator 304 is further simplified since there is no need for the formation of a recess 150 in the obturator 304 for engaging the shield 105, nor the annular groove 227 (
The manufacture of the obturator 304 is also simplified by only requiring a single base length of obturator that can easily be trimmed to suite any length of needle. For example, the flexible obturator 304 can negotiate the rounded region 248 and angled opening 260 of the needle 204, to be advanced distally of a distal tip 246 thereof. The flexible obturator 304 can then be trimmed to size and provide a beveled tip that is flush with the distal face 247 of the needle 204. This removes the need to form different obturators of different sizes to suit different needles and simplifies the manufacturing process. As shown in
Advantageously, the manufacturing process is further simplified in that a flexible obturator 304 can be attached to the obturator hub 103 before assembly with the needle 204 and before being trimmed. When fitting an obturator, e.g. obturator 104, to the needle 204 followed by attaching the obturator hub 103, the obturator can inadvertently adhere to additional structures, e.g. shield 105, needle hub 203, causing the access assembly to fail during use. Optionally, the flexible obturator 304 can also be attached to the obturator hub 103 after assembly with the needle 204. In an embodiment, the obturator tip 304 is trimmed prior to assembly with the needle 204. Advantageously, this prevents the tip of the needle being damaged or blunted during the trimming of the obturator after assembly with the needle.
In an embodiment, the access assembly 109 can further include a lumen clearing mechanism (not shown) that allows the obturator 304 to move slightly, along the longitudinal axis, relative to the needle 204. Advantageously, this allows a user to activate the lumen clearing mechanism after the needle 204 has been placed to advance the obturator 304 relative to the needle 204 and clear any material disposed within the needle lumen 251. As discussed herein, the flexible properties of the obturator 304 allow a distal portion to be advanced through the distal opening 260. In an embodiment, the lumen clearing mechanism is triggered automatically as part of the process of removing the obturator 304 from the needle 204. For example, the lumen clearing mechanism can be activated with the obturator hub 103 is detached from the needle hub 203.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application claims the benefit of priority to U.S. Provisional Application No. 62/983,434, filed Feb. 28, 2020, which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
2773501 | Young | Dec 1956 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3166189 | Disston | Jan 1965 | A |
3329261 | Serany, Jr. et al. | Jul 1967 | A |
D222312 | Kurtz et al. | Oct 1971 | S |
3802555 | Grasty et al. | Apr 1974 | A |
3815605 | Schmidt et al. | Jun 1974 | A |
3991765 | Cohen | Nov 1976 | A |
4010737 | Vilaghy | Mar 1977 | A |
4153160 | Leigh | May 1979 | A |
4226328 | Beddow | Oct 1980 | A |
4266555 | Jamshidi | May 1981 | A |
4314565 | Lee | Feb 1982 | A |
4383530 | Bruno | May 1983 | A |
4501363 | Isbey, Jr. | Feb 1985 | A |
4595102 | Cianci et al. | Jun 1986 | A |
4838282 | Strasser et al. | Jun 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4925448 | Bazaral | May 1990 | A |
4952207 | Lemieux | Aug 1990 | A |
4964854 | Luther | Oct 1990 | A |
4969870 | Kramer et al. | Nov 1990 | A |
5040542 | Gray | Aug 1991 | A |
5042558 | Hussey et al. | Aug 1991 | A |
5053017 | Chamuel | Oct 1991 | A |
5098391 | Pantages et al. | Mar 1992 | A |
5122114 | Miller et al. | Jun 1992 | A |
5207697 | Carusillo et al. | May 1993 | A |
5263939 | Wortrich | Nov 1993 | A |
5290267 | Zimmermann | Mar 1994 | A |
5312364 | Jacobs | May 1994 | A |
5322163 | Foos | Jun 1994 | A |
5332398 | Miller et al. | Jul 1994 | A |
5364367 | Banks et al. | Nov 1994 | A |
5372583 | Roberts et al. | Dec 1994 | A |
5406940 | Melzer et al. | Apr 1995 | A |
5451210 | Kramer et al. | Sep 1995 | A |
5525314 | Hurson | Jun 1996 | A |
5554154 | Rosenberg | Sep 1996 | A |
5575780 | Saito | Nov 1996 | A |
5591188 | Waisman | Jan 1997 | A |
5601559 | Melker et al. | Feb 1997 | A |
5688249 | Chang et al. | Nov 1997 | A |
5746720 | Stouder, Jr. | May 1998 | A |
5772678 | Thomason et al. | Jun 1998 | A |
5779708 | Wu | Jul 1998 | A |
5807275 | Jamshidi | Sep 1998 | A |
5810738 | Thomas, II | Sep 1998 | A |
5810826 | Ang et al. | Sep 1998 | A |
5817052 | Johnson et al. | Oct 1998 | A |
5853393 | Bogert | Dec 1998 | A |
5868684 | .ANG.kerfeldt et al. | Feb 1999 | A |
5868711 | Kramer et al. | Feb 1999 | A |
5871470 | McWha | Feb 1999 | A |
5885293 | McDevitt | Mar 1999 | A |
5927976 | Wu | Jul 1999 | A |
5947890 | Spencer et al. | Sep 1999 | A |
5960797 | Kramer et al. | Oct 1999 | A |
5967143 | Klappenberger | Oct 1999 | A |
5990382 | Fox | Nov 1999 | A |
6012586 | Misra | Jan 2000 | A |
6068121 | McGlinch | May 2000 | A |
6117108 | Woehr et al. | Sep 2000 | A |
6135769 | Kwan | Oct 2000 | A |
6210373 | Allmon | Apr 2001 | B1 |
6210376 | Grayson | Apr 2001 | B1 |
6228088 | Miller et al. | May 2001 | B1 |
6247928 | Meller et al. | Jun 2001 | B1 |
6273715 | Meller et al. | Aug 2001 | B1 |
6419490 | Kitchings Weathers, Jr. | Jul 2002 | B1 |
6458117 | Pollins, Sr. | Oct 2002 | B1 |
6527778 | Athanasiou et al. | Mar 2003 | B2 |
6602214 | Heinz et al. | Aug 2003 | B2 |
6626887 | Wu | Sep 2003 | B1 |
6629959 | Kuracina et al. | Oct 2003 | B2 |
6641395 | Kumar et al. | Nov 2003 | B2 |
6652490 | Howell | Nov 2003 | B2 |
6692471 | Boudreaux | Feb 2004 | B2 |
6761726 | Findlay et al. | Jul 2004 | B1 |
6814734 | Chappuis et al. | Nov 2004 | B2 |
6830562 | Mogensen et al. | Dec 2004 | B2 |
6875219 | Arramon et al. | Apr 2005 | B2 |
6905486 | Gibbs | Jun 2005 | B2 |
6916292 | Morawski et al. | Jul 2005 | B2 |
6984213 | Horner et al. | Jan 2006 | B2 |
6991096 | Gottlieb et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
7112191 | Daga | Sep 2006 | B2 |
7135031 | Flint | Nov 2006 | B2 |
7179244 | Smith et al. | Feb 2007 | B2 |
7214208 | Vaillancourt et al. | May 2007 | B2 |
7278987 | Solazzo | Oct 2007 | B2 |
7347838 | Kull | Mar 2008 | B2 |
7347840 | Findlay et al. | Mar 2008 | B2 |
7399306 | Reiley et al. | Jul 2008 | B2 |
7407493 | Cane' | Aug 2008 | B2 |
7410053 | Bowen et al. | Aug 2008 | B2 |
7434687 | Itou et al. | Oct 2008 | B2 |
7458954 | Ferguson et al. | Dec 2008 | B2 |
7513888 | Sircom et al. | Apr 2009 | B2 |
7530965 | Villa et al. | May 2009 | B2 |
7534227 | Kulli | May 2009 | B2 |
7569033 | Greene et al. | Aug 2009 | B2 |
7582102 | Heinz et al. | Sep 2009 | B2 |
7588559 | Aravena et al. | Sep 2009 | B2 |
7658725 | Bialecki et al. | Feb 2010 | B2 |
7670328 | Miller | Mar 2010 | B2 |
7699807 | Faust et al. | Apr 2010 | B2 |
7699850 | Miller | Apr 2010 | B2 |
7736332 | Carlyon et al. | Jun 2010 | B2 |
7743918 | Itou et al. | Jun 2010 | B2 |
7749225 | Chappuis et al. | Jul 2010 | B2 |
7798994 | Brimhall | Sep 2010 | B2 |
7811260 | Miller et al. | Oct 2010 | B2 |
7815642 | Miller | Oct 2010 | B2 |
7828773 | Swisher et al. | Nov 2010 | B2 |
7828774 | Harding et al. | Nov 2010 | B2 |
7833204 | Picha | Nov 2010 | B2 |
7842038 | Haddock et al. | Nov 2010 | B2 |
7850620 | Miller et al. | Dec 2010 | B2 |
7850650 | Breitweiser | Dec 2010 | B2 |
D633199 | MacKay et al. | Feb 2011 | S |
7899528 | Miller et al. | Mar 2011 | B2 |
7900549 | Kobayashi | Mar 2011 | B2 |
7905857 | Swisher | Mar 2011 | B2 |
7951089 | Miller | May 2011 | B2 |
7955297 | Radmer et al. | Jun 2011 | B2 |
7972339 | Nassiri et al. | Jul 2011 | B2 |
7976498 | Swisher et al. | Jul 2011 | B2 |
7976502 | Baid | Jul 2011 | B2 |
8038664 | Miller et al. | Oct 2011 | B2 |
8043253 | Kraft et al. | Oct 2011 | B2 |
8043265 | Abe et al. | Oct 2011 | B2 |
8096973 | Snow et al. | Jan 2012 | B2 |
8142365 | Miller | Mar 2012 | B2 |
8152771 | Mogensen et al. | Apr 2012 | B2 |
8162904 | Takano et al. | Apr 2012 | B2 |
8167899 | Justis et al. | May 2012 | B2 |
8231547 | Deck et al. | Jul 2012 | B2 |
8235945 | Baid | Aug 2012 | B2 |
8240468 | Wilkinson et al. | Aug 2012 | B2 |
8246584 | Aravena et al. | Aug 2012 | B2 |
8273053 | Saltzstein | Sep 2012 | B2 |
8292891 | Browne et al. | Oct 2012 | B2 |
8308693 | Miller et al. | Nov 2012 | B2 |
8333769 | Browne et al. | Dec 2012 | B2 |
8356598 | Rumsey | Jan 2013 | B2 |
8357163 | Sidebotham et al. | Jan 2013 | B2 |
8388623 | Browne et al. | Mar 2013 | B2 |
8414539 | Kuracina et al. | Apr 2013 | B1 |
8419683 | Miller et al. | Apr 2013 | B2 |
8480632 | Miller et al. | Jul 2013 | B2 |
8480672 | Browne et al. | Jul 2013 | B2 |
8486027 | Findlay et al. | Jul 2013 | B2 |
8506568 | Miller | Aug 2013 | B2 |
8529576 | Krueger et al. | Sep 2013 | B2 |
8535271 | Fuchs et al. | Sep 2013 | B2 |
8562615 | Browne et al. | Oct 2013 | B2 |
8584849 | McCaffrey | Nov 2013 | B2 |
8641715 | Miller | Feb 2014 | B2 |
8647257 | Jansen et al. | Feb 2014 | B2 |
8656929 | Miller et al. | Feb 2014 | B2 |
8657790 | Tal et al. | Feb 2014 | B2 |
8662306 | Agrawal | Mar 2014 | B2 |
8663231 | Browne et al. | Mar 2014 | B2 |
8668698 | Miller et al. | Mar 2014 | B2 |
8684978 | Miller et al. | Apr 2014 | B2 |
8690791 | Miller | Apr 2014 | B2 |
8715287 | Miller | May 2014 | B2 |
8758383 | Geist | Jun 2014 | B2 |
8771230 | White et al. | Jul 2014 | B2 |
8801663 | Woehr | Aug 2014 | B2 |
8812101 | Miller et al. | Aug 2014 | B2 |
8814835 | Baid | Aug 2014 | B2 |
8828001 | Stearns et al. | Sep 2014 | B2 |
8870872 | Miller | Oct 2014 | B2 |
8893883 | Valaie et al. | Nov 2014 | B2 |
D720471 | Angel et al. | Dec 2014 | S |
8936575 | Moulton | Jan 2015 | B2 |
8944069 | Miller et al. | Feb 2015 | B2 |
8974410 | Miller et al. | Mar 2015 | B2 |
8998848 | Miller et al. | Apr 2015 | B2 |
9072543 | Miller et al. | Jul 2015 | B2 |
9078637 | Miller | Jul 2015 | B2 |
9131925 | Kraft et al. | Sep 2015 | B2 |
9149625 | Woehr et al. | Oct 2015 | B2 |
9173679 | Tzachar et al. | Nov 2015 | B2 |
9186217 | Goyal | Nov 2015 | B2 |
9226756 | Teisen et al. | Jan 2016 | B2 |
9278195 | Erskine | Mar 2016 | B2 |
9295487 | Miller et al. | Mar 2016 | B2 |
9302077 | Domonkos et al. | Apr 2016 | B2 |
9314232 | Stark | Apr 2016 | B2 |
9314270 | Miller | Apr 2016 | B2 |
9358348 | Weilbacher et al. | Jun 2016 | B2 |
9393031 | Miller | Jul 2016 | B2 |
9414815 | Miller et al. | Aug 2016 | B2 |
9415192 | Kuracina et al. | Aug 2016 | B2 |
9421345 | Woehr et al. | Aug 2016 | B2 |
9427555 | Baid | Aug 2016 | B2 |
9433400 | Miller | Sep 2016 | B2 |
9439667 | Miller | Sep 2016 | B2 |
9439702 | Arthur et al. | Sep 2016 | B2 |
9451968 | Miller et al. | Sep 2016 | B2 |
9451983 | Windolf | Sep 2016 | B2 |
9480483 | Browne et al. | Nov 2016 | B2 |
9486604 | Murray et al. | Nov 2016 | B2 |
9504477 | Miller et al. | Nov 2016 | B2 |
9545243 | Miller et al. | Jan 2017 | B2 |
9615816 | Woodard | Apr 2017 | B2 |
9615838 | Nino et al. | Apr 2017 | B2 |
9623210 | Woehr | Apr 2017 | B2 |
9636484 | Baid | May 2017 | B2 |
9681889 | Greenhalgh et al. | Jun 2017 | B1 |
9687633 | Teoh | Jun 2017 | B2 |
9717564 | Miller et al. | Aug 2017 | B2 |
9730729 | Kilcoin et al. | Aug 2017 | B2 |
9744333 | Terzibashian | Aug 2017 | B2 |
9782546 | Woehr | Oct 2017 | B2 |
9788843 | Teisen et al. | Oct 2017 | B2 |
9839740 | Beamer et al. | Dec 2017 | B2 |
9844646 | Knutsson | Dec 2017 | B2 |
9844647 | Knutsson | Dec 2017 | B2 |
9872703 | Miller et al. | Jan 2018 | B2 |
9883853 | Woodard et al. | Feb 2018 | B2 |
9895512 | Kraft et al. | Feb 2018 | B2 |
9962211 | Csernatoni | May 2018 | B2 |
9999444 | Geist et al. | Jun 2018 | B2 |
10022464 | Sarphati et al. | Jul 2018 | B2 |
10039897 | Norris et al. | Aug 2018 | B2 |
10052111 | Miller et al. | Aug 2018 | B2 |
10064694 | Connolly | Sep 2018 | B2 |
10070933 | Adler et al. | Sep 2018 | B2 |
10070934 | Kerns et al. | Sep 2018 | B2 |
10080864 | Terzibashian | Sep 2018 | B2 |
10092320 | Morgan et al. | Oct 2018 | B2 |
10106295 | Lockwood | Oct 2018 | B2 |
10130343 | Miller et al. | Nov 2018 | B2 |
10136878 | Tzachar et al. | Nov 2018 | B2 |
10182878 | Goyal | Jan 2019 | B2 |
10238420 | Karve et al. | Mar 2019 | B2 |
10245010 | Miller et al. | Apr 2019 | B2 |
10251812 | Tomes et al. | Apr 2019 | B2 |
10258783 | Miller et al. | Apr 2019 | B2 |
10314629 | Park et al. | Jun 2019 | B2 |
10405938 | Ramsey | Sep 2019 | B2 |
10441454 | Tanghoej et al. | Oct 2019 | B2 |
10456149 | Miller | Oct 2019 | B2 |
10456497 | Howell et al. | Oct 2019 | B2 |
10595896 | Miller | Mar 2020 | B2 |
10722247 | Browne et al. | Jul 2020 | B2 |
10893887 | Blanchard | Jan 2021 | B2 |
20030060781 | Mogensen et al. | Mar 2003 | A1 |
20030225344 | Miller | Dec 2003 | A1 |
20030225411 | Miller | Dec 2003 | A1 |
20030229308 | Tsals et al. | Dec 2003 | A1 |
20040162559 | Arramon | Aug 2004 | A1 |
20040220497 | Findlay et al. | Nov 2004 | A1 |
20040243135 | Koseki | Dec 2004 | A1 |
20050033235 | Flint | Feb 2005 | A1 |
20050035014 | Cane | Feb 2005 | A1 |
20050101912 | Faust et al. | May 2005 | A1 |
20050113866 | Heinz et al. | May 2005 | A1 |
20050148940 | Miller | Jul 2005 | A1 |
20050165403 | Miller | Jul 2005 | A1 |
20050261693 | Miller et al. | Nov 2005 | A1 |
20060015066 | Turieo et al. | Jan 2006 | A1 |
20060025723 | Ballarini | Feb 2006 | A1 |
20070010843 | Green | Jan 2007 | A1 |
20070016138 | Swisher et al. | Jan 2007 | A1 |
20070049945 | Miller | Mar 2007 | A1 |
20070191772 | Wojcik | Aug 2007 | A1 |
20070270775 | Miller et al. | Nov 2007 | A1 |
20080086142 | Kohm | Apr 2008 | A1 |
20080119759 | McLain | May 2008 | A1 |
20080119821 | Agnihotri | May 2008 | A1 |
20080140014 | Miller et al. | Jun 2008 | A1 |
20080154304 | Crawford et al. | Jun 2008 | A1 |
20080208136 | Findlay et al. | Aug 2008 | A1 |
20080215056 | Miller et al. | Sep 2008 | A1 |
20080221580 | Miller et al. | Sep 2008 | A1 |
20080257359 | Rumsey | Oct 2008 | A1 |
20090048575 | Waters | Feb 2009 | A1 |
20090054808 | Miller | Feb 2009 | A1 |
20090093830 | Miller | Apr 2009 | A1 |
20090105775 | Mitchell et al. | Apr 2009 | A1 |
20090118639 | Moos et al. | May 2009 | A1 |
20090204024 | Miller | Aug 2009 | A1 |
20090228014 | Stearns et al. | Sep 2009 | A1 |
20090306697 | Fischvogt | Dec 2009 | A1 |
20100030105 | Noishiki et al. | Feb 2010 | A1 |
20100082033 | Germain | Apr 2010 | A1 |
20100152616 | Beyhan et al. | Jun 2010 | A1 |
20100185161 | Pellegrino | Jul 2010 | A1 |
20100204649 | Miller et al. | Aug 2010 | A1 |
20100280410 | Moos et al. | Nov 2010 | A1 |
20100286607 | Saltzstein | Nov 2010 | A1 |
20100298830 | Browne et al. | Nov 2010 | A1 |
20100298831 | Browne et al. | Nov 2010 | A1 |
20100312246 | Browne et al. | Dec 2010 | A1 |
20110004163 | Vaidya | Jan 2011 | A1 |
20110028976 | Miller | Feb 2011 | A1 |
20110137253 | Simonton et al. | Jun 2011 | A1 |
20120041454 | Johnstone | Feb 2012 | A1 |
20120202180 | Stock et al. | Aug 2012 | A1 |
20120203154 | Tzachar | Aug 2012 | A1 |
20130030439 | Browne et al. | Jan 2013 | A1 |
20130041345 | Kilcoin et al. | Feb 2013 | A1 |
20130072938 | Browne et al. | Mar 2013 | A1 |
20130079720 | Finnestad et al. | Mar 2013 | A1 |
20130102924 | Findlay et al. | Apr 2013 | A1 |
20130158484 | Browne et al. | Jun 2013 | A1 |
20130178807 | Baid | Jul 2013 | A1 |
20130331840 | Teisen et al. | Dec 2013 | A1 |
20140039400 | Browne et al. | Feb 2014 | A1 |
20140046327 | Tzachar et al. | Feb 2014 | A1 |
20140074102 | Mandeen et al. | Mar 2014 | A1 |
20140081281 | Felder | Mar 2014 | A1 |
20140142577 | Miller | May 2014 | A1 |
20140262408 | Woodard | Sep 2014 | A1 |
20140262880 | Yoon | Sep 2014 | A1 |
20140276205 | Miller et al. | Sep 2014 | A1 |
20140276206 | Woodward et al. | Sep 2014 | A1 |
20140276366 | Bourne et al. | Sep 2014 | A1 |
20140276471 | Emery et al. | Sep 2014 | A1 |
20140276833 | Larsen et al. | Sep 2014 | A1 |
20140276839 | Forman et al. | Sep 2014 | A1 |
20140276927 | Barker | Sep 2014 | A1 |
20140343454 | Miller et al. | Nov 2014 | A1 |
20140343497 | Baid | Nov 2014 | A1 |
20150011941 | Saeki | Jan 2015 | A1 |
20150126931 | Holm et al. | May 2015 | A1 |
20150127006 | Miller | May 2015 | A1 |
20150196737 | Baid | Jul 2015 | A1 |
20150223786 | Morgan et al. | Aug 2015 | A1 |
20150230823 | Morgan et al. | Aug 2015 | A1 |
20150238733 | bin Abdulla | Aug 2015 | A1 |
20150342615 | Keinan et al. | Dec 2015 | A1 |
20150342756 | Bays et al. | Dec 2015 | A1 |
20150351797 | Miller et al. | Dec 2015 | A1 |
20150366569 | Miller | Dec 2015 | A1 |
20160022282 | Miller et al. | Jan 2016 | A1 |
20160058432 | Miller | Mar 2016 | A1 |
20160066954 | Miller et al. | Mar 2016 | A1 |
20160106441 | Teisen et al. | Apr 2016 | A1 |
20160136410 | Aklog et al. | May 2016 | A1 |
20160183974 | Miller | Jun 2016 | A1 |
20160228676 | Glithero et al. | Aug 2016 | A1 |
20160235949 | Baid | Aug 2016 | A1 |
20160354539 | Tan et al. | Dec 2016 | A1 |
20160361519 | Teoh et al. | Dec 2016 | A1 |
20170021138 | Sokolski | Jan 2017 | A1 |
20170043135 | Knutsson | Feb 2017 | A1 |
20170056122 | Ramsey | Mar 2017 | A1 |
20170105763 | Karve et al. | Apr 2017 | A1 |
20170136217 | Riesenberger et al. | May 2017 | A1 |
20170143395 | Park et al. | May 2017 | A1 |
20170151419 | Sonksen | Jun 2017 | A1 |
20170156740 | Stark | Jun 2017 | A9 |
20170156751 | Csernatoni | Jun 2017 | A1 |
20170209129 | Fagundes et al. | Jul 2017 | A1 |
20170303962 | Browne et al. | Oct 2017 | A1 |
20170303963 | Kilcoin et al. | Oct 2017 | A1 |
20180092662 | Rioux et al. | Apr 2018 | A1 |
20180116642 | Woodard et al. | May 2018 | A1 |
20180116693 | Blanchard et al. | May 2018 | A1 |
20180117262 | Islam | May 2018 | A1 |
20180125465 | Muse et al. | May 2018 | A1 |
20180154112 | Chan et al. | Jun 2018 | A1 |
20180206933 | Healey et al. | Jul 2018 | A1 |
20180221564 | Patel et al. | Aug 2018 | A1 |
20180236182 | Charlebois et al. | Aug 2018 | A1 |
20180256209 | Muse et al. | Sep 2018 | A1 |
20190021807 | Barnell et al. | Jan 2019 | A1 |
20190060607 | Yabu et al. | Feb 2019 | A1 |
20190076132 | Tzachar et al. | Mar 2019 | A1 |
20190125404 | Shippert | May 2019 | A1 |
20190150953 | Budyansky et al. | May 2019 | A1 |
20190151606 | Mottola et al. | May 2019 | A1 |
20190201053 | Ben Mocha et al. | Jul 2019 | A1 |
20190282244 | Muse | Sep 2019 | A1 |
20190328370 | Muse | Oct 2019 | A1 |
20190343556 | Coppedge et al. | Nov 2019 | A1 |
20210093358 | Lindekugel et al. | Apr 2021 | A1 |
20210137558 | Lindekugel | May 2021 | A1 |
20240050126 | Blanchard | Feb 2024 | A1 |
Number | Date | Country |
---|---|---|
0232600 | Aug 1987 | EP |
0548612 | Jun 1993 | EP |
1997024151 | Jul 1997 | WO |
1998052638 | Feb 1999 | WO |
2004000408 | Dec 2003 | WO |
2004073500 | Sep 2004 | WO |
2005046769 | May 2005 | WO |
05041790 | May 2005 | WO |
2005053506 | Jun 2005 | WO |
2005072625 | Aug 2005 | WO |
2006047737 | May 2006 | WO |
2007018809 | Feb 2007 | WO |
2008002961 | Jan 2008 | WO |
2008016757 | Feb 2008 | WO |
2008033871 | Mar 2008 | WO |
2008033872 | Mar 2008 | WO |
2008033873 | Mar 2008 | WO |
2008033874 | Mar 2008 | WO |
2008054894 | May 2008 | WO |
2008086258 | Jul 2008 | WO |
2008124206 | Oct 2008 | WO |
2008124463 | Oct 2008 | WO |
2008130893 | Oct 2008 | WO |
2008134355 | Nov 2008 | WO |
2008144379 | Nov 2008 | WO |
2009070896 | Jun 2009 | WO |
2010043043 | Apr 2010 | WO |
2011097311 | Aug 2011 | WO |
2011139294 | Nov 2011 | WO |
2013009901 | Jan 2013 | WO |
2013173360 | Nov 2013 | WO |
2014142948 | Sep 2014 | WO |
2014144239 | Sep 2014 | WO |
2014144262 | Sep 2014 | WO |
2014144489 | Sep 2014 | WO |
2014144757 | Sep 2014 | WO |
2014144797 | Sep 2014 | WO |
2015177612 | Nov 2015 | WO |
2016033016 | Mar 2016 | WO |
16053834 | Apr 2016 | WO |
2016163939 | Oct 2016 | WO |
18006045 | Jan 2018 | WO |
2018025094 | Feb 2018 | WO |
2018058036 | Mar 2018 | WO |
2018075694 | Apr 2018 | WO |
18098086 | May 2018 | WO |
2018165334 | Sep 2018 | WO |
2018165339 | Sep 2018 | WO |
2019051343 | Mar 2019 | WO |
2019051412 | Mar 2019 | WO |
2019164990 | Aug 2019 | WO |
2019215705 | Nov 2019 | WO |
2020012051 | Jan 2020 | WO |
2021062215 | Apr 2021 | WO |
2021173649 | Sep 2021 | WO |
Entry |
---|
EP 17861304.8 filed Apr. 16, 2019 Extended European Search Report filed Jul. 28, 2020. |
EP 17864208.8 filed May 24, 2019 Extended European Search Report filed May 19, 2020. |
PCT/US17/57270 filed Oct. 18, 2017 International Search Report and Written Opinion dated Jan. 12, 2018. |
PCT/US2017/058863 filed Oct. 27, 2017 International Search Report and Written Opinion dated Jan. 29, 2018. |
PCT/US2018/021398 filed Mar. 7, 2018 International search report and written opinion dated May 21, 2018. |
PCT/US2020/052809 filed Sep. 25, 2020 International Search Report and Written Opinion dated Jan. 5, 2021. |
PCT/US2021/042040 filed Jul. 16, 2021 International Search Report and Written Opinion dated Oct. 4, 2021. |
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Advisory Action dated Jun. 15, 2020. |
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Final Office Action dated Apr. 23, 2020. |
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Non-Final Office Action dated Oct. 30, 2019. |
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Notice of Allowance dated Jun. 15, 2020. |
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Restriction Requirement dated Jul. 8, 2019. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Restriction Requirement dated Nov. 15, 2022. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Non-Final Office Action dated Mar. 2, 2023. |
U.S. Appl. No. 17/152,509, filed Jan. 19, 2021 Non-Final Office Action dated May 4, 2023. |
EP 20868558.6 filed Apr. 21, 2022 Extended European Search Report dated Aug. 11, 2023. |
PCT/US2021/019388 filed Feb. 24, 2021 International Search Report and Written Opinion dated May 17, 2021. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Advisory Action dated Oct. 4, 2023. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Final Office Action dated Sep. 8, 2023. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Non-Final Office Action dated Nov. 8, 2023. |
U.S. Appl. No. 17/152,509, filed Jan. 19, 2021 Notice of Allowance dated Sep. 7, 2023. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Final Office Action dated Feb. 15, 2024. |
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Notice of Allowance dated Apr. 30, 2024. |
U.S. Appl. No. 17/378,304, filed Jul. 16, 2021 Non-Final Office Action dated Jun. 5, 2024. |
Number | Date | Country | |
---|---|---|---|
20210267637 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62983434 | Feb 2020 | US |