The present disclosure generally relates to the field of pool coverings. In particular, the present disclosure is directed to flexible net domes for outdoor pools and methods of installing and using the same.
Use and enjoyment of outdoor pools can be impacted by bugs and debris. Some existing pool covers provide a level of protection while allowing a user to enjoy the pool, however, existing pool covers typically contain a large number of frame members and connections making them difficult to assemble and disassemble, have too many structural components thereby reducing the feeling of an outdoor experience, are heavy, perform poorly when subjected to heavy wind loads, are not easily adaptable to differently shaped pools, are often overly complex and/or are prohibitively expensive.
In one implementation, the present disclosure is directed to a pool cover which includes a frame that includes a plurality of poles each having first and second ends and a pole connection member, and a net fabric disposed on the frame; wherein the first end of each of the poles is coupled to the pool and the second end of each of the poles is located above the pool and coupled to the pole connection member, wherein the frame extends above the pool and defines an interior space between the frame and a surface of water in the pool to thereby allow use of the pool while the pool cover is installed on the pool.
In another implementation, the present disclosure is directed to a pool cover kit The Kit includes a frame that includes a plurality of poles each having first and second ends and a pole connection member; and a net fabric configured to be disposed on the frame; wherein the first end of each of the poles are configured to be coupled to a pool and the second end of each of the poles are configured to be located above the pool and coupled to the pole connection member, wherein the frame is configured to extend above the pool and define an interior space between the frame and a surface of water in the pool to thereby allow use of the pool while the pool cover is installed on the pool.
In yet another implementation, the present disclosure is directed to a method of installing a pool cover that includes a net fabric and a frame that includes a plurality of poles and a pole connection member The method includes coupling a first end of each pole to a pool; and performing a coupling and bending process that includes coupling a second end of each of the poles to the pole connection member and bending the poles to thereby form a frame that extends above the pool.
For the purpose of illustrating the disclosure, the drawings show aspects of one or more embodiments of the disclosure. However, it should be understood that the present disclosure is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
Aspects of the present disclosure include inexpensive roofs for pools that allows the user to enjoy the outdoor pool experience, with the surrounding views, sun, and wind breezes, without getting bit by bugs or having to spend time removing debris from the pool water. Some examples include an attractive roof cover for pools that can be installed by the owner with minimum effort, left on as long as the pool is in place, even during wind and rain storms, and dismantled and stored with minimum effort. Some examples include coverings configured to adapt to a variety of pool shapes and sizes and the ability to use the roof structure on more than just one pool size and shape with minimum or no modifications.
Some examples include a flexible, lightweight, inexpensive structural frame covered by a net fabric that forms an attractive dome shaped roof for an outdoor pool that does not interfere with the use of the pool. Some examples include coverings that allow the user to fully enjoy the outdoor experience of the pool with its sun, views and wind breezes, without getting bit by bugs or having to remove debris from the pool. In some examples the covering can be easily assembled and dismantled by one person and can be kept on the pool during inclement weather without it being damaged. Some examples include a pool cover kit that includes a frame that includes a plurality of poles and a pole connection member, and a net fabric configured to be disposed on the frame, where the pool cover kit can be easily assembled and installed and easily dissembled for storage.
Some examples include a structural frame that consists of a plurality of flexible elongate members, such as poles, and a tension ring for connecting the poles and forming a frame that provides a support for a covering such as a net fabric. In some examples the frame includes poles made of a flexible plastic pipe, for example a schedule 40 PVC 1120 pipe. In other examples, other tubing, piping, or solid rod may be used having a strength and flexibility selected for a particular application. In some examples a frame includes ½″ diameter poles and in some examples may also include the same or different sized, e.g., larger diameter poles, such as ¾″ diameter pipe, for use as horizontal frame members for laterally bracing vertical frame members, for example, in a implementations designed for inground pools. In some examples a frame may include telescoping frame members and formed from a plurality of elongate members of varying diameter as needed to form a telescoping assembly. Diameter and wall thickness for frame members made from materials other than PVC material may be selected according to the strength and flexibility of the material and the requirements of a particular application.
In some examples, a frame includes a tension ring that is made of a synthetic rope. In some examples, a frame includes a tension ring that is formed from an assembly that includes a synthetic rope and a flexible plastic ring having a configuration and construction similar to a hula hoop. In some examples, a frame includes a plurality of poles connected over the center of a pool by the tension ring, the poles each forming an arc shape and radiating out from the center to the pool perimeter, ends of the poles being held in place vertically to designated vertical pool frame members for above ground pools and to the pool wall for inground pools. In some examples a frame for inground pools includes additional poles along the pool walls that laterally brace the vertical poles connected to the tension ring.
In some examples, coverings made in accordance with the present disclosure are designed and configured to have a large amount of elastic behavior and resiliently flex and deform in response to static or dynamic loading such as loading from wind. As dynamic loads are imparted on the net material and structural frame the individual poles are designed and configured to move in a similar manner to a flag flapping in the wind, thereby releasing much of the dynamic loading rather than resisting the loading. Due to the pole and tension ring flexibility, and the pole movement having limits created by the tension rings connection to the other poles, even under relatively high winds, the structural frame returns back to its original position once the loads are removed without permanent damage to the roof structure.
The ability to release rather than resist dynamic loads allows for a frame construction that includes elements that can be lighter and fewer in number than prior art pool roofs that are designed to resist dynamic loads. For example, in one implementation, the number of poles of the structural frame on an eighteen foot diameter above ground pool is less than 10 and in some cases, approximately eight. With such a small number of framing members not only is the covering easy to install and dismantle but visual interference from the frame is minimized allowing for maximum sun and views and providing a more enjoyable experience of being outside in an outdoor pool while still being protected from bugs and debris. The simple design also results in a product that is inexpensive to produce.
Covers made in accordance with the present disclosure can be applied to all pool shapes and sizes and resulting in an attractive roof for the pool having the shape of either a dome, an elongated dome, or a combination of elongated domes. In some examples, a cover for a circular or square pool may consist of a structural frame made up of poles equally spaced around the pool connected to a tension ring at the top of the roof located over the center of the pool with a resulting roof shape of a single dome. In some examples, for a rectangular shaped pool there may be two tension rings, one centered over each half of the pool with poles radiating out from each tension ring. The net fabric can run smoothly between these two sections resulting in an elongated dome shape roof. Alternate pool shapes may have additional tension rings as required with the net fabric running between them.
In some examples, one cover may be designed and configured to be used on different size pools and different shaped pools. In one example, a net dome structure is designed and figured to be installed on a range of differently sized pools, for example, an above ground pool having a diameter between 10 feet and 20 feet. In one example, the same net dome may be installed on either an 18 foot diameter pool or a 14 foot diameter pool. In some examples, a height of the resulting dome when installed is inversely related to a diameter of the pool with the height of the dome being lower for larger diameter pools. A frame may also be configured to be adjustable for different sized pools by adjusting the tension ring system, for example, by reducing a diameter of the tension ring and/or reducing a length of connection members connecting the vertical poles to the tension ring. Any extra fabric in the dome when installing on a smaller pool may be trimmed or gathered and secured, for example, at the base or top of the dome. A net dome may be adaptable to a round or rectangular pool by providing vertical poles as independent members that can be selectively located at vertical frame members of the round or rectangular pool.
In some examples, a net fabric covering the structural frame may be made of a synthetic fabric that is widely sold as mosquito netting. Any net density may be used ranging from approximately 280 openings per square inch up to 8000 openings per square inch. The wind and rain can penetrate easily through a range of net densities without negatively impacting the flexibility and resilience of the structure. Nets with lower opening density and larger openings allow more breeze and sun and a relatively large opening can still keep out mosquitos, whereas nets with higher opening density and smaller openings block more wind but provide more shade and protection from biting insects smaller than mosquitos.
Turning now to the drawings, the present disclosure includes illustrated examples of flexible net coverings to demonstrate the use of flexible net domes for circular above ground pools, noncircular above ground pools and inground pools.
Pool cover 100 includes a frame formed from a plurality of flexible poles 6 and a pole connection member 11, each of the poles having a first end 102 (only one labeled) connected to the pool frame and a second end 104 (only one labeled) connected to the tension ring. In the illustrated example, each of the poles 6 are selectively connected to alternate vertical pool frame members 3. Second ends 104 of poles 6 are connected to the pole connection member 11. The poles 6 and pole connection member 11 make up a structural frame. In the illustrated example, poles 6 are flexible and straight when not connected to the structural frame and configured to be resiliently bent into a curved shape to form a portion of the frame. Thus, the poles 6 are straight when disconnected from the pole connection member 11 and resiliently bent in an arc shape when coupled to the pool and the pole connection member, thereby applying a tension force and a vertical force on the pole connection member when coupled thereto. In other examples, one or more of poles 6 may have a predefined bent shape and may be rigid or flexible. Pool cover 100 also includes a net fabric 12 disposed on the structural frame and the horizontal pool frame 4 for preventing insects and debris from entering the pool. The poles 6 shown in
Referring to
In the illustrated example, each of poles 6 are slidably connected to the pole connection member 11 by way of a coupler 29, where each coupler may be in the form of a loop of an elongate member, such as a loop of rope. By allowing relative circumferential movement, the assembly of the connection member 11 and poles 6 provides for a highly configurable structure, where the poles can be selectively located where needed according to a shape and size of a given pool and then connected to the pole connection member to form an assembled structure The slidable coupling also facilitates a bending and deformation of the pool cover when subjected to loads, such as wind loads by allowing a relative sliding movement between the poles and pole connection member. Pole connection member 11 is designed and configured to allow for each pole 6 to be connected at a plurality of locations along the connection member, (here a virtually infinite number of locations due to the annular shape of the connection member) which provides for flexibility during installation and allows for the same assembly to be installed a variety of differently sized and shaped pools. The couplers 29 are designed and configured to be in tension and allow relative movement between a pole 6 and the pole connection member 11 in a lateral or circumferential direction C. In the illustrated example, the diameter of each loop that forms each coupler 29 allows for a limited amount of relative axial movement in an inner or outer radial direction R and resists a radial movement beyond that limited amount. Thus, the second ends 104 of the poles 6 are removably coupled to the pole connection member 1I by coupler 29 that allows relative circumferential movement C in a direction perpendicular to a central longitudinal axis of the pole and limits relative axial movement in a direction parallel to the central longitudinal axis of the pole
Reference is now made to
In the illustrated example, pool cover 200 includes two sections 202a and 202b and half of the poles 6 are connected to one pole connection member 11 while the other half is connected to a second pole connection member 11 as shown. The poles 6 and two pole connection members 11 make up a structural frame 204. A net fabric 12 covers the structural frame 204 and reaches over and is connected to a top perimeter of pool 10 in the same manner as pool 1. The result is an attractive elongated dome shaped pool cover.
In some examples, coverings made in accordance with the present disclosure are designed and configured to be capable of assembly and installation by only one person and no special tools. For example, an assembly sequence for pool cover 100 in
In some examples, a dismantle process may include performing the foregoing installation steps in reverse order. For example, releasing the net fabric 12 from the horizontal member 16 and removing the net fabric 12 from the poles 6 and pole connection member 11, undoing pole connection member 11, and finally removing the poles 6 from the pool vertical support frames 3 by, if straps 8 and 9 are used, either cutting or undoing the straps 8 and 9.
As indicated in
The foregoing has been a detailed description of illustrative embodiments of the disclosure. It is noted that in the present specification and claims appended hereto, conjunctive language such as is used in the phrases “at least one of X, Y and Z” and “one or more of X, Y, and Z,” unless specifically stated or indicated otherwise, shall be taken to mean that each item in the conjunctive list can be present in any number exclusive of every other item in the list or in any number in combination with any or all other item(s) in the conjunctive list, each of which may also be present in any number. Applying this general rule, the conjunctive phrases in the foregoing examples in which the conjunctive list consists of X, Y, and Z shall each encompass: one or more of X; one or more of Y; one or more of Z; one or more of X and one or more of Y; one or more of Y and one or more of Z; one or more of X and one or more of Z; and one or more of X, one or more of Y and one or more of Z.
Various modifications and additions can be made without departing from the spirit and scope of this disclosure. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments, what has been described herein is merely illustrative of the application of the principles of the present disclosure. Additionally, although particular methods herein may be illustrated and/or described as being performed in a specific order, the ordering is highly variable within ordinary skill to achieve aspects of the present disclosure. Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
379274 | Hamilton | Mar 1888 | A |
2000644 | Powers | May 1935 | A |
3039478 | Timmons | Jun 1962 | A |
3625235 | Gorgichuk | Dec 1971 | A |
3683427 | Burkholz et al. | Aug 1972 | A |
3766573 | Burkholz et al. | Oct 1973 | A |
4092809 | Bellas et al. | Jun 1978 | A |
RE30774 | Dahlbeck | Oct 1981 | E |
4901484 | Santosuosso | Feb 1990 | A |
5617681 | Lyons | Apr 1997 | A |
6079059 | Girerd | Jun 2000 | A |
6487734 | First | Dec 2002 | B1 |
8899251 | Leung | Dec 2014 | B2 |
10161157 | Grahn | Dec 2018 | B2 |
20030046755 | Hingle | Mar 2003 | A1 |
20050072055 | Martin | Apr 2005 | A1 |
20070199142 | Gray | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2750083 | May 1979 | DE |