Not Applicable
1. Field of the Invention
This invention relates to pipe joints. More particularly, it relates to flexible pipe joints for subsea riser pipes having a large diameter.
2. Description of the Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98.
Ocean thermal energy conversion (OTEC) makes use of the temperature difference that exists between deep and shallow waters to power a heat engine. As with any heat engine, the greatest efficiency and power are produced with the largest temperature difference. This temperature difference generally increases with decreasing latitude, i.e. near the equator, in the tropics. Historically, the main technical challenge of OTEC has been to generate significant amounts of power, efficiently, from this very small temperature differential. Changes in efficiency of heat exchange in modern designs allow performance approaching the theoretical maximum efficiency.
The Earth's oceans are heated by the sun and cover nearly 70% of the Earth's surface. This temperature difference holds a vast amount of solar energy which can potentially be harnessed for human use. If this extraction could be made cost effective on a large scale, it could provide a source of renewable energy needed to deal with energy shortages, and other energy problems. The total energy available is generally considered to be one or two orders of magnitude greater than other ocean energy options such as wave power, but the small magnitude of the temperature difference makes energy extraction comparatively difficult and expensive due to low thermal efficiency. Earlier OTEC systems had an overall efficiency of only 1 to 3% (the theoretical maximum efficiency probably lies between 6 and 7%) Current designs being considered will likely be able to operate closer to the theoretical maximum efficiency. The energy carrier, seawater, is free, although it has an access cost associated with the pumping materials and pump energy costs. Even though an OTEC plant operates at a low overall efficiency, it can be configured to operate continuously as a base load power generation system. Any thorough cost-benefit analysis should include these factors to provide an accurate assessment of performance, efficiency, operational and construction costs and returns on investment.
The concept of a heat engine is very common in thermodynamics engineering, and much of the energy used by humans passes through a heat engine. A heat engine is a thermodynamic device placed between a high temperature reservoir and a low temperature reservoir. As heat flows from one to the other, the engine converts some of the heat energy to work energy. This principle is used in steam turbines and internal combustion engines, while refrigerators reverse the direction of flow of both the heat and work energy. Rather than using heat energy from the burning of fuel, OTEC power draws on temperature differences caused by the sun's warming of the ocean surface.
At present, the only heat cycle generally considered suitable for OTEC, is the Rankine cycle, using a low-pressure turbine. Systems may be either closed-cycle or open-cycle. Closed-cycle engines use working fluids that are typically thought of as refrigerants such as ammonia or R-134a. Open-cycle engines use the water heat source as the working fluid.
Some energy experts believe that if it could become cost-competitive with conventional power technologies, OTEC could produce multiple gigawatts of electrical power, and, when used in conjunction with electrolysis, could produce enough hydrogen to completely replace all projected global fossil fuel consumption. Managing costs is still a huge challenge, however. All OTEC plants require an expensive, large diameter intake pipe, which is submerged a kilometer or more into the ocean's depths, in order to bring relatively cold water to the surface. Constructing and supporting such a large pipe (riser) presents many engineering challenges. One such challenge is providing a flexible joint between pipe segments to enable the pipe to flex in response to ocean currents and wave action on the supporting vessel. Without the ability to flex, the riser pipe may develop cracks and fail. The flexible pipe joints currently known and in use for subsea risers are not suitable for very large diameter pipes. The present invention solves this problem.
Flexibility between pipe sections is achieved by means of an elastomeric flex joint based on using several elastomeric pads arranged to create a spherical acting joint. The angle of the pads (and resulting radius of the sphere) can be selected to optimize the internal loads and relative motions of the mating parts. A spherical elastomeric bearing according to the invention is similar in concept to that used to support large mooring turrets. The use of the flex joints reduces bending moments in the pipe from vessel motions and current loads. Stability of the riser pipe assembly may be maintained by having sufficient weight on the lower sections of the riser to resist current loads. A soft elastomeric seal minimizes fluid loss and allows relative motions of the pipe at the joint.
The connector may be mated by inserting the inner pipe into the outer pipe and then rotating the pipe sections relative to each other until a stop is reached. This is like a breach block connector. A separate latch may be set, or may be automatically be set, to prevent reverse rotation and unlatching.
The riser pipe can be assembled by adding sections to the top or to the bottom of the riser.
The invention may best be understood by reference to certain illustrative embodiments which are shown in the drawing figures.
Referring to
The upper (in
The pipe sections may have optional insulation 22 to minimize heat loss to the surrounding water.
Pad support structure 30 is attached to wall segment 26 and elastomeric pad assembly 32 is attached to pad support 30. In the illustrated embodiment, pad assembly 32 comprises an elastomer sandwiched between first metal plate 33 and opposing second metal plate 35. Metal plates 33 and 35 may be steel plates. The elastomer may be bonded to steel plate 33 and/or steel plate 35. Pad contactor 34 is attached to inner pipe wall 18 in generally parallel relation to pad support structure 30. In the illustrated embodiment, there is no connection between the top plate of pad 32 and pad contactor 34. In yet other embodiments, elastomeric pad assembly 32 is connected to pad contactor 34 and no connection exists between the pad bottom plate and pad support 30.
Referring now to
Referring to
It can be seen in
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/302,386 filed Feb. 8, 2010.
Number | Date | Country | |
---|---|---|---|
61302386 | Feb 2010 | US |