The invention relates to a modular construction device designed to join with other construction devices to form a variety of three-dimensional structures.
Puzzles and constructor sets have existed for a long time. Some products in this field have attempted to solve the problem of designing a construction element that can be assembled with other such construction elements to form three-dimensional forms. However, I have found that each of these products has its shortcomings, which leads me to believe that there is opportunity for innovation in the field.
Modular origami paper folding, or kusudama, has existed for centuries. Many enthusiasts create forms from folded, and sometimes cut, repeating modules. Folding each unit by hand is a time-consuming and laborious process. For example, a stellated form with 90 pieces could take days to complete. For that reason, making and exploring modular origami forms is only reserved for true enthusiasts. Furthermore, forms constructed from paper are fragile and susceptible to the elements, making repeat assembly and disassembly not a viable option.
U.S. Patent Publication no. US20170239587A1 to Sven Kristian Frederick ERICKSEN entitled Construction Unit refers to “a construction unit configured to interlock with other construction units to create a variety of different shapes.” In this publication, the geometry of the form is obscured by over-pronounced lobes and the assembled structure appears flimsy or lacking dimensional stability.
U.S. Pat. No. 4,976,652A to Idan Schwartz entitled Flat handcraft construction element with slot and opposed tabs refers to “A handcraft construction element comprising a substantially square central engagement portion defining a diagonal slit therethrough and two oppositely disposed triangular integral flaps extending on opposite sides of said engagement portion and hinged therefrom by integral hinges, wherein each of said flaps defines an extended tongue adapted to engage said diagonal slit of another such element; and a sheet having a plurality of handcraft construction elements pre-cut for punching out.” This construction unit is limited in the variety of forms which can be assembled. The tongue described herein is a hook-like element which only provides unidirectional resistance and produces limited stability. Furthermore, hook-like engagement elements can be difficult to engage and disengage within the tight margin of an assembled three-dimensional structure.
U.S. Pat. No. 3,895,229A to Holger Strom entitled Hollow shell-like bodies and element for use in construction of same refers to “flexible sheet elements for use in the construction of hollow shell like bodies . . . ” In order to construct these shell-like bodies you must handle many flexible sheet elements simultaneously, making assembly difficult and confusing for some. Furthermore, the assembled bodies lack structural rigidity.
A flexible modular construction device made from flat sheet material which can be assembled with other devices to form a superstructure. The module has a central engagement portion defined by one or more polygon panels. At least one of said polygon panels has at least one centrally located opening. At least one flap portion extends from one or more sides of the polygon panels and is integrally hinged to that polygon panel. Said flap portion has at least one opening. A centrally located slit is positioned between each flap portion and that flap portion's adjoining polygon panel. At least one tongue portion extends from the polygon panels. The tongue is adapted to sequentially engage the slit, the flap portion opening, and the one polygon panel opening of identical modules, whereby a plurality of construction devices may be assembled in a variety of configurations to form three-dimensional bodies.
The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may however be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be present therebetween. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, and/or section from another element, component, region, layer, and/or section.
It will be understood that the elements, components, regions, layers and sections depicted in the figures are not necessarily drawn to scale.
The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Furthermore, relative terms, such as “lower” or “bottom,” “upper” or “top,” “left” or “right,” “above” or “below,” “front” or “rear,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
Unless otherwise defined, all terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Exemplary embodiments of the present invention are described herein with reference to idealized embodiments of the present invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the present invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. The invention illustratively disclosed herein suitably may be practiced in the absence of any elements that are not specifically disclosed herein.
Several advantages of one or more aspects are as follows: to provide a construction element that makes assembly and disassembly faster and easier by means of following a simple order of operations, that allows users to sculpt and assemble devices without the necessity of a pre-prescribed end form, that makes the exploration of geometric forms more accessible and economically viable, that can be repeatedly bent and creased without tearing, that is more versatile, that makes possible the assembly of more structurally stable three-dimensional forms, that makes possible the assembly of flexible and convertible structures. These and more benefits of one or more aspects will become apparent from a study of the following description and accompanying drawings.
While the invention has been described in terms of exemplary embodiments, it is to be understood that the words that have been used are words of description and not of limitation. As is understood by persons of ordinary skill in the art, a variety of modifications can be made without departing from the scope of the invention defined by the following claims, which should be given their fullest, fair scope.
DFDF One is able to assemble devices into various structural configurations by following a simple order of operations. Consider
You can now optionally close the pyramid by repeating the same process when joining the two open ends of the assembly, or introduce additional units to form a more complex configuration. By interweaving pieces together in this fashion, with varying configurations, the user is able to assemble a myriad of three-dimensional structures.
To disassemble, simply disengage the tongues from the openings, and pull the desired pieces apart.
Advantages of the present embodiments over known structures are numerous. The reader will see that one or more aspects of the embodiments of the construction element provide a greater scope for the exploration of a variety of geometric forms. The limits of this versatility are yet to be discovered. Some aspects make possible the assembly of three-dimensional forms with superior structural stability, while also enabling the assembly of flexible and convertible structures. Some aspects increase the ease of assembly and disassembly. Together, the aspects of the embodiments provide a superior modular construction element.
While the above detailed description contains many specificities, these should not be construed as limitations on the scope, but rather as an exemplification of several embodiments thereof. Many other variations are possible. Preferred measurements are disclosed, but the length, width, depth of measures disclosed may also work plus or minus 10%, 25%, 50%, 100%, 200% or more, depending on the size and shape of the three dimensional structure desired. For example, tongue 26 can be of different size, length, or shape as long as slit 24 and openings 16 and 22 are made large enough to accommodate the tongue's passage, yet not too large as to have an excess of space around the tongue once it is fully engaged in the slit and openings. The openings could be of different size, length, or shape as long as they are capable of accommodating the tongue's passage. There could be more than one tongue 26 and more than one flap 18 connected to each central body portion polygon panel 12. The body portion panel 12 could be a differently shaped polygon, such as a square, and there may be a single body portion instead of two body portions within each element. Conversely, there could be a plurality of body portions, tongues, and flap portions such as shown in embodiment 300 that allow the user to fold and fasten a geometric net, defined by the plurality of body portions and integral hinges, into a three-dimensional structure. The elements can be made smaller or larger, and of different materials, and thicknesses. They can be optionally printed on, or otherwise finished in a variety of textures, patterns, and colors.
Accordingly, the scope should be determined not by the embodiments illustrated, but rather by the appended claims and their legal equivalents.
This application is a national stage application, filed under 35 U.S.C. § 371 of International Application No. PCT/US2019/056015, filed Oct. 12, 2019, which claims benefit of and priority to U.S. Provisional Patent Application No. 62/745,275, filed Oct. 12, 2018, the contents of each are incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/056015 | 10/12/2019 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/077321 | 4/16/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2936939 | Lundquist | May 1960 | A |
3359657 | Hedberg | Dec 1967 | A |
3447733 | Nelson | Jun 1969 | A |
3665669 | Huber | May 1972 | A |
3666607 | Weissman | May 1972 | A |
3895229 | Strom | Jul 1975 | A |
4454678 | Duvivier | Jun 1984 | A |
4976652 | Schwartz | Dec 1990 | A |
5002224 | Muise | Mar 1991 | A |
5125565 | Rogers | Jun 1992 | A |
5171014 | Hsieh | Dec 1992 | A |
5372450 | Blodgett | Dec 1994 | A |
5400918 | Prodaniuk | Mar 1995 | A |
5489230 | Gavula, Jr. | Feb 1996 | A |
5597112 | Knapp | Jan 1997 | A |
5662508 | Smith | Sep 1997 | A |
5878940 | Rosenbalm | Mar 1999 | A |
6179681 | Matos | Jan 2001 | B1 |
7389908 | Cohen | Jun 2008 | B2 |
9339735 | Morris | May 2016 | B2 |
11110368 | Nawracala | Sep 2021 | B2 |
20040046011 | Lin | Mar 2004 | A1 |
20040182741 | Goers et al. | Sep 2004 | A1 |
20060219764 | Copeman | Oct 2006 | A1 |
20080149694 | Lee et al. | Jun 2008 | A1 |
20100178839 | Khattah Omar | Jul 2010 | A1 |
20110281705 | Aganovic et al. | Nov 2011 | A1 |
20120309258 | Hawthorne | Dec 2012 | A1 |
20170239587 | Ericksen | Aug 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20210354045 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62745275 | Oct 2018 | US |