The present invention relates to the molding of tires, and in particular, the molding of treads for a tire.
As a tire wears, the surface of the tread decreases due to frictional contact with the road surface. As the tire wears, the volume of the tire grooves decrease and the net to gross ratio increases. Eventually the tire will require replacement.
The tread elements in relief on a tire tread, such as the sipes, tread blocks and grooves, play a fundamental role in tire traction or adhesion to the road both in the transverse direction and in the circumferential direction. Traction is especially critical when travelling on wet or snowy roads. For wet conditions, the grooves act as evacuation channels for allowing water to pass through the tread.
It is known in the prior art to attempt to solve the degrading tread condition through the use of sunken grooves. The sunken grooves, due to a limitation in manufacturing, are generally oriented perpendicular to the shoulder region. Molding elements are typically used to form the sunken grooves, and they are often difficult to remove from the tire once the tire has been cured. To make a sunken groove, the mold elements need to be rigid enough to penetrate the uncured or green rubber tread, but flexible enough to be extracted from the cured tire without damaging the tire. Another requirement is that the sunken groove needs to be large and thick enough to be efficient, which leads to a molding element so stiff that its extraction would damage the tire tread or the element itself would fail by a fatigue fracture. Thus it is desired to have a method and apparatus of forming sunk grooves that does not have the disadvantages described above.
A molding element for forming a sunken groove in a tire is provided. The molding device comprises a thin flexible wire having a desired cross-sectional shape. The wire thickness can range from about 0.5 mm to about 5 mm. The flexible wire is made from a hyperelastic material or shape memory alloy.
The invention will be described by way of example and with reference to the accompanying drawings in which:
The molding device 10 may be comprised of a thin flexible wire 13 having a distal end 11, a mid-section 14 and a second end 15. The wire thickness can range from about 0.5 mm to about 5 mm. Two or more molding devices may be utilized, as shown in
The mid-section 14 of the flexible wire may comprise a radiused bend as shown in
Examples of cross-sections of the molding device are shown in
The molding device preferably has a curvature in the surface parallel to the tire tread outside surface or in a plane perpendicular to the tire tread outside surface. The bottom of the molding element or assembly disposed up to a maximum of 140% of the non-skid dimension but preferably between 80% to 120% of this value during the vulcanization phase.
As shown in
The flexible wire 13 may be made of a flexible metal or material. It is preferred that the material be highly elastic, hyperelastic or superelastic, examples of which include, but are not limited to, shape memory alloys, Nickel-Titanium alloys, CuZnAl, CuAlNi and CuAlBe. It is preferred that the wire material have an elastic limit greater than or equal to about 5% elongation, and more preferably greater than or equal to 10%. The wire may have any desired cross-sectional shape.
Variations in the present invention are possible in light of the description of it provided herein. While certain representative embodiments and details have been shown for the purpose of illustrating the subject invention, it will be apparent to those skilled in this art that various changes and modifications can be made therein without departing from the scope of the subject invention. It is, therefore, to be understood that changes can be made in the particular embodiments described which will be within the full intended scope of the invention as defined by the following appended claims.
This application claims the benefit of, and incorporates by reference, U.S. Provisional Application No. 60/876,326 filed Dec. 21, 2006.
Number | Date | Country | |
---|---|---|---|
60876326 | Dec 2006 | US |