Flexible intraosseous obturator

Information

  • Patent Grant
  • 12167869
  • Patent Number
    12,167,869
  • Date Filed
    Wednesday, February 24, 2021
    3 years ago
  • Date Issued
    Tuesday, December 17, 2024
    a month ago
Abstract
Apparatus and methods for a flexible obturator for use with an access assembly of an intraosseous device are disclosed. The flexible obturator can include elastic properties and relatively low columnar strength, relatively low shear strength, and/or relatively high compressive strength. When the obturator is supported in the needle, the obturator can prevent bone fragments and tissue from blocking the needle lumen. When removed from the needle, the obturator can deform under a force to prevent accidental needle stick injuries. The flexible obturator can define a radially symmetrical profile and can conform to the inner profile of the needle lumen. The flexible obturator can extend beyond a distal tip of the needle and be trimmed flush to a beveled surface of the needle. This simplifies the manufacturing process, allowing a single size obturator to be fitted to multiple sizes of needle.
Description
SUMMARY

Current intraosseous access devices include rigid, stainless steel obturators to prevent bone fragments and other tissues from blocking the needle lumen during a placement event. Obturators in intraosseous (“I.O.”) needles prevent a hollow needle from coring the bone as it is drilled through the bone. The obturator is disposed within the needle lumen and extends flush with the needle bevel. This blocks the inner lumen of the needle and prevents the needle from becoming blocked by bone fragments as it is drilled through the bone.


While stainless steel obturators are not intentionally provided with a distal cutting edge, the tip of the obturator is ground flush with the bevel of the needle to prevent any pockets forming that might collect bone fragments and the like. As shown for example, in FIGS. 1A-1C, this results in a sharpened tip 146 that requires a tip safety mechanism 105 to prevent accidental needle stick injuries once removed from the needle 204. Further the stainless steel obturator requires a concentric groove, or recess 150, to allow the tip safety mechanism to lock on to the tip of the obturator 104. This requires added complexity and cost in manufacturing intraosseous access devices that include safety shields and structures to engage the shields.


Briefly summarized, embodiments disclosed herein are directed to apparatus and methods for a flexible obturator for use with an intraosseous device, which resolves the previously stated problems. Disclosed herein is an access assembly for use with an intraosseous access device including, a needle including a rounded distal region communicating with a beveled distal opening, and an obturator formed of a flexible material, the obturator including a radially symmetrical elongate body designed for insertion in a lumen of the needle.


In some embodiments the elongate body is deformable when disposed in the lumen of the needle to conform to an inner profile of the lumen. The obturator comprises a distal surface extending perpendicular to a longitudinal axis. The obturator comprises a curved distal surface. In some embodiments the elongate body further includes a beveled distal surface configured to align with the beveled distal opening of the needle. The flexible material displays relatively low columnar strength, low shear strength and high compressive strength. The flexible material includes one of a plastic, polymer, thermoplastic, Polytetrafluoroethylene (“PTFE”), Polyethylene (“PE”), Polyurethane (“PU”), rubber, silicone, metal, alloy, or Nitinol.


In some embodiments the elongate body further includes a needle hub configured to support the needle and define a hub lumen that communicates with the needle lumen, and an obturator hub configured to support the obturator, wherein a distal tip of the obturator extends through the needle lumen and extends distally of a distal tip of the needle when the obturator hub engages the needle hub. In some embodiments the elongate body further includes a lumen clearing mechanism, configured to advance the obturator relative to the needle lumen to clear material from a distal portion of the needle lumen. The lumen clearing mechanism is automatically triggered when the obturator is removed from the needle lumen.


Also disclosed is a method of manufacturing an access assembly including, providing a needle supported by a needle hub and defining a lumen, providing an obturator supported by an obturator hub, advancing the obturator through the needle lumen until a distal tip extends distally of a distal tip of the needle, trimming a distal portion of the obturator to provide a distal surface that is flush with a beveled distal surface of the needle.


In some embodiments, the obturator hub engages the needle hub when the distal tip of the obturator extends distally of the distal tip of the needle. In some embodiments the method further includes adhering the obturator to the obturator hub prior to advancing the obturator through the needle lumen. The obturator is formed of a flexible material that displays relatively low columnar strength, low shear strength and high compressive strength. The flexible material includes one of a plastic, polymer, thermoplastic, Polytetrafluoroethylene (“PTFE”), Polyethylene (“PE”), Polyurethane (“PU”), rubber, silicone, metal, alloy, or Nitinol. The obturator defines a radially symmetrical elongate body. Providing an obturator includes the obturator defining a distal surface extending perpendicular to a longitudinal axis of the obturator. Providing an obturator includes the obturator defining a radially symmetrical curved distal surface. In some embodiments the method further includes a lumen clearing mechanism, configured to advance the obturator relative to the needle lumen to clear material from a distal portion of the needle lumen. The lumen clearing mechanism is automatically triggered when the obturator hub is detached from the needle hub.





DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIG. 1A illustrates an exploded view of an exemplary intraosseous access system, wherein an access assembly subset of the system is depicted slightly enlarged and in elevation, and a driver component is depicted in perspective, in accordance with embodiments disclosed herein;



FIG. 1B illustrates a cross-sectional view of the access assembly of FIG. 1A, in accordance with embodiments disclosed herein;



FIG. 1C illustrates a cross-sectional view of the obturator tip and safety shield removed from the access assembly of FIG. 1A, in accordance with embodiments disclosed herein;



FIGS. 1D-1F illustrate close up detailed views of the access assembly of FIG. 1A, in accordance with embodiments disclosed herein;



FIG. 2A illustrates an obturator assembly, in accordance with embodiments disclosed herein;



FIGS. 2B-2E illustrate side views and proximal end views of an obturator, in accordance with embodiments disclosed herein;



FIGS. 3A-3C illustrates an obturator assembly, in accordance with embodiments disclosed herein; and



FIGS. 3D-3E illustrate a cross-sectional view of an obturator and needle assembly, in accordance with embodiments disclosed herein;





DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.


Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.


With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a needle disclosed herein includes a portion of the needle intended to be near a clinician when the needle is used on a patient. Likewise, a “proximal length” of, for example, the needle includes a length of the needle intended to be near the clinician when the needle is used on the patient. A “proximal end” of, for example, the needle includes an end of the needle intended to be near the clinician when the needle is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the needle can include the proximal end of the needle; however, the proximal portion, the proximal end portion, or the proximal length of the needle need not include the proximal end of the needle. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the needle is not a terminal portion or terminal length of the needle.


With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a needle disclosed herein includes a portion of the needle intended to be near or in a patient when the needle is used on the patient. Likewise, a “distal length” of, for example, the needle includes a length of the needle intended to be near or in the patient when the needle is used on the patient. A “distal end” of, for example, the needle includes an end of the needle intended to be near or in the patient when the needle is used on the patient. The distal portion, the distal end portion, or the distal length of the needle can include the distal end of the needle; however, the distal portion, the distal end portion, or the distal length of the needle need not include the distal end of the needle. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the needle is not a terminal portion or terminal length of the needle.


As shown in FIG. 1A, and to assist in the description of embodiments described herein, a longitudinal axis extends substantially parallel to an axial length of a needle 204 extending from the driver 101. A lateral axis extends normal to the longitudinal axis, and a transverse axis extends normal to both the longitudinal and lateral axes. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.


The present disclosure generally relates to intraosseous (“IO”) access devices, systems, and methods thereof. FIG. 1A shows an exploded view of an exemplary intraosseous access system 100, with some components thereof shown in elevation and another shown in perspective. The intraosseous access system 100 can be used to penetrate skin and underlying hard bone for intraosseous access, such as, for example to access the marrow of the bone and/or a vasculature of the patient via a pathway through an interior of the bone.


In an embodiment, the system includes a driver 101 and an access assembly 109. The driver 101 can be used to rotate the access assembly 109 into a bone of a patient. In embodiments, the driver 101 can be automated or manual. In an embodiment, the driver 101 is an automated driver 108. For example, the automated driver 108 can be a drill that achieves high rotational speeds. The intraosseous access system 100 can further include an obturator assembly 102, a shield 105, and a needle assembly 202, which may be referred to, collectively, as the access assembly 109. In an embodiment, the obturator assembly 102 includes an obturator 104 and an obturator hub 103. In an embodiment, the obturator hub 103 is attached to the obturator 104 in any suitable manner (e.g., one or more adhesives or overmolding). The obturator hub 103 can be configured to interface with the driver 101.


In an embodiment, the shield 105 is configured to couple with the obturator 104. The coupling can allow longitudinal movement between the obturator 104 and the shield 105, when the shield 105 is in a first operational mode. In a second operational mode, the longitudinal movement between the obturator 104 and the shield 105 can be prevent.


For example, in the first operational mode, the obturator 104 maintains the shield 105 in an unlocked state. The obturator 104 can then be moved to a position where the shield 105 is no longer maintained in the unlocked state, and the shield 105 may automatically transition to the second operational mode, i.e. a locked state, in which little or no longitudinal movement is permitted between the shield 105 and the obturator 104. In the second operational mode, the shield 105 can inhibit inadvertent contact with a distal tip of the obturator 104 and prevent accidental needle stick injuries. In an embodiment, the shield 105 may be configured to rotate relative to the obturator 104, about a longitudinal axis, one of the first operational mode or the second operational mode.


The automated driver 108 may take any suitable form. The driver 108 may include a handle 110 that may be gripped by a single hand of a user. The driver 108 may further include an actuator 111, e.g. trigger actuator, of any suitable variety via which a user may selectively actuate the driver 108 to effect rotation of a coupling interface 112. For example, the actuator 111 may comprise a button, as shown, or a switch or other mechanical or electrical element for actuating the driver 108. In an embodiment, the coupling interface 112 is formed as a socket 113 that defines a cavity 114. The coupling interface 112 can be configured to couple with the obturator hub 103. In an embodiment, the socket 113 includes sidewalls that substantially define a hexagonal cavity into which a hexagonal protrusion of the obturator hub 103 can be received. Other suitable connection interfaces are contemplated.


The automated driver 108 can include an energy source 115 of any suitable variety that is configured to energize the rotational movement of the coupling interface 112. For example, in some embodiments, the energy source 115 may comprise one or more batteries that provide electrical power for the automated driver 108. In other embodiments, the energy source 115 can comprise one or more springs (e.g., a coiled spring) or other biasing member that may store potential mechanical energy that may be released upon actuation of the actuator 111. The energy source 115 may be coupled with the coupling interface 112 in any suitable manner. For example, in an embodiment, the automated driver 108 includes an electrical, mechanical, or electromechanical coupling 116 to a gear assembly 117. In some embodiments, the coupling 116 may include an electrical motor that generates mechanical movement from electrical energy provided by an electrical energy source 115. In other embodiments, the coupling 116 may include a mechanical linkage that mechanically transfers rotational energy from a mechanical (e.g., spring-based) energy source 115 to the gear assembly 117. The automated driver 108 can include a mechanical coupling 118 of any suitable variety to couple the gear assembly 117 with the coupling interface 112. In other embodiments, the gear assembly 117 may be omitted.


In embodiments, the automated driver 108 can rotate the coupling interface 112, and thereby, can rotate the access assembly 109 at rotational speeds significantly greater than can be achieved by manual rotation of the access assembly 109. For example, in various embodiments, the automated driver 108 can rotate the access assembly 109 at speeds of between 200 and 3,000 rotations per minute (rpm). However, it will be appreciated that lesser or greater rotational speeds are also contemplated.


As shown in FIG. 1A, the needle assembly 202 includes a needle 204 and a needle hub 203 that is attached to the needle 204 in any suitable manner. The needle hub 203 can be configured to couple with the obturator hub 103 and may thereby be coupled with the driver 101. FIGS. 1B-1F show further details of the access assembly 109. FIG. 1B shows a cross-sectional view of the access assembly 109 with the needle hub 203 retained by the obturator hub 103. The obturator 104 is disposed within the needle and the shield 105 is in the unlocked position within the access assembly 109. FIG. 1C shows a cross-sectional view of the access assembly 109 with the obturator 104 removed from the needle and the shield in the second, locked operational mode. FIG. 1D shows an exploded view of the access assembly 109. FIG. 1E shows a close up, cross-sectional view of the needle 204. FIG. 1F shows a close up, cross-sectional view of the obturator 104.


As discussed herein, the obturator 104 is formed of a rigid material, e.g. stainless steel, to inhibit tissue and/or bone from entering a lumen of the needle 204 during an access event. Although not intentionally provided with a cutting distal edge, the rigid obturator 104 is ground flush with the beveled opening of the needle to provide a flush surface. Further the rigid material sufficiently rigid and strong to inhibit tissue and/or bone from entering a lumen of the needle 204 during an access event. As such, the obturator tip 146 is sufficiently sharpened to provide a risk of needle stick injuries, and the shield 105 is provided to engage the obturator 104, and prevent accidental needle stick injuries. Further details and embodiments of the intraosseous access system 100 can be found in WO 2018/075694, WO 2018/165334, WO 2018/165339, and US 2018/0116693, each of which is incorporated by reference in its entirety into this application.



FIG. 1B depicts an early stage of an illustrative method of using the intraosseous access system 100, and is a cross-sectional view of the access assembly 109 in an assembled state with an exemplary tip protection device. It should be appreciated that other means of tip protection are also contemplated and within the scope of the invention. The access assembly 109 includes the obturator assembly 102, the shield 105, and the needle assembly 202. In some instances, the access assembly 109 will be preassembled, and thus may be removed from any suitable sterile packaging substantially in the configuration depicted in FIG. 1B. In the illustrated assembled state, the keyed coupling interfaces 137, 210 of the obturator hub 103 and the needle hub 203, respectively, can cooperate to ensure that a predetermined relationship between the obturator 104 and the needle 204 is achieved. Thus, the keyed coupling interfaces 137, 210 can ensure that the obturator 104 defines a fixed angular orientation relative to the needle 204. The coupling interfaces 137, 210 may likewise maintain the fixed angular orientation during rotation of the access assembly 109 during an insertion event, e.g., during rotation of the access assembly 109 via the automated driver 108.


The distal face 147 of the obturator 104 is slightly recessed relative to the distal face 247 of the needle 204. Additionally, the distal faces 147, 247 of the obturator 104 and the needle 204, respectively, are substantially parallel to each other. In some embodiments, the obturator 104 does not cut either through skin or bone during an insertion event. In other embodiments, the distal faces 147, 247 may be substantially flush with each other. The obturator 104 can substantially fill or otherwise block passage into the lumen 251 of the needle 204. For example, in the illustrated embodiment, the distal face 147 of the obturator 104 is substantially the same size as an opening into a distal end of the lumen 251. In various embodiments, an area of the distal face 147 of the obturator 104 is no greater than 5, 10, 15, or 20 percent smaller than an area defined by an inner edge of the distal face 247 of the needle 204. The obturator 104 can inhibit or prevent tissue and/or bone material from entering and/or progressing into the lumen 251 of the needle 204.


The interior surface 253 of the needle 204 and an exterior surface of the obturator 104 can be complementarily shaped and/or otherwise configured to prevent or inhibit ingress of tissue, bone, and/or other matter. In further embodiments, a fit between the obturator 104 and the needle 204 can permit the obturator 104 to be readily removed from needle 204. For example, a snug fit, a loose fit, or a minimal gap may be provided between at least a portion between the obturator 104 and the needle 204. During assembly of the access assembly 109, the arms or projections 132 of the obturator hub 103 can be advanced over the skirt 228 of the needle hub 203. The snap interface or inward protrusions 134 of the projections 132 can grip an underside of the skirt 228 to maintain the obturator hub 103 and the needle hub 203 in a coupled state. The skirt 228 is shaped substantially as an outward protrusion, and the inner surface of the arm 132 substantially defines a recess into which the protrusion is received. In other embodiments, the protrusion/recess interface may be reversed. For example, the arm 132 may define a protrusion is received into a recess defined by the skirt 228 to couple the obturator hub 103 with the needle hub 203.


The projection 132 and the skirt 228 may collectively be referred to as a releasable engagement mechanism 262. The releasable engagement mechanism 262 may be configured to keep the obturator hub 103 and the needle hub 203 coupled together during general manipulation of the access assembly 109, such as during removal from packaging and/or coupling thereof with the automated driver 108. The releasable engagement mechanism 262 may, however, provide a relatively weak coupling that is capable of being released upon application of sufficient removal force to the obturator hub 103 in a proximal direction, relative to the needle hub 203. For example, the releasable engagement mechanism 262 may provide a coupling force that tends to keep the obturator hub 103 engaged with the needle hub 203. When a proximally directed force on the obturator hub 103 exceeds the coupling force of the releasable engagement mechanism 262, the releasable engagement mechanism 262 can disengage and permit the obturator hub 103 to be withdrawn from the needle hub 203. In various embodiments, the coupling force (i.e., the force that counteracts a proximally directed force on the obturator hub 103) can be no greater than about 0.25, 0.5, 0.75, 1.0, 1.5, or 2.0 pounds.


In certain embodiments, the releasable engagement mechanism 262 provides a coupling force that is significantly lower than an embedding force between the needle 204 and a bone within which the needle 204 is inserted. The releasable engagement mechanism 262 can be configured to permit the obturator hub 103 to be decoupled from the needle hub 203, after the needle hub 203 has been introduced into the bone, by imparting a proximally directed force on the obturator hub 103 that is smaller in magnitude than a force imparted on the cannula 204 by the bone that maintains the cannula 204 positioned in the bone. Accordingly, in some embodiments, after introducing the access assembly 109 into the bone, a user may simply pull back, or proximally, on the obturator hub 103 with any amount of force that exceeds the coupling force of the releasable engagement mechanism 262, and the obturator hub 103 will automatically disengage from the needle hub 203. Further, the obturator hub 103 can be withdrawn from the needle hub 203 and the patient, and the needle 204 can remain in the bone. In some instances, the user can remove the obturator hub 103 from the needle hub 203 using a single hand after the access assembly 109 has been introduced into the bone. Other suitable arrangements of the releasable engagement mechanism 262 are contemplated.


When the access assembly 109 is in the assembled state, the shield 105 can be coupled with each of the obturator 104 and the needle hub 204 in an unlocked state, in which the arms 162, 163 are deflected outwardly away from the longitudinal axis. In particular, the proximal end 140 of the obturator 104, which can define a larger diameter than does the recess 150, can extend through an entirety of the shield 105. The proximal end 140 of the obturator 104 extends through the lateral extensions 172, 173 and the collar 160. This larger diameter region of the obturator 104 can maintain the shield 105 in the unlocked state to permit the obturator 104 to translate relative to the shield 105 in a proximal direction when the user desires to remove the obturator hub 103 from the needle hub 204.


When the shield 105 is in the unlocked state, the arms are deflected outwardly, which can seat or otherwise position the outward protrusions 178, 179 of the arms 162, 163 respectively within the groove 227 of the needle hub 203. The outward protrusions 178, 179 thus can cooperate with the groove 227 to maintain the shield 105 in a fixed longitudinal position relative to the needle hub 203 during the initial stages of withdrawal of the obturator 104 through the shield 105. In other embodiments, the groove 227 and the outward protrusions 178, 179 can be reversed. For example, in some embodiments, an inner surface of the needle hub 203 may define one or more inward protrusions, and the arms 162, 163 may define inward recesses into which the inward protrusions are received when the shield 105 is in the unlocked state (relative to the obturator 104) and in the coupled state relative to the needle hub 203.



FIG. 1C is another enlarged cross-sectional view of the access assembly 109 when the obturator 104 has been fully withdrawn from the needle hub 203. Prior to the depicted stage, the obturator 104 is withdrawn proximally by a sufficient amount to bring the recess 150 into the vicinity of the openings 174, 175. Due to the reduced diameter of the recess 150, the constricted portions of the openings 174, 175 fit into the recess 150 and the arms 162, 163 are thus permitted to automatically transition to their unbiased, non-deflected, or non-deformed state, i.e., the arms 162, 163 can resiliently return to a less bent or unbent state to automatically lock the shield 105 to the obturator 104.


When the shield 105 is in the locked state, portions of the lateral extensions 172, 173 that define the constricted portions of the openings 174, 175 enter into the recess 150 to secure the shield 105 to the obturator 104. When the shield 105 is locked to the obturator 104, movement of the shield 105 relative to the obturator 104 can be prevented or delimited in one or more directions (e.g., longitudinally and/or rotationally). In some embodiments, interference between the lateral extensions 172, 173 and proximal and distal faces of the recess 150, respectively, can delimit longitudinal movement of the shield 105 relative to the obturator 104. When the arms 162, 163 automatically transition to the locked state relative to the obturator 104, the arms 162, 163 substantially simultaneously decouple the shield from the needle hub 203. In particular, the inward movement of the arms 162, 163 causes the outward protrusions to exit the groove 227 of the needle hub 203. This frees the shield 105 to move relative to the needle hub 203, such as for proximal movement in the longitudinal direction to exit the lumen 224. The shield 105 naturally remains in the locked state relative to the obturator 104 and restricts access to the distal tip 146 of the obturator 104.


As shown in FIG. 1E, which is an enlarged view of the obturator 104 within the needle 204, the distal portion of the needle lumen 251 defines an asymmetrical shape including a rounded portion 248 and a beveled face 247 including an opening 260 that communicates with the needle lumen 251. As such, the obturator 104 formed of rigid material, which is shown in isolation in FIG. 1F, includes a distal portion 142 shaped to match the distal portion of the needle lumen 251. Further, the obturator 104 includes a longitudinal length to match the longitudinal length of the needle lumen 251 to align the shaped portion with the needle lumen 251. As such, different lengths of rigid obturators 104 must be produced to match different longitudinal lengths of needles 204 and requires a high degree of engineering accuracy to position the distal portions correctly when the access assembly 109 is assembled.



FIGS. 2A-2E show an exemplary embodiment of an obturator assembly 102 that includes an obturator 304 formed of a flexible material. The obturator 304 can define a substantially circular cross-section and includes a diameter sized to fit snugly within the inner diameter of the needle lumen 251. In an embodiment, a longitudinal length of the obturator 304 can be longer than the length of the obturator 104 that is used with needle 204. As such, when the obturator hub 103 engages the needle hub 203, for example as shown in FIG. 1B, a distal tip 346 of the obturator 304 extends distally of the distal tip 246 of the needle 204.


In an embodiment, as shown in FIG. 2B, the distal tip 346A of the obturator 304A can define a rounded tip. In an embodiment, as shown in FIG. 2D, the distal tip 346B of the obturator 304B can define a squared off tip that includes a distal surface extending perpendicular to the longitudinal axis. Optionally, the edges of the distal surface 346B can be rounded or chamfered. As shown in FIGS. 2C and 2E, in an embodiment, the obturator 304A, 304B, defines a radially symmetrical cross-section extending from the longitudinal axis.


In an embodiment, an obturator 304 can be formed of a flexible plastic that displays elastic properties and can readily deform or bend when a force is applied and return to an undeformed shape when the force is removed. In an embodiment, the obturator 304 can be formed of a material that displays a combination of mechanical properties including a relatively high flexibility, high elasticity, as well as a high compressive strength. In an embodiment, the obturator 304 can be formed of a plastic, polymer, thermoplastic, Polytetrafluoroethylene (“PTFE”), Polyethylene (“PE”), Polyurethane (“PU”), rubber, silicone, metal, alloy, Nitinol or similar material.


For example, as shown in FIG. 2A, the elongate obturator 304 extending from the obturator hub 103 is capable of self-supporting. However, as shown in FIG. 3A, when a longitudinal force is applied, the obturator 304 can flex and deform thereby displaying relatively low columnar strength. When the force is removed, the obturator 304 displays elastic properties and returns to its original shape. Further, as shown in FIG. 3B, when a lateral force is applied, the obturator 304 can flex and deform thereby displaying relatively low sheer strength. When the force is removed, the obturator 304 displays elastic properties and returns to its original shape. However, as shown in FIG. 3C, the obturator 304 can display a relatively high compressive strength such that the obturator 304 resists equal and opposite forces applied to the material with relatively little or no deformation.


As shown in FIGS. 3D-3E, the flexible obturator 304 can advantageously conform to fit the shape of the distal portion of the needle lumen 251. Further, a distal portion 342 of the obturator 304 can flex to fit through the angled opening 260 such that a distal tip of the obturator 346 can extend distally of the distal tip 246 of the needle 204. As shown in FIG. 3E, the excess portion of the obturator 304 that extends through the opening 260, can be trimmed to provide a beveled surface 347 that lies flush with the beveled surface 247 of the needle 204. It will be appreciated that this provides a distal tip 346 that is then disposed proximally of the distal tip 246 of the needle.


It will be appreciated that the needle 204, formed of a rigid material, e.g. stainless steel, provides the necessary columnar strength and sheer strength to resist deformation of the needle 204/obturator 304 assembly. Further, the obturator 304, which is constrained within the needle lumen 251 displays sufficient compressive strength to resist a longitudinal force, e.g. to resist any bone fragments from being forced proximally into the needle lumen 251 during an insertion event. In an embodiment, the obturator 304 displays minimal compressive deformation that allows some retraction of the distal tip 346 into the needle lumen 251. In an embodiment, the elasticity of the obturator 304 then resumes the original, undeformed shape when the force is removed, i.e. when the needle penetrates the cortex layer of bone, and ejects any bone fragments or other material from the needle lumen 251.


Advantageously, due to the compressive strength of the obturator 304, the obturator 304 prevents bone material from entering the needle lumen during an insertion event. Further, when the obturator 304 is removed from needle 204, there is a reduced risk of needle stick injuries due to the flexible properties of the obturator 304. For example, when the flexible obturator 304, by itself, is subjected to longitudinal or lateral forces, the mechanical properties are configured allow the obturator 304 to flex, preventing breakage of the skin. Similarly, although the tip 346 of the obturator presents a sharpened point, the mechanical properties are configured allow the obturator 304 to deform, preventing breakage of the skin.


An exemplary method of manufacturing an access assembly 109, using the flexible obturator 304, is provided. An elongate cylinder of flexible material is provided to form a body 343 of the obturator 304 and defines a circular cross sectional shape. The outer diameter of the body 343 of the obturator 304 is configured to fit tightly within an inner diameter of the needle lumen 251. A proximal end of the obturator body 343 can be attached to an obturator hub 103 using welding, bonding, adhesive, or the like. A longitudinal length of the obturator 304 can be the same or longer than the longitudinal length of the needle lumen 251. As such, when the obturator hub 103 engages the needle hub 203, a distal tip of the obturator 304 can extend distally of the lumen opening 260. In an embodiment, the distal tip 346 can be cut or ground down to provide a beveled surface 347 to the obturator 304 that is flush with the beveled face 247, as shown in FIG. 3E.


Advantageously, the obturator 304 also provides a simplified manufacturing process. Initially, there is no requirement for a shield 105 since the flexibility of the obturator 304 prevents needle stick injuries. This simplifies the manufacture process, and provides a smaller access assembly 109. The manufacture of the obturator 304 is further simplified since there is no need for the formation of a recess 150 in the obturator 304 for engaging the shield 105, nor the annular groove 227 (FIG. 1B) that retains the shield within the needle hub 203, or similar detailed structures. These detailed structures cannot be molded into place due to the size and precision required. Instead, these require additional steps to machine such features into place that add to the cost and complexity.


The manufacture of the obturator 304 is also simplified by only requiring a single base length of obturator that can easily be trimmed to suite any length of needle. For example, the flexible obturator 304 can negotiate the rounded region 248 and angled opening 260 of the needle 204, to be advanced distally of a distal tip 246 thereof. The flexible obturator 304 can then be trimmed to size and provide a beveled tip that is flush with the distal face 247 of the needle 204. This removes the need to form different obturators of different sizes to suit different needles and simplifies the manufacturing process. As shown in FIG. 2B, the axis lines 50 illustrate the inner diameter (x) of the needle lumen 251. The rounded region 248 and angled opening 260 can obstruct a rigid obturator from being advanced distally of a distal tip 246 of the needle 204. As such, rigid obturators can be pre-formed with a rounded portion 146 and beveled distal surface 147 to match the rounded portion 246 and beveled surface 247 of the needle lumen, prior to being assembled with the needle 204. As such different lengths of rigid obturators are required to suit different length needles.


Advantageously, the manufacturing process is further simplified in that a flexible obturator 304 can be attached to the obturator hub 103 before assembly with the needle 204 and before being trimmed. When fitting an obturator, e.g. obturator 104, to the needle 204 followed by attaching the obturator hub 103, the obturator can inadvertently adhere to additional structures, e.g. shield 105, needle hub 203, causing the access assembly to fail during use. Optionally, the flexible obturator 304 can also be attached to the obturator hub 103 after assembly with the needle 204. In an embodiment, the obturator tip 304 is trimmed prior to assembly with the needle 204. Advantageously, this prevents the tip of the needle being damaged or blunted during the trimming of the obturator after assembly with the needle.


In an embodiment, the access assembly 109 can further include a lumen clearing mechanism (not shown) that allows the obturator 304 to move slightly, along the longitudinal axis, relative to the needle 204. Advantageously, this allows a user to activate the lumen clearing mechanism after the needle 204 has been placed to advance the obturator 304 relative to the needle 204 and clear any material disposed within the needle lumen 251. As discussed herein, the flexible properties of the obturator 304 allow a distal portion to be advanced through the distal opening 260. In an embodiment, the lumen clearing mechanism is triggered automatically as part of the process of removing the obturator 304 from the needle 204. For example, the lumen clearing mechanism can be activated with the obturator hub 103 is detached from the needle hub 203.


While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.

Claims
  • 1. An access assembly for use with an intraosseous access device, comprising: a needle including a rounded distal region extending radially inward toward a central axis of the needle to define a beveled distal opening, the needle including a needle lumen;an obturator initially disposed in the needle lumen, the obturator formed of a flexible material configured to prevent material from entering the needle lumen by conforming to an inner profile of the needle lumen;a needle hub attached to the needle, the needle hub including an external keyed coupling surface extending circumferentially around the needle hub; andan obturator hub attached to the obturator, the obturator hub including an internal keyed coupling surface extending circumferentially around a cavity of the obturator hub,wherein the internal keyed coupling surface is configured to operatively couple with the external keyed coupling surface to define a fixed angular orientation between the needle hub and the obturator hub.
  • 2. The access assembly according to claim 1, wherein the obturator includes a distal tip that conforms to the beveled distal opening of the needle, wherein the distal tip lies flush with the beveled distal opening.
  • 3. The access assembly according to claim 1, wherein the obturator comprises a distal surface extending perpendicular to a longitudinal axis.
  • 4. The access assembly according to claim 1, wherein the obturator comprises a curved distal surface.
  • 5. The access assembly according to claim 1, further including a beveled distal surface configured to align with the beveled distal opening of the needle.
  • 6. The access assembly according to claim 1, wherein the flexible material displays relatively low columnar strength, low shear strength and high compressive strength.
  • 7. The access assembly according to claim 1, wherein the flexible material includes one of a plastic, a polymer, a thermoplastic, a Polytetrafluoroethylene (“PTFE”), a Polyethylene (“PE”), a Polyurethane (“PU”), a rubber, a silicone, a metal, an alloy, or a Nitinol.
  • 8. The access assembly according to claim 1, wherein the needle hub defines a hub lumen in fluid communication with the needle lumen, and a distal tip of the obturator extends through the needle lumen and further extends distally of the beveled distal opening of the needle when the obturator hub is coupled with the needle hub.
  • 9. The access assembly according to claim 1, further including a lumen clearing mechanism, configured to advance the obturator relative to the needle lumen to clear material from a distal portion of the needle lumen.
  • 10. The access assembly according to claim 9, wherein the lumen clearing mechanism is automatically triggered when the obturator is removed from the needle lumen.
PRIORITY

This application claims the benefit of priority to U.S. Provisional Application No. 62/983,434, filed Feb. 28, 2020, which is incorporated by reference in its entirety into this application.

US Referenced Citations (386)
Number Name Date Kind
2773501 Young Dec 1956 A
3071135 Baldwin et al. Jan 1963 A
3166189 Disston Jan 1965 A
3329261 Serany, Jr. et al. Jul 1967 A
D222312 Kurtz et al. Oct 1971 S
3802555 Grasty et al. Apr 1974 A
3815605 Schmidt et al. Jun 1974 A
3991765 Cohen Nov 1976 A
4010737 Vilaghy Mar 1977 A
4153160 Leigh May 1979 A
4226328 Beddow Oct 1980 A
4266555 Jamshidi May 1981 A
4314565 Lee Feb 1982 A
4383530 Bruno May 1983 A
4501363 Isbey, Jr. Feb 1985 A
4595102 Cianci et al. Jun 1986 A
4838282 Strasser et al. Jun 1989 A
4889529 Haindl Dec 1989 A
4925448 Bazaral May 1990 A
4952207 Lemieux Aug 1990 A
4964854 Luther Oct 1990 A
4969870 Kramer et al. Nov 1990 A
5040542 Gray Aug 1991 A
5042558 Hussey et al. Aug 1991 A
5053017 Chamuel Oct 1991 A
5098391 Pantages et al. Mar 1992 A
5122114 Miller et al. Jun 1992 A
5207697 Carusillo et al. May 1993 A
5263939 Wortrich Nov 1993 A
5290267 Zimmermann Mar 1994 A
5312364 Jacobs May 1994 A
5322163 Foos Jun 1994 A
5332398 Miller et al. Jul 1994 A
5364367 Banks et al. Nov 1994 A
5372583 Roberts et al. Dec 1994 A
5406940 Melzer et al. Apr 1995 A
5451210 Kramer et al. Sep 1995 A
5525314 Hurson Jun 1996 A
5554154 Rosenberg Sep 1996 A
5575780 Saito Nov 1996 A
5591188 Waisman Jan 1997 A
5601559 Melker et al. Feb 1997 A
5688249 Chang et al. Nov 1997 A
5746720 Stouder, Jr. May 1998 A
5772678 Thomason et al. Jun 1998 A
5779708 Wu Jul 1998 A
5807275 Jamshidi Sep 1998 A
5810738 Thomas, II Sep 1998 A
5810826 Ang et al. Sep 1998 A
5817052 Johnson et al. Oct 1998 A
5853393 Bogert Dec 1998 A
5868684 .ANG.kerfeldt et al. Feb 1999 A
5868711 Kramer et al. Feb 1999 A
5871470 McWha Feb 1999 A
5885293 McDevitt Mar 1999 A
5927976 Wu Jul 1999 A
5947890 Spencer et al. Sep 1999 A
5960797 Kramer et al. Oct 1999 A
5967143 Klappenberger Oct 1999 A
5990382 Fox Nov 1999 A
6012586 Misra Jan 2000 A
6068121 McGlinch May 2000 A
6117108 Woehr et al. Sep 2000 A
6135769 Kwan Oct 2000 A
6210373 Allmon Apr 2001 B1
6210376 Grayson Apr 2001 B1
6228088 Miller et al. May 2001 B1
6247928 Meller et al. Jun 2001 B1
6273715 Meller et al. Aug 2001 B1
6419490 Kitchings Weathers, Jr. Jul 2002 B1
6458117 Pollins, Sr. Oct 2002 B1
6527778 Athanasiou et al. Mar 2003 B2
6602214 Heinz et al. Aug 2003 B2
6626887 Wu Sep 2003 B1
6629959 Kuracina et al. Oct 2003 B2
6641395 Kumar et al. Nov 2003 B2
6652490 Howell Nov 2003 B2
6692471 Boudreaux Feb 2004 B2
6761726 Findlay et al. Jul 2004 B1
6814734 Chappuis et al. Nov 2004 B2
6830562 Mogensen et al. Dec 2004 B2
6875219 Arramon et al. Apr 2005 B2
6905486 Gibbs Jun 2005 B2
6916292 Morawski et al. Jul 2005 B2
6984213 Horner et al. Jan 2006 B2
6991096 Gottlieb et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
7112191 Daga Sep 2006 B2
7135031 Flint Nov 2006 B2
7179244 Smith et al. Feb 2007 B2
7214208 Vaillancourt et al. May 2007 B2
7278987 Solazzo Oct 2007 B2
7347838 Kull Mar 2008 B2
7347840 Findlay et al. Mar 2008 B2
7399306 Reiley et al. Jul 2008 B2
7407493 Cane' Aug 2008 B2
7410053 Bowen et al. Aug 2008 B2
7434687 Itou et al. Oct 2008 B2
7458954 Ferguson et al. Dec 2008 B2
7513888 Sircom et al. Apr 2009 B2
7530965 Villa et al. May 2009 B2
7534227 Kulli May 2009 B2
7569033 Greene et al. Aug 2009 B2
7582102 Heinz et al. Sep 2009 B2
7588559 Aravena et al. Sep 2009 B2
7658725 Bialecki et al. Feb 2010 B2
7670328 Miller Mar 2010 B2
7699807 Faust et al. Apr 2010 B2
7699850 Miller Apr 2010 B2
7736332 Carlyon et al. Jun 2010 B2
7743918 Itou et al. Jun 2010 B2
7749225 Chappuis et al. Jul 2010 B2
7798994 Brimhall Sep 2010 B2
7811260 Miller et al. Oct 2010 B2
7815642 Miller Oct 2010 B2
7828773 Swisher et al. Nov 2010 B2
7828774 Harding et al. Nov 2010 B2
7833204 Picha Nov 2010 B2
7842038 Haddock et al. Nov 2010 B2
7850620 Miller et al. Dec 2010 B2
7850650 Breitweiser Dec 2010 B2
D633199 MacKay et al. Feb 2011 S
7899528 Miller et al. Mar 2011 B2
7900549 Kobayashi Mar 2011 B2
7905857 Swisher Mar 2011 B2
7951089 Miller May 2011 B2
7955297 Radmer et al. Jun 2011 B2
7972339 Nassiri et al. Jul 2011 B2
7976498 Swisher et al. Jul 2011 B2
7976502 Baid Jul 2011 B2
8038664 Miller et al. Oct 2011 B2
8043253 Kraft et al. Oct 2011 B2
8043265 Abe et al. Oct 2011 B2
8096973 Snow et al. Jan 2012 B2
8142365 Miller Mar 2012 B2
8152771 Mogensen et al. Apr 2012 B2
8162904 Takano et al. Apr 2012 B2
8167899 Justis et al. May 2012 B2
8231547 Deck et al. Jul 2012 B2
8235945 Baid Aug 2012 B2
8240468 Wilkinson et al. Aug 2012 B2
8246584 Aravena et al. Aug 2012 B2
8273053 Saltzstein Sep 2012 B2
8292891 Browne et al. Oct 2012 B2
8308693 Miller et al. Nov 2012 B2
8333769 Browne et al. Dec 2012 B2
8356598 Rumsey Jan 2013 B2
8357163 Sidebotham et al. Jan 2013 B2
8388623 Browne et al. Mar 2013 B2
8414539 Kuracina et al. Apr 2013 B1
8419683 Miller et al. Apr 2013 B2
8480632 Miller et al. Jul 2013 B2
8480672 Browne et al. Jul 2013 B2
8486027 Findlay et al. Jul 2013 B2
8506568 Miller Aug 2013 B2
8529576 Krueger et al. Sep 2013 B2
8535271 Fuchs et al. Sep 2013 B2
8562615 Browne et al. Oct 2013 B2
8584849 McCaffrey Nov 2013 B2
8641715 Miller Feb 2014 B2
8647257 Jansen et al. Feb 2014 B2
8656929 Miller et al. Feb 2014 B2
8657790 Tal et al. Feb 2014 B2
8662306 Agrawal Mar 2014 B2
8663231 Browne et al. Mar 2014 B2
8668698 Miller et al. Mar 2014 B2
8684978 Miller et al. Apr 2014 B2
8690791 Miller Apr 2014 B2
8715287 Miller May 2014 B2
8758383 Geist Jun 2014 B2
8771230 White et al. Jul 2014 B2
8801663 Woehr Aug 2014 B2
8812101 Miller et al. Aug 2014 B2
8814835 Baid Aug 2014 B2
8828001 Stearns et al. Sep 2014 B2
8870872 Miller Oct 2014 B2
8893883 Valaie et al. Nov 2014 B2
D720471 Angel et al. Dec 2014 S
8936575 Moulton Jan 2015 B2
8944069 Miller et al. Feb 2015 B2
8974410 Miller et al. Mar 2015 B2
8998848 Miller et al. Apr 2015 B2
9072543 Miller et al. Jul 2015 B2
9078637 Miller Jul 2015 B2
9131925 Kraft et al. Sep 2015 B2
9149625 Woehr et al. Oct 2015 B2
9173679 Tzachar et al. Nov 2015 B2
9186217 Goyal Nov 2015 B2
9226756 Teisen et al. Jan 2016 B2
9278195 Erskine Mar 2016 B2
9295487 Miller et al. Mar 2016 B2
9302077 Domonkos et al. Apr 2016 B2
9314232 Stark Apr 2016 B2
9314270 Miller Apr 2016 B2
9358348 Weilbacher et al. Jun 2016 B2
9393031 Miller Jul 2016 B2
9414815 Miller et al. Aug 2016 B2
9415192 Kuracina et al. Aug 2016 B2
9421345 Woehr et al. Aug 2016 B2
9427555 Baid Aug 2016 B2
9433400 Miller Sep 2016 B2
9439667 Miller Sep 2016 B2
9439702 Arthur et al. Sep 2016 B2
9451968 Miller et al. Sep 2016 B2
9451983 Windolf Sep 2016 B2
9480483 Browne et al. Nov 2016 B2
9486604 Murray et al. Nov 2016 B2
9504477 Miller et al. Nov 2016 B2
9545243 Miller et al. Jan 2017 B2
9615816 Woodard Apr 2017 B2
9615838 Nino et al. Apr 2017 B2
9623210 Woehr Apr 2017 B2
9636484 Baid May 2017 B2
9681889 Greenhalgh et al. Jun 2017 B1
9687633 Teoh Jun 2017 B2
9717564 Miller et al. Aug 2017 B2
9730729 Kilcoin et al. Aug 2017 B2
9744333 Terzibashian Aug 2017 B2
9782546 Woehr Oct 2017 B2
9788843 Teisen et al. Oct 2017 B2
9839740 Beamer et al. Dec 2017 B2
9844646 Knutsson Dec 2017 B2
9844647 Knutsson Dec 2017 B2
9872703 Miller et al. Jan 2018 B2
9883853 Woodard et al. Feb 2018 B2
9895512 Kraft et al. Feb 2018 B2
9962211 Csernatoni May 2018 B2
9999444 Geist et al. Jun 2018 B2
10022464 Sarphati et al. Jul 2018 B2
10039897 Norris et al. Aug 2018 B2
10052111 Miller et al. Aug 2018 B2
10064694 Connolly Sep 2018 B2
10070933 Adler et al. Sep 2018 B2
10070934 Kerns et al. Sep 2018 B2
10080864 Terzibashian Sep 2018 B2
10092320 Morgan et al. Oct 2018 B2
10106295 Lockwood Oct 2018 B2
10130343 Miller et al. Nov 2018 B2
10136878 Tzachar et al. Nov 2018 B2
10182878 Goyal Jan 2019 B2
10238420 Karve et al. Mar 2019 B2
10245010 Miller et al. Apr 2019 B2
10251812 Tomes et al. Apr 2019 B2
10258783 Miller et al. Apr 2019 B2
10314629 Park et al. Jun 2019 B2
10405938 Ramsey Sep 2019 B2
10441454 Tanghoej et al. Oct 2019 B2
10456149 Miller Oct 2019 B2
10456497 Howell et al. Oct 2019 B2
10595896 Miller Mar 2020 B2
10722247 Browne et al. Jul 2020 B2
10893887 Blanchard Jan 2021 B2
20030060781 Mogensen et al. Mar 2003 A1
20030225344 Miller Dec 2003 A1
20030225411 Miller Dec 2003 A1
20030229308 Tsals et al. Dec 2003 A1
20040162559 Arramon Aug 2004 A1
20040220497 Findlay et al. Nov 2004 A1
20040243135 Koseki Dec 2004 A1
20050033235 Flint Feb 2005 A1
20050035014 Cane Feb 2005 A1
20050101912 Faust et al. May 2005 A1
20050113866 Heinz et al. May 2005 A1
20050148940 Miller Jul 2005 A1
20050165403 Miller Jul 2005 A1
20050261693 Miller et al. Nov 2005 A1
20060015066 Turieo et al. Jan 2006 A1
20060025723 Ballarini Feb 2006 A1
20070010843 Green Jan 2007 A1
20070016138 Swisher et al. Jan 2007 A1
20070049945 Miller Mar 2007 A1
20070191772 Wojcik Aug 2007 A1
20070270775 Miller et al. Nov 2007 A1
20080086142 Kohm Apr 2008 A1
20080119759 McLain May 2008 A1
20080119821 Agnihotri May 2008 A1
20080140014 Miller et al. Jun 2008 A1
20080154304 Crawford et al. Jun 2008 A1
20080208136 Findlay et al. Aug 2008 A1
20080215056 Miller et al. Sep 2008 A1
20080221580 Miller et al. Sep 2008 A1
20080257359 Rumsey Oct 2008 A1
20090048575 Waters Feb 2009 A1
20090054808 Miller Feb 2009 A1
20090093830 Miller Apr 2009 A1
20090105775 Mitchell et al. Apr 2009 A1
20090118639 Moos et al. May 2009 A1
20090204024 Miller Aug 2009 A1
20090228014 Stearns et al. Sep 2009 A1
20090306697 Fischvogt Dec 2009 A1
20100030105 Noishiki et al. Feb 2010 A1
20100082033 Germain Apr 2010 A1
20100152616 Beyhan et al. Jun 2010 A1
20100185161 Pellegrino Jul 2010 A1
20100204649 Miller et al. Aug 2010 A1
20100280410 Moos et al. Nov 2010 A1
20100286607 Saltzstein Nov 2010 A1
20100298830 Browne et al. Nov 2010 A1
20100298831 Browne et al. Nov 2010 A1
20100312246 Browne et al. Dec 2010 A1
20110004163 Vaidya Jan 2011 A1
20110028976 Miller Feb 2011 A1
20110137253 Simonton et al. Jun 2011 A1
20120041454 Johnstone Feb 2012 A1
20120202180 Stock et al. Aug 2012 A1
20120203154 Tzachar Aug 2012 A1
20130030439 Browne et al. Jan 2013 A1
20130041345 Kilcoin et al. Feb 2013 A1
20130072938 Browne et al. Mar 2013 A1
20130079720 Finnestad et al. Mar 2013 A1
20130102924 Findlay et al. Apr 2013 A1
20130158484 Browne et al. Jun 2013 A1
20130178807 Baid Jul 2013 A1
20130331840 Teisen et al. Dec 2013 A1
20140039400 Browne et al. Feb 2014 A1
20140046327 Tzachar et al. Feb 2014 A1
20140074102 Mandeen et al. Mar 2014 A1
20140081281 Felder Mar 2014 A1
20140142577 Miller May 2014 A1
20140262408 Woodard Sep 2014 A1
20140262880 Yoon Sep 2014 A1
20140276205 Miller et al. Sep 2014 A1
20140276206 Woodward et al. Sep 2014 A1
20140276366 Bourne et al. Sep 2014 A1
20140276471 Emery et al. Sep 2014 A1
20140276833 Larsen et al. Sep 2014 A1
20140276839 Forman et al. Sep 2014 A1
20140276927 Barker Sep 2014 A1
20140343454 Miller et al. Nov 2014 A1
20140343497 Baid Nov 2014 A1
20150011941 Saeki Jan 2015 A1
20150126931 Holm et al. May 2015 A1
20150127006 Miller May 2015 A1
20150196737 Baid Jul 2015 A1
20150223786 Morgan et al. Aug 2015 A1
20150230823 Morgan et al. Aug 2015 A1
20150238733 bin Abdulla Aug 2015 A1
20150342615 Keinan et al. Dec 2015 A1
20150342756 Bays et al. Dec 2015 A1
20150351797 Miller et al. Dec 2015 A1
20150366569 Miller Dec 2015 A1
20160022282 Miller et al. Jan 2016 A1
20160058432 Miller Mar 2016 A1
20160066954 Miller et al. Mar 2016 A1
20160106441 Teisen et al. Apr 2016 A1
20160136410 Aklog et al. May 2016 A1
20160183974 Miller Jun 2016 A1
20160228676 Glithero et al. Aug 2016 A1
20160235949 Baid Aug 2016 A1
20160354539 Tan et al. Dec 2016 A1
20160361519 Teoh et al. Dec 2016 A1
20170021138 Sokolski Jan 2017 A1
20170043135 Knutsson Feb 2017 A1
20170056122 Ramsey Mar 2017 A1
20170105763 Karve et al. Apr 2017 A1
20170136217 Riesenberger et al. May 2017 A1
20170143395 Park et al. May 2017 A1
20170151419 Sonksen Jun 2017 A1
20170156740 Stark Jun 2017 A9
20170156751 Csernatoni Jun 2017 A1
20170209129 Fagundes et al. Jul 2017 A1
20170303962 Browne et al. Oct 2017 A1
20170303963 Kilcoin et al. Oct 2017 A1
20180092662 Rioux et al. Apr 2018 A1
20180116642 Woodard et al. May 2018 A1
20180116693 Blanchard et al. May 2018 A1
20180117262 Islam May 2018 A1
20180125465 Muse et al. May 2018 A1
20180154112 Chan et al. Jun 2018 A1
20180206933 Healey et al. Jul 2018 A1
20180221564 Patel et al. Aug 2018 A1
20180236182 Charlebois et al. Aug 2018 A1
20180256209 Muse et al. Sep 2018 A1
20190021807 Barnell et al. Jan 2019 A1
20190060607 Yabu et al. Feb 2019 A1
20190076132 Tzachar et al. Mar 2019 A1
20190125404 Shippert May 2019 A1
20190150953 Budyansky et al. May 2019 A1
20190151606 Mottola et al. May 2019 A1
20190201053 Ben Mocha et al. Jul 2019 A1
20190282244 Muse Sep 2019 A1
20190328370 Muse Oct 2019 A1
20190343556 Coppedge et al. Nov 2019 A1
20210093358 Lindekugel et al. Apr 2021 A1
20210137558 Lindekugel May 2021 A1
20240050126 Blanchard Feb 2024 A1
Foreign Referenced Citations (55)
Number Date Country
0232600 Aug 1987 EP
0548612 Jun 1993 EP
1997024151 Jul 1997 WO
1998052638 Feb 1999 WO
2004000408 Dec 2003 WO
2004073500 Sep 2004 WO
2005046769 May 2005 WO
05041790 May 2005 WO
2005053506 Jun 2005 WO
2005072625 Aug 2005 WO
2006047737 May 2006 WO
2007018809 Feb 2007 WO
2008002961 Jan 2008 WO
2008016757 Feb 2008 WO
2008033871 Mar 2008 WO
2008033872 Mar 2008 WO
2008033873 Mar 2008 WO
2008033874 Mar 2008 WO
2008054894 May 2008 WO
2008086258 Jul 2008 WO
2008124206 Oct 2008 WO
2008124463 Oct 2008 WO
2008130893 Oct 2008 WO
2008134355 Nov 2008 WO
2008144379 Nov 2008 WO
2009070896 Jun 2009 WO
2010043043 Apr 2010 WO
2011097311 Aug 2011 WO
2011139294 Nov 2011 WO
2013009901 Jan 2013 WO
2013173360 Nov 2013 WO
2014142948 Sep 2014 WO
2014144239 Sep 2014 WO
2014144262 Sep 2014 WO
2014144489 Sep 2014 WO
2014144757 Sep 2014 WO
2014144797 Sep 2014 WO
2015177612 Nov 2015 WO
2016033016 Mar 2016 WO
16053834 Apr 2016 WO
2016163939 Oct 2016 WO
18006045 Jan 2018 WO
2018025094 Feb 2018 WO
2018058036 Mar 2018 WO
2018075694 Apr 2018 WO
18098086 May 2018 WO
2018165334 Sep 2018 WO
2018165339 Sep 2018 WO
2019051343 Mar 2019 WO
2019051412 Mar 2019 WO
2019164990 Aug 2019 WO
2019215705 Nov 2019 WO
2020012051 Jan 2020 WO
2021062215 Apr 2021 WO
2021173649 Sep 2021 WO
Non-Patent Literature Citations (24)
Entry
EP 17861304.8 filed Apr. 16, 2019 Extended European Search Report filed Jul. 28, 2020.
EP 17864208.8 filed May 24, 2019 Extended European Search Report filed May 19, 2020.
PCT/US17/57270 filed Oct. 18, 2017 International Search Report and Written Opinion dated Jan. 12, 2018.
PCT/US2017/058863 filed Oct. 27, 2017 International Search Report and Written Opinion dated Jan. 29, 2018.
PCT/US2018/021398 filed Mar. 7, 2018 International search report and written opinion dated May 21, 2018.
PCT/US2020/052809 filed Sep. 25, 2020 International Search Report and Written Opinion dated Jan. 5, 2021.
PCT/US2021/042040 filed Jul. 16, 2021 International Search Report and Written Opinion dated Oct. 4, 2021.
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Advisory Action dated Jun. 15, 2020.
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Final Office Action dated Apr. 23, 2020.
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Non-Final Office Action dated Oct. 30, 2019.
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Notice of Allowance dated Jun. 15, 2020.
U.S. Appl. No. 15/796,471, filed Oct. 27, 2017 Restriction Requirement dated Jul. 8, 2019.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Restriction Requirement dated Nov. 15, 2022.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Non-Final Office Action dated Mar. 2, 2023.
U.S. Appl. No. 17/152,509, filed Jan. 19, 2021 Non-Final Office Action dated May 4, 2023.
EP 20868558.6 filed Apr. 21, 2022 Extended European Search Report dated Aug. 11, 2023.
PCT/US2021/019388 filed Feb. 24, 2021 International Search Report and Written Opinion dated May 17, 2021.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Advisory Action dated Oct. 4, 2023.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Final Office Action dated Sep. 8, 2023.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Non-Final Office Action dated Nov. 8, 2023.
U.S. Appl. No. 17/152,509, filed Jan. 19, 2021 Notice of Allowance dated Sep. 7, 2023.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Final Office Action dated Feb. 15, 2024.
U.S. Appl. No. 17/033,093, filed Sep. 25, 2020 Notice of Allowance dated Apr. 30, 2024.
U.S. Appl. No. 17/378,304, filed Jul. 16, 2021 Non-Final Office Action dated Jun. 5, 2024.
Related Publications (1)
Number Date Country
20210267637 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62983434 Feb 2020 US