1. Field of the Invention
This disclosure relates generally to vises and, in particular, to a device that stabilizes and holds a wide variety of irregular shaped objects by means of conformable spring action jaws.
2. Background
Woodworking vises and machinist vises are very common and useful tools. Conventional vises rely on a slow and cumbersome method of closure, a non-ergonomic cranking action in a plane parallel to the body of the user. Additionally, they are limited to applications entailing work objects with two parallel sides. Certain specialized jaws are available, such as, notched jaws for holding pipes, or rubber jaws, but for the most part, specialized holding jigs must be built in order to hold irregular objects, which can take considerable time and expense. This device was invented to address both of those shortfalls, which is to say, providing a generalized and flexible holding capability, suitable for a wide range of irregular objects, while providing, a quick and ergonomic method of closure with equivalent or better mechanical advantage.
A wide variety of specialized holding and clamping devices have been developed in an attempt to accommodate irregularly shaped objects. Examples of such devices are found in U.S. Pat. Nos. 5,460,064, 5,806,385, 6,098,507, 6,092,443, and 6,138,534. While these and other devices represent and improvement in the art of holding irregularly shaped objects, they suffer from several drawbacks that have prevented widespread application in the machining arts.
U.S. Pat. No. 626,427 to E. H. Jones, issued Jun. 6, 1899 is directed to a vise in which an article is placed between two jaws provided with adjustable projections (or between a single jaw and a plane jaw) and the jaws are moved together, so that the article displaces the projections opposite to it and their ends bear on the different portions of its form and hold it up approximately as a mold would do. The projections are then clamped securely in the projections to which they have adjusted themselves and the jaw is tightened upon the article by a vise screw.
U.S. Pat. No. 1,499,989 to F. Lehmann, issued Jul. 1, 1924 discloses a vise for use with machine tools that includes a base plate adapted to be secured to the sliding carriage of a planing machine, or the like, and having two housings mounted oppositely on the base plate. The two housings are adapted such that at least one will slide toward the other and a series of spring controlled clamping jaws are so arranged in each of the housings that projecting parts of the workpiece causes part of the jaws to be pressed back into the housings until all of the spring controlled jaws are in contact with and firmly grip the workpiece on all sides.
U.S. Pat. No. 2,754,708 to C. R. Peterson, issued Jul. 17, 1956 shows a vise for handling irregular shaped object that includes a base having a stationary jaw projecting upwardly from one end and a movable jaw slidable on the base. Included in each of the jaws is a hollow block having facing openings with a plurality of movable work engaging members slidably carried in the block. A movable pressure plate in each block adjacent one side wall thereof is clampable against the work engaging members to lock each of them into work engaging position. Springs are used to urge each work-engaging member into working position.
U.S. Pat. No. 4,752,063 to Bela Nagy, issued Jun. 21, 1988 is directed to a vise attachment for use on a vise assembly for holding objects having irregularly shaped surfaces and includes a small compact housing having a plurality of blade elements disposed adjacent to each other and slidably mounted within a rectangular opening on one side of the housing and movable between and extended position and a retracted position. Each element preferably comprises a plate member having smooth planar surfaces and a concave curved back edge and stop means disposed on upper and lower edges for setting a limit for extension of the blade from the housing. A self-distributing non-resilient medium is positioned within the housing and has a predetermined volume for filing the housing when the blades are in a retracted position. A distribution and reset means causes the blades to reposition themselves to extend fully through the rectangular opening when not holding an object.
U.S. Pat. No. 6,032,940 to Ingo E. Wolfe, issued Mar. 7, 2000 discloses a universal vise that has a movable and a fixed jaw that can be indexed at 90° increments to provide for four separate work clamping surfaces on each jaw. The vise includes a vise screw driving a nut that drives the movable jaw in each of four indexed positions of the movable jaw. The indexable jaws permit the vise to be adapted to hold four different types of work pieces.
U.S. Des. Pat. No. D/439,879 to Reinhard Renner, issued Mar. 27, 2001 discloses a gripping clamp that utilizes a linear slider bar, a moveable jaw and a fixed jaw that can be tilted by means of a ratchet cam.
While the above-described vise devices are effective for their intended purpose, there is nevertheless a continuing need, and a consumer desire, for an improved vise that opens and closes quickly and easily with a high degree of mechanical advantage is usable for clamping and holding a wide variety of work object shapes.
Accordingly, a Flexi-vise is disclosed comprising a stationary and movable jaw that can be easily opened and closed primarily with a linear ratchet shaft and secondarily with a rotary ratchet cam. The jaws are designed, with each jaw having upstanding portions to accommodate a variety of interchangeable jaw faces including a jaw face containing an array of spring loaded pins. The spring-loaded pins enable the vise to grasp objects of widely varying shapes. The vise is designed to easily accommodate a variety of such jaw faces with differing force-displacement characteristics, such as, but not limited to light, medium and heavy duty, with respect to clamping force capability. Various spring-pin excursion lengths can be used to accommodate more different shapes and different spring rate characteristics. Additionally, a flat face can be installed to provide a more typical vise configuration. The linear ratchet slide mechanism that is employed allows the jaws to be brought quickly to a point where the load is engaged. Teeth on the linear ratchet ensure that the initial load on a work object is maintained. This initial load can be released by means of a spring-loaded dog attached to the movable jaw. A ratchet-loading cam is provided to significantly amplify the final clamping load by incrementally translating the movable jaw in the load direction. Teeth on this cam are finer than those on the linear ratchet. This allows the user to precisely set the holding force on a work object, one click at a time. A spring-loaded dog can be provided to release the cam load at any time. A spring-action lockout plate can also be used to defeat the spring action, which causes the vise to behave more like a rigid, traditional vise. A jaw cover and spring action lockout member is also disclosed as another means to allow the vise to function like a traditional vise.
These and other features and advantages are described in or apparent from the following detailed description of the exemplary embodiments.
The foregoing and other features of the exemplary embodiments will be apparent and easily understood from a further reading of the specification, claims and by reference to the accompanying drawings in which like reference numerals refer to like elements and wherein:
While preferred embodiments will be described hereinafter, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the disclosure as defined by the appended claims.
For a general understanding of the features of the exemplary embodiments, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to identify identical elements.
Referring now to
Each pin 27 is retractable independently from the others, allowing the work object to imprint its shape into the bed of pins. This will occur on both jaws. The amount of deflection will depend on the shape of the object, the stiffness of the springs and the degree to which the jaws are closed.
A variety of jaw face assemblies can be made with various pin and spring combinations that can extend the range of Flexi-vise 10 to not only multiple shapes, but also to a broad range of holding force requirements. For example, very light springs and pins can be used to securely hold delicate objects, for light tasks, such as, painting, light assembly or adjustment. Heavier holding forces can be provided using heavier springs and pins for tasks entailing higher loads such as cutting, drilling, filing or heavy assembly. Medium duty jaw face assemblies can be used for general assembly work for complex object shapes, such as, the assembly of wire harnesses. In addition, the tips 25 of the holding pins 27 can be constructed differently for the different applications. Rubber tips might be used for the light duty version. Hard plastic tips can be used for the medium duty version and steel tips for the heavy-duty version.
It should be understood that a Flexi-vise 10 with a set of easily interchangeable jaw face assemblies is contemplated, although a single-purpose Flexi-vise could also be constructed with any one of the jaw face assemblies described above or one of a similar nature.
The length of the retractable pins will determine the degree of non-uniformity of the work object to be held, since as soon as any pin “bottoms out”, the vise can close no further.
The forces on the object will be non-uniform, to the degree that the object is non-uniform. However, given the large number of pins, the distributed holding forces on the work object will generally be quite substantial. To the extent that the work object is non-uniform, pins 27 will provide lateral support only achieved in an ordinary clamping vise by means of high, and potentially destructive clamping forces.
As shown in
In the dual ratchet system, the main drive is achieved by a linear ratchet mechanism 30 that includes the ratchet shaft 31, which takes the place of the conventional threaded drive shaft. As shown in
The ratchet cam 41, can be deployed by manipulating cam lever 42 to increase the loading of the jaws by means of a cam action with a mechanical advantage, exceeding that of a traditional screw drive. Ratchet cam 41, which has a finer click-stop ratchet action than the linear ratchet slide 30, provides for a very precise administration of clamping force.
The ratchet cam mechanism 40 utilizes a rotary ratchet mechanism, to capture and hold any forward progress made by the user as a clamping force is exerted with cam lever 42. The ratchet action is produced by the interaction of retractable ratchet tooth 52 located on one or both of the side faces of ratchet cam 41, and a grooved inner surface of the cam mounting plates 51. The ratchet cam mechanism 40 is oriented in a vertical plane so that the user can put body weight into it as cam lever 42 is pressed down. Cam pivot shaft 44 is affixed to the linear ratchet shaft 31 by means of the two cam mounting plates 51. The cam 41, when rotated, pushes against the piston 47, which slides inside the ratchet shaft 31. The piston 47 drives the moveable jaw 16 forward by means of the drive pin 45, which is free to move forward through the slot 48 in the ratchet shaft. There is also a slot 53 in the piston 47 that retains it and aligns it to the ratchet shaft 31 by means of the two piston engagement pins 46. The slot 53 allows it to slide forward in response to the cam 41 action. The cam ratchet release button 43, located under the cam lever 42, retracts the cam ratchet tooth 52, to allow the ratchet cam 41 to release.
As shown in
A hole 13 can be seen in each of the mounting pins 17 of
An accessory is shown in
In
In recapitulation, a Flexi-vise having a unique means of rapidly and conveniently closing vise jaws to grasp and secure an object that utilizes a linear ratchet shaft, a secondary securing step utilizing a ratchet cam to provide, a very powerful clamping action, a flexible system of quick release jaw face assemblies including one with spring loaded pins, capable of accommodating a variety of application-specific requirements. The spring-loaded pins enable the vise to grasp objects of widely varying shapes. The vise can accommodate a variety of jaws with differing force-displacement characteristics, such as, but not limited to light, medium and heavy duty, with respect to clamping force capability. Various spring-pin excursion lengths can also be provided, to accommodate more different shapes and different spring rate characteristics. Flat face jaws can also be used. A simple arrangement such as a set of tight fitting pins with a cross-locking engagement pin can be used to mount the jaws. A linear ratchet slide mechanism is employed that allows the jaws to be brought quickly to a point where the load is engaged. The ratchet teeth ensure that the initial load on the object is maintained. This initial load can be released by means of a spring-loaded dog attached to the movable jaw. A ratchet-loading cam is provided to significantly amplify the final clamping load. The teeth on this cam are finer than those on the linear ratchet. This allows the user to precisely set the holding force on a work object, one click at a time. A spring-loaded dog is provided to release the cam load at any time. A selectable spring-action lockout jaw cover feature is included which defeats the spring action, causing the vise to behave exactly like a traditional vise.
While the invention has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the invention as set forth above are intended to be illustrative and not limiting. Various changes may be made without departing from the spirit and scope of the invention as defined herein.