This invention relates generally to the field of electrical submersible pumping systems, and more particularly, but not by way of limitation, to adapters for connecting components within the pumping system.
Submersible pumping systems are often deployed into wells to recover petroleum fluids from subterranean reservoirs. Typically, a submersible pumping system includes a number of components, including an electric motor coupled to one or more high performance pump assemblies. Production tubing is connected to the pump assemblies to deliver the petroleum fluids from the subterranean reservoir to a storage facility on the surface.
The motor is typically an oil-filled, high capacity electric motor that can vary in length from a few feet to nearly one hundred feet, and may be rated up to hundreds of horsepower. Prior art motors often include a fixed stator assembly that surrounds a rotor assembly. The rotor assembly rotates within the stator assembly in response to the sequential application of electric current through different portions of the stator assembly. The motor transfers power to the pump assembly through a common shaft keyed to the rotor. For certain applications, intermediate gearboxes can be used to increase the torque provided by the motor to the pump assembly.
Pump assemblies often employ axially and centrifugally oriented multi-stage turbomachines. Most downhole turbomachines include one or more impeller and diffuser combinations, commonly referred to as “stages.” In many designs, each impeller rotates within adjacent stationary diffusers. During use, the rotating impeller imparts kinetic energy to the fluid. A portion of the kinetic energy is converted to pressure as the fluid passes through the downstream diffuser. The impellers are typically keyed to the shaft and rotate in unison.
Often, it is desirable to deploy the pumping system in an offset, deviated, directional, horizontal or other non-vertical well. In these applications, the length and rigidity of the pumping system must be considered as the system is deployed and retracted through curved or angled portions of the well. As the incidence of non-vertical wellbores increases, there is need for a pumping system that can navigate these non-vertical deployments. It is to this and other deficiencies in the prior art that the present invention is directed.
In preferred embodiments, the present invention includes an electrical submersible pumping system configured for deployment in a non-vertical wellbore. The electrical submersible pumping system includes an adapter for use in connecting a first component within a downhole pumping system to a second component within the downhole pumping system. The adapter preferably includes an upstream section configured for connection to the first component and a downstream section configured for connection to the second component. The adapter further includes an articulating joint that permits the angular movement of the first component with respect to the second component. In additional aspects, the adapter includes a series of shafts for transferring torque between the first and second components. In yet another additional aspect, the adapter includes a fluid path for providing fluid communication between the first and second components.
In accordance with a preferred embodiment of the present invention,
As used herein, the term “petroleum” refers broadly to all mineral hydrocarbons, such as crude oil, gas and combinations of oil and gas. The production tubing 102 connects the pumping system 100 to a wellhead 106 located on the surface. Although the pumping system 100 is primarily designed to pump petroleum products, it will be understood that the present invention can also be used to move other fluids. It will also be understood that, although each of the components of the pumping system 100 are primarily disclosed in a submersible application, some or all of these components can also be used in surface pumping operations.
The pumping system 100 preferably includes a combination of one or more pump assemblies 108, one or more motor assemblies 110 and one or more seal sections 112. In the preferred embodiment depicted in
The motor assembly 110 is an electrical motor that receives its power from a surface-based supply. The motor assembly 110 converts the electrical energy into mechanical energy, which is transmitted to the pump assemblies 108a, 108b by one or more shafts. The pump assemblies 108a, 108b then transfer a portion of this mechanical energy to fluids within the wellbore, causing the wellbore fluids to move through the production tubing 102 to the surface. In a particularly preferred embodiment, the pump assemblies 108a, 108b are turbomachines that use one or more impellers and diffusers to convert mechanical energy into pressure head. In an alternative embodiment, the pump assemblies 108a, 108b include a progressive cavity (PC) or positive displacement pump that moves wellbore fluids with one or more screws or pistons. The seal section 112 shields the motor assembly 110 from mechanical thrust produced by the pump assembly 108. The seal section 112 is also preferably configured to prevent the introduction of contaminants from the wellbore 104 into the motor assembly 110.
The flexible pump adapter 114 is configured to connect two adjacent components within the pumping system 100 with a mechanism that permits a degree of angular offset between the components. In preferred embodiments, the flexible pump adapter 114 transfers torque from an upstream component to a downstream component, and includes an internal path for transferring pumped fluids between the two components. Accordingly, the flexible pump adapter 114 is preferably utilized for connecting two components within the pumping system 100 that together provide a path for pumped fluids. As depicted in
The flexible motor adapter 116 is configured to connect two adjacent components within the pumping system 100 with a mechanism that permits a degree of angular offset between the components. In preferred embodiments, the flexible motor adapter 116 transfers torque from an upstream component to a downstream component, where the connection does not require an internal path for transferring pumped fluids. Accordingly, the flexible motor adapter 116 is designed for connecting two components within the pumping system 100 that do not cooperatively provide a path for pumped fluids. As depicted in
Referring now to
Turning back to
During angular articulation, portions of the upstream section 118 and downstream section 120 separate, while opposite portions approximate. As depicted in
Continuing with
Alternatively, the shaft coupling 140 can be configured as a ball-and-socket arrangement that includes a rounded spline connection with a receiving splined socket. Turning to
In the alternative embodiment depicted in
The flexible pump adapter 114 further includes a coupling housing 142, a coupling cap 144 and coupling bellows 146. The coupling housing 142 is preferably secured to the upstream shaft 136 and the coupling cap 144 is secured to the downstream shaft 138. The coupling housing 142 and coupling cap 144 cooperate to shield the shaft coupling 140 from debris and fluids moving through the flexible pump adapter 114. The coupling bellows 146 isolate the shaft coupling 140 from fluid and debris present within the coupling housing 142. In a presently preferred embodiment, the coupling bellows 146 are manufactured from a folded and flexible elastomer or polymer. To further protect the shaft coupling 140, a second bellows (not shown) may be used to prevent migration of fluid and debris between the coupling cap 144 and the coupling housing 142. Alternatively, the coupling bellows 146 are manufactured from a metal or a combination of metal and polymer.
The joint guard 128 surrounds the shaft coupling 140, the coupling housing 142 and the coupling cap 144. The joint guard 128 is preferably configured as a substantially cylindrical tube, with a tapered downstream end. The upstream end of the joint guard 128 is held in position adjacent the upstream section 118 by the upstream retainer 124. Alternatively, the upstream end of the joint guard 128 can be connected to the upstream section 118 with a welded or threaded connection, or presented as a unitary construction. The conical shape of the downstream side of the joint guard 128 allows the upstream and downstream sections 118, 120 to articulate.
To isolate the interior of the flexible pump adapter 114 from the surrounding wellbore 104, the flexible pump adapter 114 includes a flexible outer housing 148. The outer housing 148 is preferably constructed from a flexible, impermeable material that is sufficiently durable to withstand the internal pressures of the pumped fluid and the inhospitable external environment. Suitable materials include creased metal, woven metal mesh and elastomers. In a particularly preferred embodiment, the outer housing 148 includes a woven metal mesh exterior with a polymer liner. Suitable polymers include polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), polyetheretherketone (PEEK), tetrafluoroethylene/propylene (TFE/P) (Aflas), fluorine terpolymer (FKM) (Viton), highly saturated nitrile (HSN) or hydrogenated nitrile butadiene rubber (HNBR), and metallized polymers. The outer housing 148, joint guard 128, coupling housing 142 and coupling cap 144 cooperate to protect the shaft coupling 140 while permitting the upstream and downstream sections 118, 120 to articulate.
It will be noted that the flexible pump adapter 114 also includes an internal fluid passage 150 for pumped fluids exchanged between the upstream and downstream components connected to the flexible pump adapter 114. To this end, the upstream section 118 includes an upstream section throat 152 and the downstream section 120 includes a downstream section throat 154. The upstream section throat 152 includes an annular space around the upstream shaft 136. The downstream section throat 154 includes an annular space around the downstream shaft 138. The fluid passage 150 is created by the annular spaces within the upstream and downstream section throats 152, 154 and the annular space between the joint guard 128 and the coupling housing 142 and coupling cap 144.
Accordingly, although it is not required that the flexible pump adapter 114 be connected between adjacent pump assemblies 108, the flexible pump adapter 114 is particularly well-suited for providing a point of articulation between two components within the pumping system 100 that are configured for providing a passage for the movement of pumped fluids. It will be noted, however, that in certain applications, it may be desirable to remove the upstream and downstream shafts 136, 138, the shaft coupling 140, the coupling housing 142, the coupling cap 144 and the coupling bellows 146. In these alternate embodiments, the flexible pump adapter 114 is not configured to transfer torque from an upstream shaft to a downstream shaft, but only provides a point of articulation between two components within the pumping system 100 that are configured for providing a passage for the movement of pumped fluids. For example, it may be desirable to use the flexible pump adapter 114 without the adapter drivetrain to connect the discharge side of the pump assembly 108b to the production tubing 102.
Turning to
The joint chamber 156 is preferably cylindrical and includes a large central chamber 158 that tapers on both ends to flange ends 160. The central chamber accommodates the lateral displacement of the shaft coupling 140 during the articulation of the flexible pump adapter 114. The joint chamber 156 includes flared ends 162 at the open end of each flange end 160.
The upstream and downstream sections 118, 120 both include a receiving recess 164 that is configured to receive the flared end 162 of the joint chamber 156. Each of the upstream and downstream sections 118, 120 further includes a locking collar 166 that captures the flared ends 162 of the joint chamber 156 within the respective upstream and downstream section 118, 120. The locking collars 166 are secured to the upper and lower flanges 118, 120 with collar bolts 168. In a particularly preferred embodiment, the locking collar 166 is configured as a split collar that includes two or more separate pieces that can be placed around the outside of the flange ends 160 of the joint chamber 156. The locking collars 166 include a central opening 170 that extends the receiving recess 164 of the upstream and downstream sections 118, 120. Although the locking collars 166 are shown bolted to the upstream and downstream sections 118, 120, the locking collars 166 may alternatively be configured for a threaded engagement with the upstream and downstream sections 118, 120.
The receiving recesses 164 and locking collars 166 are configured to permit the slight movement of the flared ends 162 relative to the upstream and downstream sections 118, 120. Thus, the flared ends 162 are somewhat loosely captured within the receiving recesses 164, but prohibited from being removed from the receiving recesses 164 of the locking collar 166. This permits the angular articulation of the upstream and downstream sections 118, 120 around the joint chamber 158. In a particularly preferred variation of this embodiment, the receiving recesses 164 are machined with close tolerances to the width of the flared ends 162 such that the extent of articulation is limited as the flared ends 160 bind within the receiving recesses 164. In addition to limiting the extent of articulation, the close tolerances presented between the flared ends 162 and the receiving recess 164 creates a substantially impermeable seal between the upstream and downstream sections 118, 120 and the joint chamber 156.
Turning to
In the third preferred embodiment, the flexible pump adapter 114 includes an upstream pivot section 172, a fixed coupling chamber 174 and a downstream pivot section 176. Each of the upstream and downstream pivot sections 172, 176 includes a rounded base 178. The flexible pump adapter 114 further includes cap pieces 180 that hold the upstream pivot section 172 and downstream pivot section 176 in place within the fixed coupling chamber 174. The cap pieces 180 are preferably bolted onto the coupling chamber 174. Alternatively, the cap pieces 180 may be configured for a threaded engagement with the upstream and downstream pivot sections 172, 176. Although not depicted in
The fixed coupling chamber 174 and the cap pieces 180 each include an interior profile that forms a socket 182 that matingly receives the rounded base of each of the upstream and downstream pivot sections 172, 176. The interior profile of the coupling chamber 174 further includes an interior shoulder 184 that prevents the upstream and downstream pivot sections 172, 176 from being pushed into the coupling chamber 174. In this way, the coupling chamber 174, cap pieces 180 and the rounded bases 178 of the upstream and downstream pivot sections 172, 176 create a ball-and-socket articulating joint that permits angular articulation about the flexible pump adapter 114, but resists separation or compression along the longitudinal axis of the flexible pump adapter 114.
Turning to
Turning now to
The flexible motor adapter 116 preferably includes an exterior shield 186 and an interior barrier 188. In a particularly preferred embodiment, the exterior shield 188 rides between the axial bolt inner limiters 134, which are configured as nuts in this embodiment. In this way, the exterior shield 186 is not rigidly affixed to the upstream and downstream sections 118, 120. The exterior shield 186 is preferably constructed from a suitable metal or metal alloy and protects the axial bolts 122 and interior barrier 188 from mechanical impact and abrasion.
The interior barrier 188 extends between the upstream retainer 124 and the downstream retainer 126. The interior barrier 188 is preferably constructed from a flexible, impermeable membrane that prohibits the passage of external fluids into the interior of the flexible motor adapter 116. In particularly preferred embodiment, the interior barrier 188 is manufactured from a polymer, such as, for example, polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), polyetheretherketone (PEEK), tetrafluoroethylene/propylene (TFE/P)(Aflas), fluorine terpolymer (FKM) (Viton), highly saturated nitrile (HSN) or hydrogenated nitrile butadiene rubber (HNBR), and metallized polymers.
Referring now also to
Accordingly, the flexible motor adapter 116 is well-suited for providing a point of articulation between two components within the pumping system 100 through which a shaft is used to transfer mechanical energy. It will be noted, however, that in certain applications, it may be desirable to remove the upstream and downstream shafts 136, 138, the shaft coupling 140 and the upstream and downstream cups 190, 192. In these alternate embodiments, the flexible motor adapter 116 is not configured to transfer torque from an upstream shaft to a downstream shaft, but only provides a point of articulation between two components within the pumping system 100. For example, it may be desirable to use the flexible motor adapter 116 without the drivetrain to connect the motor assembly 110 to monitoring modules connected upstream of the motor assembly 110. Furthermore, although the flexible motor adapter 116 has been described with an articulating joint that uses axial bolts 122 and axial bolt bores 130, it will be appreciated that the flexible motor adapter 116 can also employ the articulating joints depicted in the second and third embodiments of the flexible pump adapter 114. Specifically, it is contemplated that the flexible motor adapter 116 can make use of the flared-end and recess articulating joint depicted in
It is to be understood that even though numerous characteristics and advantages of various embodiments of the present invention have been set forth in the foregoing description, together with details of the structure and functions of various embodiments of the invention, this disclosure is illustrative only, and changes may be made in detail, especially in matters of structure and arrangement of parts within the principles of the present invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. It will be appreciated by those skilled in the art that the teachings of the present invention can be applied to other systems without departing from the scope and spirit of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1608709 | Van Auken Mills | Nov 1926 | A |
1905158 | Craig et al. | Apr 1933 | A |
1976131 | Kittredge | Oct 1934 | A |
2870617 | Peters | Jan 1959 | A |
3255839 | Goldman | Jun 1966 | A |
3423959 | Tate, Sr. et al. | Jan 1969 | A |
3703817 | Orwin | Nov 1972 | A |
3785752 | Crespo | Jan 1974 | A |
3802803 | Bogdanov et al. | Apr 1974 | A |
4062412 | McIlvanie | Dec 1977 | A |
4157022 | Crase | Jun 1979 | A |
4940911 | Wilson | Jul 1990 | A |
5129452 | Wilson | Jul 1992 | A |
5209294 | Weber | May 1993 | A |
5795135 | Nyilas et al. | Aug 1998 | A |
5860864 | Vukovic | Jan 1999 | A |
6868912 | Proctor | Mar 2005 | B2 |
8347953 | Elizondo, Jr. et al. | Jan 2013 | B1 |
20140169988 | Pesek et al. | Jun 2014 | A1 |
Entry |
---|
Written Opinion of the International Searching Authority for PCT/US2013/075423 mailed Nov. 27, 2014. |
Number | Date | Country | |
---|---|---|---|
20140179448 A1 | Jun 2014 | US |