Flexible method for processing data packets in a network routing system for enhanced efficiency and monitoring capability

Information

  • Patent Grant
  • 8194666
  • Patent Number
    8,194,666
  • Date Filed
    Monday, January 29, 2007
    18 years ago
  • Date Issued
    Tuesday, June 5, 2012
    12 years ago
Abstract
According to an embodiment of the invention, a network device such as a router or switch provides efficient data packet handling capability. The network device includes one or more input ports for receiving data packets to be routed, as well as one or more output ports for transmitting data packets. The network device includes an integrated port controller integrated circuit for routing packets. The integrated circuit includes an interface circuit, a received packets circuit, a buffer manager circuit for receiving data packets from the received packets circuit and transmitting data packets in one or more buffers and reading data packets from the one or more buffers. The integrated circuit also includes a rate shaper counter for storing credit for a traffic class, so that the integrated circuit can support input and/or output rate shaping. The integrated circuit may be associated with an IRAM, a CAM, a parameter memory configured to hold routing and/or switching parameters, which may be implemented as a PRAM, and an aging RAM, which stores aging information. The aging information may be used by a CPU coupled to the integrated circuit via a system interface circuit to remove entries from the CAM and/or the PRAM when an age count exceeds an age limit threshold for the entries.
Description
FIELD OF THE INVENTION

The present invention relates to routing in a computer network. More particularly, the present invention relates to a system for efficiently routing and monitoring packets in a computer network.


BACKGROUND

Modern networking environments provide enormously enhanced data transmission capabilities over environments available only a few years ago. However, the demand for bandwidth is constantly increasing, as is the demand for more routing and monitoring capabilities. In order to meet this demand, network devices such as routers need to increase the number of ports serviced and the features they provide.


For example, network devices need to implement Quality of Service (QOS) features, which can provide better and more predictable network service by ensuring a dedicated bandwidth to be available, improving loss characteristics, avoiding and managing network congestion, shaping network traffic, and setting traffic priorities across the network. Currently, many QOS features are implemented using software. However, software implementation is impractical for the large bandwidth routers needed to handle the increasing amount of network traffic. Similarly, network devices need to be able to route broadcast or multicast packets and jumbo packets, and to provide network monitoring capability.


Therefore, there is a need for a large bandwidth network device that can efficiently route packets with, for example, “the Internet protocol” (IPv4) type of service (TOS) fields for QOS services. Additionally, the network device should efficiently route jumbo packets and broadcast or multicast packets (including multicast packets with different VLAN IDs). Finally, the network device should be configured to perform network monitoring without the use of additional probes.


SUMMARY

According to an embodiment of the invention, a network device such as a switch or a router provides large bandwidth as well as efficiency for data packet handling capability. The network device includes multiple input and output ports for receiving and transmitting data packets. According to an embodiment, the network device performs switching or routing of data packets for numerous auto-sensing multi-speed (10/100 megabit) Ethernet ports and very high speed (e.g., gigabit) ports. According to another embodiment, the network device performs switching or routing of data packets for multiple very high speed ports.


According to one embodiment, the network device provides a port controller integrated circuit for switching or routing packets. The integrated circuit includes a packet input circuit for receiving data packets from at least one of the input ports, and a buffer manager circuit for receiving data packets from the packet input circuitry, transmitting data packets to one or more buffers, and reading data packets from the one or more buffers. The integrated circuit also includes a rate shaper counter for storing credit for a traffic class, so that the integrated circuit can support input and/or output rate shaping.


The integrated circuit may be implemented as an application specific integrated circuit (ASIC) or in a programmable logic device (e.g., an FPGA). The input ports may be 10/100 megabit Ethernet ports, gigabit Ethernet ports, Packet over SONET (POS) ports, ATM ports, or other ports. The packet input circuitry is configured to provide an interface with the appropriate port type.


The integrated circuit may be associated with one or more memories which provide a buffer pool for storing data packets. In some embodiments, the buffer pool is implemented using a random access memory (RAM). (The buffer pool is sometimes also referred to as an IRAM.) In other embodiments, other types of memory may be used. The integrated circuit may be associated with one or more content-addressable memories (CAMs) for storing information about the packets (“packet information”) being handled in a memory array. The integrated circuit may include a CAM interface used to perform lookups on the CAM.


In one embodiment, the integrated circuit may be associated with an additional memory provided for storing packet parameters (“PRAM”). Each PRAM stores packet information in a memory array, including switching or routing parameters. The integrated circuit may include a PRAM interface used to perform lookups on the PRAM. The PRAM may be sized to provide values of a predetermined set of packet parameters for each CAM entry.


The integrated circuit may further include an aging RAM, which stores aging information regarding the CAM and PRAM entries. The aging information may be used by a host CPU, which may be coupled to the integrated circuit via a system interface circuit, to determine for removal entries from either the CAM, the PRAM, or both, when an age count exceeds an age limit threshold for the entries. Age counts are incremented periodically for a CAM entry, unless the entry is referenced, which resets its age count.


The integrated circuit may include a packet evaluation circuit. The packet evaluation circuit may include a port tracker circuit. The packet evaluation circuit may also include a programmable lookup processor, which may be a RISC processor. The programmable lookup processor may include a register file, a register select circuit for selecting the contents of registers as operands, an arithmetic logic unit for operating on the operands, and a feedback select circuit for providing, alternatively, as operand an output value of the ALU. In one embodiment, the register file is configured such that some of the registers are assigned to particular packet parameters, such that a snapshot of the register file provides without further processing a key for a CAM lookup. The output value of the ALU may be written into one or more of the registers.


The packet evaluation circuit may also include a CAM lookup handler for submitting lookup requests to the CAM, and a PRAM lookup handler for submitting lookup requests to the PRAM based on the values returned from a CAM lookup. The packet evaluation circuit may include packet evaluation logic circuits for performing packet processing using the results of a CAM lookup and a PRAM lookup.


The port tracker circuit may identify valid packet contexts (to filter corrupted packet data), copy a VLAN tag to a status word, and remove a VLAN tag from a packet header, in order to facilitate packet processing. The port tracker circuit may also perform TOS field lookups under the IPv4 protocol, or another suitable protocol.


The packet input circuit may include an 8B/10B decoder. Additionally, the packet input circuit may include logic circuits for CRC verification and auto-negotiation.


The integrated circuit may further include a polling logic circuit, which may perform time slot polling of the input ports of the network device. The integrated circuit may further include a received data FIFO circuit to receive data packets from the polling logic circuit. The integrated circuit may further include an internal VLAN table.


The buffer manager circuit may perform rate shaping, including input rate shaping and output rate shaping. The rate shaping may be based on port, both port and priority, or L3/L4 (network level) information. The buffer manager circuit may also be configured to route jumbo packets, which are variable-length packets for very high speed ports.


A priority may be assigned to a data packet by default, and according to whether the data packet is specified with a VLAN priority or a TOS priority. The packet priority may be further modified from the results of a CAM lookup or a PRAM lookup.


The processed data packet may be transferred to a buffer in an IRAM by the buffer manager circuit for forwarding. The buffer manager circuit may perform rate shaping. Rate shaping may be achieved by defining traffic classes, and storing credit in a counter corresponding to the traffic class. Credits are added to each counter periodically according to a credit interval. The amount of additional credit added to each counter may be different. The amount of credit is decreased when the buffer manager forwards a packet for the traffic class.


An interface adapter may be used with a port controller integrated circuit as described above, in order to interface multiple port controller integrated circuits with a backplane having multiple backplane slots. The interface adapter may provide data rate matching where the combined bandwidth of the multiple port controller integrated circuits is different from the bandwidth of the backplane. The interface adapter may transmit packets to and receive packets from any of the backplane slots and any of the port controller integrated circuits. The received data packets and the data packets to be transmitted may be stored in backplane queues. A buffer manager may be provided in the interface adapter for managing buffers used to mediate data packet traffic among the backplane and the port controller integrated circuits. A backplane RAM can be provided to provide buffers for storing data packets in transit among the backplane slots and the port controller integrated circuits.


A more complete understanding of the present invention and its advantages will be afforded to those skilled in the art upon consideration of the following detailed description of the exemplary embodiments therein. Reference will be made to the appended drawing that will first be described briefly.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a block diagram of router 10, which includes an integrated port controller (IPC), according to an embodiment of the invention;



FIG. 2 is a block diagram of router 20, which includes two integrated port controllers, according to another embodiment of the invention;



FIGS. 3A and 3B are block diagrams of two configurations in routers where multiple integrated port controllers may be connected, according to other embodiments of the invention;



FIG. 4 is a block diagram of a port controller ASIC that may be used in a network device, such as the routers of FIGS. 1, 2, 3A, and 3B, according to an embodiment of the invention;



FIG. 5 is a block diagram of packet evaluation circuit 500, suitable for implementation in packet input circuit 410 shown in FIG. 4, according to an embodiment of the invention;



FIG. 6 is a block diagram of processor 600, which is one implementation of PLP 530 of FIG. 5, according to an embodiment of the invention;



FIG. 7 shows process steps that may be performed using a router to assign a priority to a packet, according to an embodiment of the invention; and



FIG. 8 is a block diagram of interface adapter ASIC 800 that may be used in a router such as that shown in FIG. 3B, according to an embodiment of the invention.





Use of the same or similar reference numbers in different figures indicates the same or like elements.


DETAILED DESCRIPTION

According to an embodiment of the invention, a network device includes one or more integrated port controllers, each implemented in an integrated circuit such as an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA), to manage and monitor packet flow efficiently.


Network Device with Integrated Port Controller


In FIG. 1, a network device such as a router 10 includes an integrated port controller ASIC 100, indicated in FIGS. 1-3 by the label “IPC”. Data packets are transmitted to input terminals 60 of port controller ASIC 100 via physical interfaces 50. Input terminals 60 to ASIC 100 may be provided by media access controller (MAC) circuits, for conventional 10/100 megabit Ethernet ports, or may be provided by serializer/deserializer (SERDES) circuits, for gigabit Ethernet ports. Router 10 may support other types of ports, such as POS ports, ATM ports, or other ports. According to an embodiment of the invention, ASIC 100 has twenty four 10/100 megabit Ethernet ports and two gigabit Ethernet ports. According to an alternate embodiment, ASIC 100 has four gigabit Ethernet ports. In one embodiment, each port is provided a 48-bit MAC address of which the upper 32 bits are common to all the ports, and the remainder 16 bits of the MAC address are programmable.


ASIC 100 may be associated with one or more memories, such as an integrated packet controller memory (“IRAM”) 120, aging memory 130, parameter memory (PRAM) 140, and content addressable memory (CAM) 150. (Functions of these memories are explained in further detail below). IRAM 120, aging memory 130 may be implemented by random access memories. Although FIG. 1 shows ASIC 100 to be associated with one memory of each type listed above, in other embodiments more than one memory of a given type may be provided. ASIC 100 is also associated with a system interface chip 200, which in turn is associated with one or more memories such as memory 220 and 230 of FIG. 1. System interface chip 200 provides an interface between ASIC 100 and a host CPU 300.


ASIC 100 may interact with its associated memories as follows. ASIC 100 provides to CAM 150 packet information extracted from a packet received into ASIC 100, to initiate a search in CAM 150 to determine how to forward the packet to its destination and to initiate other packet processing functions. If a match is found, CAM 150 returns corresponding parameter values; in addition, or alternatively, CAM 150 returns an index into another memory array, where the corresponding data is stored. For example, in a destination address (DA) search, ASIC 100 uses the returned index to retrieve forwarding data from PRAM 140. For a source address (SA) search, ASIC 100 uses the returned index to retrieve source port information from PRAM 140, which is then used to age CAM entries.


PRAM 140 includes additional information for further processing the packet. PRAM 140 may be implemented by a 32-bit synchronous DRAM (SDRAM), sized to match CAM 150. According to an embodiment of the invention, PRAM 140 includes four separate tables implemented in different SDRAM banks. Destination address table records are in one table, source address table records are in another table, L3 (network level) records are in another table, and L4/session (network/session level) records are in another table. This banked table structure permits CAM lookups according to many supported packet types to receive different services at different levels. The associated PRAM data provide destination address/source address lookups and support network monitoring and management functions.


According to an embodiment of the invention, PRAM 140 implements address aging, which allows a CPU such as CPU 300 of FIG. 1 to remove unused entries from the CAM and PRAM memory arrays. An age bit, including an age count and an age-disable flag, is stored in a PRAM record, as well as in a separate AGERAM record on aging RAM 130. PRAM 140 also includes an aging configuration register, which may be set with an aging threshold.


When CAM 150 performs a successful address lookup (that is, locates a matching entry in the CAM array), a PRAM lookup cycle at that CAM index is performed. The information retrieved from PRAM 140 is incorporated into the 16-byte packet status word, and the age count may be zeroed, which is performed after a source address lookup in this embodiment. If the age count is zeroed, it is zeroed both in the PRAM record and the AGERAM record. The aging function is initiated by CPU 300, which commences an aging cycle by issuing an age cycle command to ASIC 100. When the age cycle command is received, an aging controller on ASIC 100 scans the AGERAM entries, incrementing the age count whenever the age-disable flag is not set, and the age value is less than an age-limit threshold in the PRAM aging configuration register. An active aging cycle is indicated in the status field of the PRAM control register. PRAM entries that age-out (the age count exceeds the age-limit threshold) have their indices stored in an aging FIFO, so that CPU 300 can take appropriate action; for example, over-writing the CAM and PRAM indices.


Once all required packet type decoding, CAM, and PRAM lookups are complete, a buffer manager controller such as buffer manager controller 440 of FIG. 4 transfers packets to one or more buffers in IRAM 120. Buffer manager controller 440 is discussed in further detail below.



FIG. 2 shows another embodiment of the present invention in router 20, which includes two port controller integrated circuits to provides support for more input ports and hence a higher traffic level than router 10 illustrated in FIG. 1. Router 20 includes port controller integrated circuits (i.e., port controller ASICs) 100-1 and 100-2. ASIC 100-1 and 100-2 are each interfaced to ports (i.e., port input terminals 60-1 and 60-2) and associated with memories (e.g., IRAM 120-1, aging ram 130-1, PRAM 140-1, and CAM 150-1 are associated with ASIC 100-1, while RAM 120-2, aging ram 130-2, PRAM 140-2, and CAM 150-2 are associated with ASIC 100-2) in the same manner as described above for ASIC 100 of FIG. 1. Router 20 also includes a system interface chip 200 which provides an interface between CPU 300 and each of ASICs 100-1 and 100-2.



FIGS. 3A and 3B show other configurations of port controller integrated circuits for network devices capable of handling even greater packet traffic levels. FIG. 3A shows four port controller integrated circuits such as ASIC 100 of FIG. 1, coupled via a switch such as a crosspoint switch 320. FIG. 3B shows an alternate configuration, where four port controller integrated circuits such as ASIC 100 of FIG. 1 are coupled to a backplane of another router, through an interface adapter integrated circuit. The interface adapter integrated circuit may be implemented as an ASIC such as an interface adapter ASIC 800 of FIG. 3B.



FIG. 4 is a block diagram of an embodiment of a port controller integrated circuit such as ASIC 100 of FIG. 1. As shown in FIG. 4, ASIC 100 includes packet input circuit 410, which is configured to interface with gigabit ethernet media access channel (GMAC) ports and may contain an 8B/10B encoder/decoder and logic circuits for CRC verification, and auto-negotiation. In addition, packet input circuit 410 may be configured to interface with conventional 10/100 Ethernet media access controller (MAC) ports. Packet input circuit 410 may additionally receive packet transfers and perform time-slotting of transmit packet transfers. For example, packet input circuit 410 may receive packet transfers in bursts of sixteen cycles. In some embodiments, packet input circuit 410 may be configured to interface with other ports such as ATM ports or POS ports, or may be a combination of different interface types.


Besides forwarding packets to their destinations, packet input circuit 410 performs further functions. Packet input circuit 410 may be configured to perform packet classification, prepare packet modifications, and generate packet headers, which are functions that can be used to support routing at higher protocol levels, network traffic management and monitoring. Further, packet input circuit 410 prepares sixteen-byte encapsulation, which used in forwarding packets through router 10. In FIG. 4, packet input circuit 410 is implemented in separate blocks for each input port. According to other embodiments, a single block may provide input circuitry for a single input port, or for more than one input port. Input circuitry 410 may be different for different input port types, or only a sub-unit of input circuitry 410 may be different.



FIG. 5 is a block diagram of packet evaluation circuit 500, which may be included in packet input circuit 410 or elsewhere on ASIC 100. As shown in FIG. 5, a received packet is received into port tracker 510. Port tracker 510 performs “sanity” checks on the data packet received into ASIC 100 through, for example, one of the MAC interfaces, such as identifying valid packet contexts (e.g., consistent start of packet and end of packet boundaries) and examining the status word appended by the MAC, which indicates any data faults. In addition, port tracker 510 strips virtual local area network (VLAN) tags, and places a copy of the first 60 bytes of packets into header first-in-first-out (FIFO) memory 520, and a copy of the entire packet into packet data FIFO memory 560. Port tracker 510 may also perform some basic packet decoding, such as comparing the packet MAC destination address (DA) against the port MAC address, and checking the Ethernet Type field to determine whether the received packet has a VLAN tag. If DA matches the port MAC address, an internal status bit (“RX_US”) is set. Based on this internal status bit, a data packet having a DA in ASIC 100 is routed to CPU 300. According to an embodiment, the VLAN ethertype field is fully programmable. When a received packet has a VLAN tag, the VLAN tag is copied from the header into a 16-byte packet status word, then removed from the packet header, so that packet processing in some portions of packet evaluation circuit 500 can proceed without regard to whether the packet is associated with a VLAN. For IPv4 type packets, port tracker 510 may also perform TOS field lookups, to enable input and output rate shaping (see below). The results of all evaluations are placed into bytes 60-63 of the packet header data.


Received packet headers are forwarded to received packet header FIFO memory 520. In an embodiment, received packet header FIFO memory 520 has a capacity of 256×36 bits. Received packet data is forwarded to a received packet data FIFO memory 560. According to an embodiment, received packet data FIFO memory 560 has a capacity of 256×36 bits.


Packet header data is forwarded from received packet header FIFO memory 520 to a programmable lookup processor (PLP) 530 for further processing. PLP 530 forms CAM lookups, creates part of the 16-byte packet header for the outgoing packet to be forwarded, and generates information needed for packet evaluation to function properly. Based on packet type (e.g., IP, IPX or L2), PLP 530 also computes a trunk index to support trunking. This trunk index is used to logically 'ORed with a MAC destination address FID.


In one embodiment, PLP 530 is a 16-bit RISC processor, able to access anything from the first 60 bytes of a packet. A program drives the specific operations of PLP 530, which directs the types of CAM lookups to be carried out, according to the packet type and values of system parameters. Some registers in the RISC processor of that embodiment are assigned to specific parameters that comprise the packet context, so that their contents can directly compose specific L2/L3/L4 CAM targets or contain packet header fields. Once processing is complete the packet context is transferred to the CAM lookup handler 540.



FIG. 6 is a block diagram of processor 600, which is one implementation of PLP 530 of FIG. 5. Processor 600 includes register file 610, register select block 620, feedback select block 630, and arithmetic logic unit (ALU) 640. In an embodiment, register file 610 includes thirty one general purpose 16-bit registers and one program counter register. The registers can be freely used during evaluation to perform any operation. However, once evaluation is complete the register contents can be directly used for CAM targets and packet header information.


Register select block 620 chooses a target register's contents from register file 610 as operands into ALU 640. Feedback select block 630, which selects either the operands from the register select block 620, or an output value of ALU 640, permits back-to-back use of modified registers. In this implementation, the registers in register file 610 are pipelined such that a write operation into a register in register file 610 takes two processor clock cycles. However, if processor 600 detects that a result from ALU 640 is used in the following instruction, feedback select block 630 selects the result from ALU 640 as operand for this following instruction, rather than from register file 610. ALU 640 supports load and store operations, and arithmetic and logic binary operators including and, or, xor, neg, add, compare, inline rotate and mask operations. Constants, or immediates, can be substituted for register values in places.


Once PLP 530 completes its operation, the contents of register file 610 are transferred to CAM lookup handler 540. CAM lookup handler 540 takes a snapshot copy of all the PLP registers and submits these values to initiate one or more CAM look-up requests via CAM interface 545. With CAM lookup handler 540 controlling CAM lookup operations, PLP 530 can begin to work on another packet. When the CAM returns the lookup results, the context is transferred to a PRAM lookup handler 550.


Like CAM lookup handler 540, PRAM lookup handler 550 is also a placeholder. Specifically, PRAM lookup handler 550 maintains the packet contexts while PRAM lookups are performed. CAM handler 540 and PRAM lookup handler 550 allow a pipelined operation in the units of packet evaluation circuit 500, so that useful work (instead of stalling) is carried out while the memory accesses (e.g., such as PRAM data transfers) are performed. PRAM lookups are submitted to the PRAM via PRAM interface 555. After PRAM lookups are complete, further packet processing may be performed in packet evaluation block 590.


In most packet types, CAM lookups are carried out for the destination address and the source address. Additional lookups may be carried out for some packet types. For example, if the packet type is IPv4 or IPX, another CAM lookup (for level 3, or network layer routing information) may be done. If the packet type is IPv4, a level 4 or session lookup may also be carried out. After a successful CAM lookup, a PRAM lookup may be performed to obtain additional information used in packet forwarding. During the CAM and PRAM lookups, a number of status word flags may be set up, as an aid to software packet forwarding, hardware packet forwarding, or both. For some packet forwarding, the destination address may be replaced, or the packet header may be modified, or both in order to support hardware packet routing.


Received IRAM port handler 580 transfers data in received packet data FIFO 560 to received IRAM accumulator block 570, which is then provided to IRAM 120 (FIG. 1). In one embodiment, a separate IRAM port handler handles packets for each of ports 60. According to one embodiment, IRAM accumulator block 570 handles read data from port receive FIFOs in 32 byte chunks, applying packet modifications, and dumping data into an IRAM received FIFO. It also detects the end of packet, and builds RXDONE messages for buffer manager controller 440 of FIG. 4 (described in further detail below). If a packet is flagged as bad (for example, due to an invalid CRC), buffer manager controller 440 re-circulates the buffer directly into a freelist.


Referring again to FIG. 4, received packets are forwarded from packet input circuit 410 to packet routing circuit 420. In one embodiment, packet routing circuit 420 may includes a packet polling circuit, which performs time slot polling of the input ports for received packet data. In FIG. 4, the packet polling circuit is included in packet polling logic block 415, which is shown as part of packet routing circuit 420. In other embodiments, the packet polling logic circuit may be located differently on ASIC 100. In one embodiment, packet data is accumulated into 128 bit words and forwarded by packet routing circuit 420 to a buffer pool in IRAM 120 of FIG. 1, after all appropriate packet modifications are performed packet input circuit 410, packet evaluation circuit 500 described above, or elsewhere on ASIC 100. Packet routing circuit 420 obtains and assigns buffer numbers, specifies where to store packets, and informs buffer manager controller 440 how to forward the packet. Buffers assigned to bad or aborted packets are reused.


In one embodiment, packet routing circuit 420 implements queue management using, for example, FIFO memories. For example, a FIFO memory may be configured to store data subsequent to the packet polling logic circuit, and to provide an asynchronous boundary between received packet processing in packet routing circuit 420 and IRAM 450 of IRAM 420 (FIG. 4). Further, a FIFO memory may be used to transfer forwarding identifier (FID) and buffer number (priority and source port) information to buffer manager circuit 440 or elsewhere, to enable transmit queuing.


Buffer manager controller 440 handles transmit port queuing and rate shaping of the packet data streams. In one embodiment, buffer manager controller 440 receives RXDONE messages from port and backplane logic blocks, each indicating a complete packet evaluation. Buffer manager controller 440 extracts the packet's forwarding identifier (FID) and requests a lookup from IRAM interface 450. IRAM interface 450 may be separate from packet routing circuit 420 or may be implemented elsewhere in the switch or router. In some embodiments, buffer manager controller 440 is configured to perform source port suppression or to merge CPU and monitor masks. Buffer manager controller 440 may then add packets to individual port queues at, for example, 22 milion packets per second (Mpps). In some embodiments, buffer manager controller 440 also directs port transmit activity. For example, buffer manager controller 440 may explicitly informs IRAM interface 450 to send packets in a particular buffer pool data to particular ports, such as ports 485 of FIG. 4, or backplane slots, such as slots 470 of FIG. 4. Once packets are fully dispatched, the buffers are returned to the packet freelist.


In some embodiments, buffer manager controller 440 may support input rate shaping. Input rate shaping allows for a large number of different traffic classes to be defined and independently controlled based on programmable bandwidth limits. For example, Table 1 shows three modes of operation for an embodiment incorporating input rate shaping.










TABLE 1





Mode
Description







Port based
Port based is the most basic form of input rate



shaping. In this mode, each port's receive data



is mapped to a traffic class, and each port's class



can be independently controlled


Port and priority based
Port and priority based input rate shaping uses



both the source port number and the packet



priority to create a traffic class. In an



embodiment, each port can have up to four



traffic classes within it, and each can be



independently controlled.


L3/L4 info based
L3/L4 info based input rate shaping uses a field



in the PRAM (TOS replacement field) to allow



software to define traffic classes based on



packet IP/IPX addresses. Because the TOS field



is used, this operation is only allowed in Layer 3



and Layer 4 modes of operation, and the TOS



replacement cannot be used when using this



mode.









A number of parameters I, V, C, B and T are used to configure and control the input rate shaping for each class. Interval time I is the amount of time between the adding of credits for each traffic (rate shape) class. According to one embodiment of the invention, a single interval time applies to all traffic classes. In that embodiment, the selected interval period spans the entire range of traffic patterns to shape. In one embodiment, a maximum value of the interval time may be 19.66 ms, while a minimum value, which may be a default, may be chosen as 19.2 μs. Credit value V equals to the number of bytes each credit represents. According to one embodiment of the invention, a single credit value applies to all traffic classes and may have values ranging from 32 to 256 bytes per credit, in powers of 2. Credit per interval C is the amount of credit to give at the end of each interval time. Credit per interval C may be programmed to be different for each traffic class. Credits may be added to a class in two ways: fixed mode, where the programmed credit is stored in a rate shaper counter which is decremented as packets arrive, or accumulate mode, where the programmed credit is added to any credit that was left over from the previous interval. According to an embodiment of the invention, credit per interval C may range from 0 to 4096 in powers of 2. Maximum burst B sets the maximum number of credits that can be accumulated for a port operating in the accumulate mode described above. In effect, it sets a maximum burst value when a port goes from idle to sending packets. According to one embodiment of the invention, the maximum burst may be programmed individually for each traffic class and may range from 0 to 4096 in powers of 2. Credit total T is a counter per port which keeps track of the current amount of credit the port has for packets to pass and, in one embodiment, may range from 0 to 4096 in powers of 2.


According to an embodiment, at the end of each interval time I, the input rate shaper scans through all 128 traffic classes and either add (accumulate mode) or store (fixed mode) programmed credit C into a counter for each class. Total credit T in the counter cannot exceed maximum burst B. As packets arrive for a given class, the input rate shaper divides the packet length by credit value V, deducts the quotient from total credit T in the counter for that class—if total credit T is greater than the quotient—and allows the packet to be forwarded. Otherwise, the packet is dropped and not counted.


According to some embodiments, buffer manager controller 440 may support output rate shaping in a similar fashion.


In one embodiment, IRAM interface block 450, which accepts data transfer requests from six sources and performs data transfers using a time slot driven rotation, provides access to a wide high bandwidth memory pool in IRAM 120. The six sources are, respectively, (1) a port received packet path request, where data and address are provided by a port received block; (2) a backplane received packet path request, where data and address are provided by the backplane received block; (3) a buffer manager circuitry FID lookup, where a target FID is provided by the buffer manager circuitry; (4) a buffer manager controller port transmission request, where the buffer pool address and destination backplane slot are provided by the buffer manager circuitry; (5) a CPU read, where the buffer pool address is provided by a command bus interface, and (6) a CPU write request, where the data and address are provided by a command bus interface. CPU operations over a command bus interface may be pipelined.


Backplane receive interface circuitry 445 receives packets from the backplane and routes them to IRAM interface 450 and packet routing circuit 420.


The processing of transmit packets is simpler than that of received packets, since there are no CAM or PRAM lookups to perform. According to an embodiment of the invention, transmit packet processing circuit 480 of FIG. 4 requests data from buffer manager controller 440 when sufficient space is available in the transmit FIFO for a given port. When a packet is available, the integrated packet controller transfers a block of data from IRAM 120 of FIG. 1. The contents of the packet status word direct operation of the transmit logic circuit. Transmit packet processing circuit 480 examines the packet header of each packet to determine the packet's length, starting offset, and the type of packet processing needed. Processing depends on the status bits in the header and the port's mode of operation, and includes, for example, dynamically extending or shrinking packet data length and re-aligning data to a quad-word (i.e., 64-bit) boundary. If the packet is VLAN-tagged (see below), processing includes inserting a VLAN ID from the header into the packet (if in auto or tagged mode of operation). Other processing, such as replacing the MAC destination address in packet data with a value from the header and replacing the MAC source address in packet data with port address, are also carried out when required.


Once the packet header has been processed it is passed to transmit interface circuit 485. Transmit interface circuit 485 may be a MAC interface controller for transmission to an external MAC. Packets may be transmitted to a backplane of a switch or a router via backplane transmit interface circuit 470 (FIG. 4).


VLAN Tagging Support


According to some embodiments, an integrated port controller such as ASIC 100 of FIG. 1 supports VLAN tagging. In one embodiment, a number of VLAN tagging modes are supported: (1) tagged only ports; (2) untagged only ports, (3) priority tagged only ports, (4) repeater mode auto-tagging ports (tag if necessary), (5) untagged to tagged translator mode (tagging preferred) auto-tagging ports, (6) priority-tagged to tagged translator mode (tagging preferred) auto-tagging ports; (7) and untagged to priority-tagged translator mode (priority-tagging preferred) auto-tagging ports.


Internal VLAN Table


According to some embodiments, ASIC 100 has an internal VLAN table. L2 VLAN lookups are performed from the internal table. The VLAN lookup can override, for example, the default FID, the QOS (Quality of Service) index, and enforce per-port VLAN blocking.


Packet Priority Handling


A network device such as router 10 of FIG. 1 may allow for different forwarding priorities of data packets. Packet forwarding priority within router 10 may be established in a number of ways. Packet priority may be based on packet evaluation parameters, such as those determined during CAM and PRAM lookups. Additionally, priority may be affected by VLAN tags and TOS (type of service) lookups.



FIG. 7 shows a process 700 for assigning packet forwarding priority, according to one embodiment of the invention. In step 710, a 2-bit port default priority is assigned to a packet. In step 720, the packet's packet type modifies its packet forwarding priority. If the packet type is IPv4, the IPv4 TOS field replaces the port default priority. Alternatively, a VLAN tag also modifies the packet forwarding priority, as shown in step 740. If a packet has a VLAN tag, its VLAN ID is extracted in step 750, and a VLAN priority is translated and replaces the port default priority.


In step 760, the highest of the applicable priorities is selected. The highest priority may be the port default priority, the VLAN priority, or the priority in the TOS field.


In step 770, the PRAM produces a 3-bit merge value. In step 780, a resulting packet priority is determined from the 3-bit merge value and the 2-bit priority from step 760. Table 2 below lists the results obtained for different merge values.










TABLE 2





Merge Value
Result







000
Max of (2-bit priority, 0)


001
Max of (2-bit priority, 1)


010
Max of (2-bit priority, 2)


011
Max of (2-bit priority, 3)


100
Force to 0


101
Force to 1


110
Force to 2


111
Force to 3









Jumbo Packet Support


According to an embodiment of the invention, a network device such as router 10 of FIG. 1 may support jumbo packet sizes. To route jumbo packets, a buffer size (e.g., up to 15 Kybtes or higher) is set in IRAM 120 to accommodate jumbo packets. Additionally, GMAC ports or back plane slots capable of sending or receiving jumbo frames are identified and enabled. Buffer manager controller 440 may be configured to enable forwarding jumbo packets to 10/100 Mbit Ethernet ports. Additionally, buffer manager controller 440 may be configured to copy a jumbo packet to the CPU if a destination is dropped because it cannot handle jumbo frames.


Multicast Packet Support


A network device such as router 10 of FIG. 1 may also support broadcast or multicast packets (i.e, a received packet is replicated multiple times and transmitted to designated ports). Multicast packets may be transmitted with different VLAN IDs. By setting a flag in the packet header, buffer manager controller 440 recognizes the packet as a multicast packet with VLAN replication enabled. The VLAN ID in the packet header is then treated as a multicast VLAN identifier (MID), enabling packet replication with the correct VLAN ID. In one embodiment, the MID and a transmit port number are used to compute an index into a “multicast start offset table” to obtain a replication count for the transmit port. In this manner, the multicast can be treated differently for each port. The count for each transmit port is used to index into a multicast replacement table. As the count is incremented for each replication, the count points to a different replacement table record in the multicast replacement table. The replacement record provides the VLAN ID to use, the VLAN priority to use and other special instructions for processing the replication.


Trunking Support


In addition to the FID adjustment based on packet address and packet type, FID adjustment to support trunking can also be based on the physical port number. In one embodiment, selected bits (e.g., bits [4:1]) of the physical port number can be used to modify the FID by an logical 'OR. Alternatively, masked source port suppression on a per-port basis allows portions of the port number to be ignored during segment filtering. Packets arriving from any of the trunked ports segment filters to the same destination.


Statistical Packet Sampling


A network device such as router 10 of FIG. 1 may be configured to perform statistical packet sampling to monitor and analyze network traffic. A commonly assigned U.S. patent application Ser. No. 10/107,749 entitled “Network Monitoring Using Statistical Packet Sampling,” Sunil P. Chitnis, Ian E. Davis, Jordi Moncada-Elias, Satyanarayana M. Sama, filed on Mar. 26, 2002, which is hereby incorporated by reference in its entirety, describes statistical packet sampling in a network device such as router 10.


Interface Adapter


According to some embodiments, an integrated port controller such as ASIC 100 described above may be used with an interface adapter (IA), which is implemented in an integrated circuit such as an ASIC 800 shown in FIG. 8. ASIC 800 may provide an interface between one or more integrated port controllers and a backplane, as shown in FIG. 3B. For example, ASIC 800 may provide an interface between four integrated port controllers and seven backplane slots.


An interface adapter such as ASIC 800 may be used to transmit data when more than one integrated port controller such as ASIC 100 of FIG. 1 is configured to route data to and from a backplane on a network device such as router 10. The interface adapter can manage bandwidth difference between multiple port controllers such as ASIC 100 and the backplane of the network device. By providing an interface adapter such as ASIC 800, a higher density per line card may be achieved.


Integrated Port Controller Receive Interface Block


An integrated port controller receive interface block 810 interfaces with an integrated port controller such as ASIC 100 of FIG. 4. According to an embodiment, block 810 receives data from an integrated port controller on a 32-bit data bus. Block 810 also receives a 3-bit header, and a destination port number. The destination port number specifies which of the ports or backplane slot the 32-bit data should be sent. Data packets received in block 810 can be transmitted to one or more backplane queues 815. Backplane queues 815 transmit data packets to a backplane transfer interface block 830.


Integrated Port Controller Transmit Interface Block


Similarly, an integrated port controller transmit interface block 820 interfaces with an integrated port controller such as ASIC 100 of FIG. 4. According to an embodiment, block 820 transmits data to an integrated port controller using a 32-bit data bus. Block 820 also transmits a 3-bit header, and a source port number. The source port number specifies which of the ports or backplane slot the 32-bit data originated.


Backplane Transmit Interface Block


Backplane transmit interface block 830 interfaces with a backplane on a network device such as router 10 of FIG. 1. According to an embodiment, block 830 transmits data to the backplane using a 64-bit data bus. Block 830 also transmits a 6-bit header, and a 3-bit slot number that identifies the destination slot for the data.


Backplane Receive Interface Block


Similarly, a backplane receive interface block 840 interfaces with a backplane on a network device such as router 10 of FIG. 1. According to an embodiment, block 840 receives data from the backplane using a 64-bit data bus. Block 840 also receives a 6-bit header, and a 3-bit slot number that identifies the source of the data.


Buffer Manager


Interface adapter 800 includes a buffer manager 850. Buffer manager 850 manages one or more buffers, which receive incoming data from the backplane. According to an embodiment, buffer manager 850 manages buffers that are 256 bytes wide and support 512 KB of data.


Buffers are allocated using a free buffer list. According to an embodiment, the free buffer list is a 2048-entry circular queue initialized by software during a software reset initialization. Buffer manager 850 allocates a new buffer when the start of a packet is detected from any backplane slot, and when the first bytes arrive from a slot needing another buffer to accommodate the remaining portion of the packet. When a buffer is full, or an end of packet is detected, the header queues corresponding to that packet are updated, as is information in the usage buffer. According to an embodiment, the usage buffer is 2K by 4 bits, where the 4 bits each correspond to an integrated port controller that the buffer contents may be sent to. When the header queue is updated, the buffer entry in the usage buffer is updated with information from an FID RAM, indicating which integrated port controller the buffer contents will be sent to.


Buffer manager 850 controls the header queues. According to an embodiment, there are 28 header queues, each corresponding to a combination including one of seven backplane source slots and one of four integrated port controllers. Each of the 28 header queues contains 1024 entries. When a header queue fills up, buffer manager 850 sends a hold request to the corresponding backplane slot. A header queue entry is updated when a buffer fills up or when an end of packet is detected.


Backplane RAM Control Interface Block and Backplane Data RAM


According to an embodiment, a backplane RAM control interface block 860 provides an interface to a backplane data RAM 870. Data arrives from the backplane during each cycle. Backplane receive interface block 840 packs two 64-bit data blocks to form a line, which is written to backplane data RAM 870. The data, as well as an address, are sent to backplane data RAM 870. According to an embodiment, this write request is considered the highest request and the controller guarantees that the request is honored every time. A FIFO is not used between backplane receive interface block 840 and backplane RAM control interface block 860, since the write requests are always honored and never delayed or dropped. Data received from the backplane is stored in one or more backplane queues 880.


Backplane RAM control interface block 860 is also responsible for interfacing with the read queues which contain addresses from which to read data and place in queues going to integrated port controller transmit interface blocks 820. Buffer manager 850 provides source slot number and header information corresponding to the data to be read from integrated port controller transmit interface block 820 to the backplane RAM control interface block 860. Unlike write requests, read requests are arbitrated in a round-robin scheme. When no data is being sent from the backplane, all of the bandwidth is available to process read requests.


CPU Interface


Interface adapter 800 may interface with a CPU such as CPU 300 of FIG. 1 via a command bus, which may be a purely asynchronous bus.


While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.

Claims
  • 1. A method of processing a data packet received over a port, comprising: receiving the data packet over the port;deriving a forward identifier for the data packet;computing, after receiving the data packet, a trunk index for the received data packet based upon a type of the data packet;modifying the forward identifier to enable trunking, the modifying comprising performing a logical operation using the forward identifier and the trunk index; andperforming a lookup in a memory using the modified forward identifier.
  • 2. The method of claim 1 wherein the type is one of Internet Protocol (IP), Internetwork Packet Exchange (IPX), or Layer 2 (L2).
  • 3. A device comprising: a set of ports;a memory; anda port controller configured to derive a forward identifier for a data packet received by the device over an input port from the set of ports,compute a trunk index for the data packet after receiving the data packet based on a type of the data packet,modify the forward identifier to enable trunking by performing a logical operation using the forward identifier and the trunk index, andperform a lookup in the memory using the modified forward identifier.
  • 4. The device of claim 3 wherein the type is one of Internet Protocol (IP), Internetwork Packet Exchange (IPX), or Layer 2 (L2).
  • 5. A method comprising: determining, by a network device, a forwarding identifier for a packet received by the network device;computing a trunk index for the received packet based on a type of the packet;modifying, by the network device, the forward identifier to support trunking, the modifying comprising performing a logical operation using the forward identifier and the trunk index; andperforming, by the network device, a lookup in a memory using the modified forward identifier.
  • 6. The method of claim 5 wherein the type is one of Internet Protocol (IP), Internetwork Packet Exchange (IPX), or Layer 2 (L2).
  • 7. A device comprising: a memory; anda port controller configured to: determine a forwarding identifier for a packet received by the device;compute, based on a type of the packet, a trunk index for the received packet;modify the forward identifier to support trunking by performing a logical operation using the forward identifier and the trunk index; andperform a lookup in the memory using the modified forward identifier.
  • 8. The device of claim 7 wherein the type is one of Internet Protocol (IP), Internetwork Packet Exchange (IPX), or Layer 2 (L2).
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application of U.S. patent application Ser. No. 10/140,752 filed on May 6, 2002, now U.S. Pat. No. 7,468,975, issued Dec. 23, 2008, which is incorporated herein by reference.

US Referenced Citations (460)
Number Name Date Kind
3866175 Seifert, Jr. et al. Feb 1975 A
4325119 Grandmaison et al. Apr 1982 A
4348725 Farrell et al. Sep 1982 A
4628480 Floyd Dec 1986 A
4667323 Engdahl et al. May 1987 A
4683564 Young et al. Jul 1987 A
4698748 Juzswik et al. Oct 1987 A
4723243 Joshi et al. Feb 1988 A
4754482 Weiss Jun 1988 A
4791629 Burns et al. Dec 1988 A
4794629 Pastyr et al. Dec 1988 A
4807280 Posner et al. Feb 1989 A
4876681 Hagiwara et al. Oct 1989 A
4896277 Vercellotti et al. Jan 1990 A
4985889 Frankish et al. Jan 1991 A
5101404 Kunimoto et al. Mar 1992 A
5136584 Hedlund Aug 1992 A
5195181 Bryant et al. Mar 1993 A
5208856 Leduc et al. May 1993 A
5224108 McDysan et al. Jun 1993 A
5231633 Hluchyj et al. Jul 1993 A
5280582 Yang et al. Jan 1994 A
5282196 Clebowicz Jan 1994 A
5287477 Johnson et al. Feb 1994 A
5299190 LaMaire et al. Mar 1994 A
5299195 Shah Mar 1994 A
5301192 Henrion Apr 1994 A
5307345 Lozowick et al. Apr 1994 A
5323386 Wiher et al. Jun 1994 A
5365512 Combs et al. Nov 1994 A
5377189 Clark Dec 1994 A
5390173 Spinney et al. Feb 1995 A
5392279 Taniguchi Feb 1995 A
5406643 Burke et al. Apr 1995 A
5408469 Opher et al. Apr 1995 A
5430442 Kaiser et al. Jul 1995 A
5436893 Barnett Jul 1995 A
5461615 Henrion Oct 1995 A
5490258 Fenner Feb 1996 A
5506840 Pauwels et al. Apr 1996 A
5506841 Sandquist Apr 1996 A
5521923 Willmann et al. May 1996 A
5546385 Caspi et al. Aug 1996 A
5550816 Hardwick et al. Aug 1996 A
5563948 Diehl et al. Oct 1996 A
5566170 Bakke et al. Oct 1996 A
5598410 Stone Jan 1997 A
5600795 Du Feb 1997 A
5619497 Gallagher et al. Apr 1997 A
5640504 Johnson, Jr. Jun 1997 A
5646878 Samra Jul 1997 A
5663952 Gentry, Jr. Sep 1997 A
5663959 Nakagawa et al. Sep 1997 A
5666353 Klausmeier et al. Sep 1997 A
5721819 Galles et al. Feb 1998 A
5732080 Ferguson et al. Mar 1998 A
5734826 Olnowich et al. Mar 1998 A
5740176 Gupta et al. Apr 1998 A
5745708 Weppler et al. Apr 1998 A
5751710 Crowther et al. May 1998 A
5802287 Rostoker et al. Sep 1998 A
5815146 Youden et al. Sep 1998 A
5818816 Chikazawa et al. Oct 1998 A
5835496 Yeung et al. Nov 1998 A
5838684 Wicki et al. Nov 1998 A
5862350 Coulson Jan 1999 A
5864555 Mathur et al. Jan 1999 A
5867675 Lomelino et al. Feb 1999 A
5870538 Manning et al. Feb 1999 A
5872769 Caldara et al. Feb 1999 A
5872783 Chin Feb 1999 A
5875200 Glover et al. Feb 1999 A
5896380 Brown et al. Apr 1999 A
5907566 Benson et al. May 1999 A
5907660 Inoue et al. May 1999 A
5909686 Muller et al. Jun 1999 A
5915094 Kouloheris et al. Jun 1999 A
5920566 Hendel et al. Jul 1999 A
5920886 Feldmeier Jul 1999 A
5936939 Des Jardins et al. Aug 1999 A
5936966 Ogawa et al. Aug 1999 A
5956347 Slater Sep 1999 A
5999528 Chow et al. Dec 1999 A
6000016 Curtis et al. Dec 1999 A
6011910 Chau et al. Jan 2000 A
6016310 Muller et al. Jan 2000 A
6023471 Haddock et al. Feb 2000 A
6031843 Swanbery et al. Feb 2000 A
6035414 Okazawa et al. Mar 2000 A
6038288 Thomas et al. Mar 2000 A
6067298 Shinohara May 2000 A
6067606 Holscher et al. May 2000 A
6076115 Sambamurthy et al. Jun 2000 A
6081522 Hendel et al. Jun 2000 A
6088356 Hendel et al. Jul 2000 A
6094434 Kotzur et al. Jul 2000 A
6104696 Kadambi et al. Aug 2000 A
6104700 Haddock et al. Aug 2000 A
6108306 Kalkunte et al. Aug 2000 A
6118787 Kalkunte et al. Sep 2000 A
6125417 Bailis et al. Sep 2000 A
6128666 Muller et al. Oct 2000 A
6144668 Bass et al. Nov 2000 A
6147996 Laor et al. Nov 2000 A
6151301 Holden Nov 2000 A
6151497 Yee et al. Nov 2000 A
6151797 Fleissner Nov 2000 A
6154446 Kadambi et al. Nov 2000 A
6157643 Ma Dec 2000 A
6160809 Adiletta et al. Dec 2000 A
6160812 Bauman et al. Dec 2000 A
6172990 Deb et al. Jan 2001 B1
6178520 DeKoning et al. Jan 2001 B1
6181699 Crinion et al. Jan 2001 B1
6185222 Hughes Feb 2001 B1
6195335 Calvignac et al. Feb 2001 B1
6201492 Amar et al. Mar 2001 B1
6222845 Shue et al. Apr 2001 B1
6243667 Kerr et al. Jun 2001 B1
6249528 Kothary Jun 2001 B1
6263374 Olnowich et al. Jul 2001 B1
6272144 Berenbaum et al. Aug 2001 B1
6304903 Ward Oct 2001 B1
6320859 Momirov Nov 2001 B1
6333929 Drottar et al. Dec 2001 B1
6335932 Kadambi et al. Jan 2002 B2
6335935 Kadambi et al. Jan 2002 B2
6343072 Bechtolsheim et al. Jan 2002 B1
6351143 Guccione et al. Feb 2002 B1
6356550 Williams Mar 2002 B1
6356942 Bengtsson et al. Mar 2002 B1
6359879 Carvey et al. Mar 2002 B1
6363077 Wong et al. Mar 2002 B1
6366557 Hunter Apr 2002 B1
6369855 Chauvel et al. Apr 2002 B1
6421352 Manaka et al. Jul 2002 B1
6424658 Mathur Jul 2002 B1
6424659 Viswanadham et al. Jul 2002 B2
6427185 Ryals et al. Jul 2002 B1
6430190 Essbaum et al. Aug 2002 B1
6457175 Lerche Sep 2002 B1
6459705 Cheng Oct 2002 B1
6460088 Merchant Oct 2002 B1
6463063 Bianchini, Jr. et al. Oct 2002 B1
6466608 Hong et al. Oct 2002 B1
6470436 Croft et al. Oct 2002 B1
6473428 Nichols et al. Oct 2002 B1
6473433 Bianchini, Jr. et al. Oct 2002 B1
6477174 Dooley et al. Nov 2002 B1
6480477 Treadaway et al. Nov 2002 B1
6490280 Leung Dec 2002 B1
6493347 Sindhu et al. Dec 2002 B2
6496502 Fite et al. Dec 2002 B1
6505281 Sherry Jan 2003 B1
6510138 Pannell Jan 2003 B1
6522656 Gridley Feb 2003 B1
6532229 Johnson et al. Mar 2003 B1
6532234 Yoshikawa et al. Mar 2003 B1
6535504 Johnson et al. Mar 2003 B1
6549519 Michels et al. Apr 2003 B1
6553370 Andreev et al. Apr 2003 B1
6556208 Congdon et al. Apr 2003 B1
6567404 Wilford et al. May 2003 B1
6570884 Connery et al. May 2003 B1
6577631 Keenan et al. Jun 2003 B1
6587432 Putzolu et al. Jul 2003 B1
6591302 Boucher et al. Jul 2003 B2
6601186 Fox et al. Jul 2003 B1
6606300 Blanc et al. Aug 2003 B1
6628650 Saito et al. Sep 2003 B1
6633580 Torudbakken et al. Oct 2003 B1
6636483 Pannell Oct 2003 B1
6643269 Fan et al. Nov 2003 B1
6654342 Dittia et al. Nov 2003 B1
6654346 Mahalingaiah et al. Nov 2003 B1
6654370 Quirke et al. Nov 2003 B1
6654373 Maher, III et al. Nov 2003 B1
6658002 Ross et al. Dec 2003 B1
6661791 Brown Dec 2003 B1
6671275 Wong et al. Dec 2003 B1
6678248 Haddock et al. Jan 2004 B1
6681332 Byrne et al. Jan 2004 B1
6683872 Saito Jan 2004 B1
6687217 Chow et al. Feb 2004 B1
6687247 Wilford et al. Feb 2004 B1
6691202 Vasquez et al. Feb 2004 B2
6696917 Heitner et al. Feb 2004 B1
6697359 George Feb 2004 B1
6697368 Chang et al. Feb 2004 B2
6700894 Shung Mar 2004 B1
6708000 Nishi et al. Mar 2004 B1
6721229 Cole Apr 2004 B1
6721268 Ohira et al. Apr 2004 B1
6721313 Van Duyne Apr 2004 B1
6721338 Sato Apr 2004 B1
6731875 Kartalopoulos May 2004 B1
6735218 Chang et al. May 2004 B2
6745277 Lee et al. Jun 2004 B1
6747971 Hughes et al. Jun 2004 B1
6751224 Parruck et al. Jun 2004 B1
6754881 Kuhlmann et al. Jun 2004 B2
6765866 Wyatt Jul 2004 B1
6775706 Fukumoto et al. Aug 2004 B1
6778546 Epps et al. Aug 2004 B1
6781990 Puri et al. Aug 2004 B1
6785290 Fujisawa et al. Aug 2004 B1
6788697 Aweya et al. Sep 2004 B1
6792484 Hook Sep 2004 B1
6792502 Pandya et al. Sep 2004 B1
6798740 Senevirathne et al. Sep 2004 B1
6804220 Odenwalder et al. Oct 2004 B2
6804731 Chang et al. Oct 2004 B1
6807179 Kanuri et al. Oct 2004 B1
6807363 Abiko et al. Oct 2004 B1
6810038 Isoyama et al. Oct 2004 B1
6810046 Abbas et al. Oct 2004 B2
6813243 Epps et al. Nov 2004 B1
6813266 Chiang et al. Nov 2004 B1
6816467 Muller et al. Nov 2004 B1
6831923 Laor et al. Dec 2004 B1
6831932 Boyle et al. Dec 2004 B1
6836808 Bunce et al. Dec 2004 B2
6839346 Kametani Jan 2005 B1
6842422 Bianchini, Jr. Jan 2005 B1
6854117 Roberts Feb 2005 B1
6856600 Russell et al. Feb 2005 B1
6859438 Haddock et al. Feb 2005 B2
6865153 Hill et al. Mar 2005 B1
6901072 Wong May 2005 B1
6906936 James et al. Jun 2005 B1
6912637 Herbst Jun 2005 B1
6920154 Aschler Jul 2005 B1
6925516 Struhsaker et al. Aug 2005 B2
6934305 Duschatko et al. Aug 2005 B1
6937606 Basso et al. Aug 2005 B2
6946948 McCormack et al. Sep 2005 B2
6957258 Maher, III et al. Oct 2005 B2
6959007 Vogel et al. Oct 2005 B1
6973092 Zhou et al. Dec 2005 B1
6975599 Johnson et al. Dec 2005 B1
6978309 Dorbolo Dec 2005 B1
6980552 Belz et al. Dec 2005 B1
6982974 Saleh et al. Jan 2006 B1
6990102 Kaniz et al. Jan 2006 B1
6993032 Dammann et al. Jan 2006 B1
6996663 Marsteiner Feb 2006 B1
7005812 Mitchell Feb 2006 B2
7009968 Ambe et al. Mar 2006 B2
7012919 So et al. Mar 2006 B1
7050430 Kalkunte et al. May 2006 B2
7080238 Van Hoof et al. Jul 2006 B2
7082133 Lor et al. Jul 2006 B1
7103041 Speiser et al. Sep 2006 B1
7499395 Rahman et al. Sep 2006 B2
7120744 Klein Oct 2006 B2
7126948 Gooch et al. Oct 2006 B2
7126956 Scholten Oct 2006 B2
7161948 Sampath et al. Jan 2007 B2
7167471 Calvignac et al. Jan 2007 B2
7176911 Kidono et al. Feb 2007 B1
7185141 James et al. Feb 2007 B1
7185266 Blightman et al. Feb 2007 B2
7187687 Davis et al. Mar 2007 B1
7190696 Manur et al. Mar 2007 B1
7191277 Broyles Mar 2007 B2
7191468 Hanner Mar 2007 B2
7203194 Chang et al. Apr 2007 B2
7206283 Chang et al. Apr 2007 B2
7212536 MacKiewich et al. May 2007 B2
7218637 Best et al. May 2007 B1
7219293 Tsai et al. May 2007 B2
7228509 Dada et al. Jun 2007 B1
7236490 Chang et al. Jun 2007 B2
7237058 Srinivasan Jun 2007 B2
7249306 Chen Jul 2007 B2
7266117 Davis Sep 2007 B1
7272611 Cuppett et al. Sep 2007 B1
7272613 Sim et al. Sep 2007 B2
7277425 Sikdar Oct 2007 B1
7283547 Hook et al. Oct 2007 B1
7286534 Kloth Oct 2007 B2
7324509 Ni Jan 2008 B2
7355970 Lor Apr 2008 B2
7356030 Chang et al. Apr 2008 B2
7366100 Anderson et al. Apr 2008 B2
7391769 Rajkumar et al. Jun 2008 B2
7428693 Obuchi et al. Sep 2008 B2
7512127 Chang et al. Mar 2009 B2
7558193 Bradbury et al. Jul 2009 B2
7561590 Walsh Jul 2009 B1
7596139 Patel et al. Sep 2009 B2
7609617 Appanna et al. Oct 2009 B2
7613991 Bain Nov 2009 B1
7636369 Wong Dec 2009 B2
7649885 Davis Jan 2010 B1
7657703 Singh Feb 2010 B1
7738450 Davis Jun 2010 B1
7813367 Wong Oct 2010 B2
7817659 Wong Oct 2010 B2
7830884 Davis Nov 2010 B2
7903654 Bansal Mar 2011 B2
7933947 Fleischer et al. Apr 2011 B2
7948872 Patel et al. May 2011 B2
7953922 Singh May 2011 B2
7953923 Singh May 2011 B2
8014278 Subramanian et al. Sep 2011 B1
8037399 Wong et al. Oct 2011 B2
8090901 Lin et al. Jan 2012 B2
20010001879 Kubik et al. May 2001 A1
20010007560 Masuda et al. Jul 2001 A1
20010026551 Horlin Oct 2001 A1
20010048785 Steinberg Dec 2001 A1
20010053150 Clear et al. Dec 2001 A1
20020001307 Nguyen et al. Jan 2002 A1
20020040417 Winograd et al. Apr 2002 A1
20020054594 Hoof et al. May 2002 A1
20020054595 Ambe et al. May 2002 A1
20020069294 Herkersdorf et al. Jun 2002 A1
20020073073 Cheng Jun 2002 A1
20020085499 Toyoyama et al. Jul 2002 A1
20020087788 Morris Jul 2002 A1
20020089937 Venkatachary et al. Jul 2002 A1
20020089977 Chang et al. Jul 2002 A1
20020091844 Craft et al. Jul 2002 A1
20020091884 Chang et al. Jul 2002 A1
20020097713 Chang et al. Jul 2002 A1
20020105966 Patel et al. Aug 2002 A1
20020126672 Chow et al. Sep 2002 A1
20020131437 Tagore-Brage Sep 2002 A1
20020141403 Akahane et al. Oct 2002 A1
20020146013 Karlsson et al. Oct 2002 A1
20020161967 Kirihata et al. Oct 2002 A1
20020169786 Richek Nov 2002 A1
20020191605 Van Lunteren et al. Dec 2002 A1
20030009466 Ta et al. Jan 2003 A1
20030012198 Kaganoi et al. Jan 2003 A1
20030033435 Hanner Feb 2003 A1
20030043800 Sonksen et al. Mar 2003 A1
20030043848 Sonksen Mar 2003 A1
20030048785 Calvignac et al. Mar 2003 A1
20030061459 Aboulenein et al. Mar 2003 A1
20030074657 Bramley, Jr. Apr 2003 A1
20030081608 Barri et al. May 2003 A1
20030095548 Yamano May 2003 A1
20030103499 Davis et al. Jun 2003 A1
20030103500 Menon et al. Jun 2003 A1
20030108052 Inoue et al. Jun 2003 A1
20030110180 Calvignac et al. Jun 2003 A1
20030115403 Bouchard et al. Jun 2003 A1
20030120861 Calle et al. Jun 2003 A1
20030128668 Yavatkar et al. Jul 2003 A1
20030137978 Kanetake Jul 2003 A1
20030152084 Lee et al. Aug 2003 A1
20030152096 Chapman Aug 2003 A1
20030156586 Lee et al. Aug 2003 A1
20030159086 Arndt Aug 2003 A1
20030165160 Minami et al. Sep 2003 A1
20030169470 Alagar et al. Sep 2003 A1
20030174719 Srinivas et al. Sep 2003 A1
20030177221 Ould-Brahim et al. Sep 2003 A1
20030198182 Pegrum et al. Oct 2003 A1
20030200343 Greenblat et al. Oct 2003 A1
20030214956 Navada et al. Nov 2003 A1
20030215029 Limberg Nov 2003 A1
20030223424 Anderson et al. Dec 2003 A1
20030223466 Noronha, Jr. et al. Dec 2003 A1
20030227943 Hallman et al. Dec 2003 A1
20040022263 Zhao et al. Feb 2004 A1
20040028060 Kang Feb 2004 A1
20040054867 Stravers et al. Mar 2004 A1
20040062245 Sharp et al. Apr 2004 A1
20040062246 Boucher et al. Apr 2004 A1
20040088469 Levy May 2004 A1
20040128434 Khanna et al. Jul 2004 A1
20040141504 Blanc Jul 2004 A1
20040179548 Chang et al. Sep 2004 A1
20040190547 Gordy et al. Sep 2004 A1
20040208177 Ogawa Oct 2004 A1
20040208181 Clayton et al. Oct 2004 A1
20040223502 Wybenga et al. Nov 2004 A1
20040235480 Rezaaifar et al. Nov 2004 A1
20040264380 Kalkunte et al. Dec 2004 A1
20050010630 Doering et al. Jan 2005 A1
20050010849 Lee et al. Jan 2005 A1
20040041684 Reynolds et al. Feb 2005 A1
20050089049 Chang et al. Apr 2005 A1
20050097432 Obuchi et al. May 2005 A1
20050120122 Farnham Jun 2005 A1
20050132132 Rosenbluth et al. Jun 2005 A1
20050132179 Glaum et al. Jun 2005 A1
20050138276 Navada et al. Jun 2005 A1
20050144369 Jaspers Jun 2005 A1
20050152324 Benveniste Jul 2005 A1
20050152335 Lodha et al. Jul 2005 A1
20050169317 Pruecklmayer Aug 2005 A1
20050175018 Wong Aug 2005 A1
20050185577 Sakamoto et al. Aug 2005 A1
20050185652 Iwamoto Aug 2005 A1
20050193316 Chen Sep 2005 A1
20050201387 Willis Sep 2005 A1
20050226236 Klink Oct 2005 A1
20050246508 Shaw Nov 2005 A1
20050249124 Elie-Dit-Cosaque et al. Nov 2005 A1
20060031610 Liav et al. Feb 2006 A1
20060034452 Tonomura Feb 2006 A1
20060050690 Epps et al. Mar 2006 A1
20060077891 Smith et al. Apr 2006 A1
20060092829 Brolin et al. May 2006 A1
20060092929 Chun May 2006 A1
20060114876 Kalkunte Jun 2006 A1
20060146374 Ng et al. Jul 2006 A1
20060165089 Klink Jul 2006 A1
20060209685 Rahman et al. Sep 2006 A1
20060221841 Lee et al. Oct 2006 A1
20060268680 Roberts et al. Nov 2006 A1
20070038798 Bouchard et al. Feb 2007 A1
20070088974 Chandwani et al. Apr 2007 A1
20070127464 Jain et al. Jun 2007 A1
20070179909 Channasagara Aug 2007 A1
20070208876 Davis Sep 2007 A1
20070253420 Chang et al. Nov 2007 A1
20070258475 Chinn et al. Nov 2007 A1
20070288690 Shingyu et al. Dec 2007 A1
20080002707 Davis Jan 2008 A1
20080031263 Ervin et al. Feb 2008 A1
20080037544 Yano et al. Feb 2008 A1
20080049742 Bansal Feb 2008 A1
20080069125 Reed et al. Mar 2008 A1
20080092020 Hasenplaugh et al. Apr 2008 A1
20080095169 Chandra et al. Apr 2008 A1
20080117075 Seddigh et al. May 2008 A1
20080181103 Davies Jul 2008 A1
20080205407 Chang et al. Aug 2008 A1
20080307288 Ziesler et al. Dec 2008 A1
20090175178 Yoon et al. Jul 2009 A1
20090279423 Suresh et al. Nov 2009 A1
20090279440 Wong et al. Nov 2009 A1
20090279441 Wong et al. Nov 2009 A1
20090279541 Wong et al. Nov 2009 A1
20090279542 Wong et al. Nov 2009 A1
20090279548 Davis et al. Nov 2009 A1
20090279549 Ramanathan et al. Nov 2009 A1
20090279558 Davis et al. Nov 2009 A1
20090279559 Wong et al. Nov 2009 A1
20090279561 Chang et al. Nov 2009 A1
20090282148 Wong et al. Nov 2009 A1
20090282322 Wong et al. Nov 2009 A1
20090287952 Patel et al. Nov 2009 A1
20090290499 Patel et al. Nov 2009 A1
20100034215 Patel et al. Feb 2010 A1
20100046521 Wong Feb 2010 A1
20100061393 Wong Mar 2010 A1
20100100671 Singh Apr 2010 A1
20100135313 Davis Jun 2010 A1
20100161894 Singh Jun 2010 A1
20100246588 Davis Sep 2010 A1
20100293327 Lin et al. Nov 2010 A1
20110002340 Davis Jan 2011 A1
20110044340 Bansal et al. Feb 2011 A1
20110110237 Wong et al. May 2011 A1
Foreign Referenced Citations (5)
Number Date Country
1380127 Jan 2004 EP
2003-289359 Oct 2003 JP
2004-537871 Dec 2004 JP
WO 0184728 Nov 2001 WO
WO 0241544 May 2007 WO
Related Publications (1)
Number Date Country
20090279546 A1 Nov 2009 US
Divisions (1)
Number Date Country
Parent 10140752 May 2002 US
Child 11668322 US