1. Field of the Invention
The present invention relates generally to marine vessel design.
2. Prior Art
Ocean-going vessels and, in general, watercrafts, rely on three methods to negotiate the surface on water bodies:
It is interesting to note that in all of these conventional designs, there is a kind of violence that is done to the waves, a disruption of the natural flow of the water in motion that limits the attainable speed for a given power plant and vessel length. Most importantly, conventional designs subject the mechanical structure of the vessel to tremendous impacts as the speed is increased. These impacts create stresses in the materials that require additional strength, and thus weight, to be added to the design of the vessel. As a consequence, power has to be increased, with further increase in weight and so on. Range, which implies fuel weight, is also a parameter that is influenced by wave disruption: for this reason, fast vessels of limited size have generally limited range.
The present invention provides the fundamentals for the design of an entirely different type of vessel that creates the minimum possible disruption of the waves. In other words, this vessel does not push, slap or pierce the waves but instead “DANCES” with them.
The invention utilizes flexibility to change and adjust the vessel's structure and form to the water surface, instead of adjusting or changing the water to conform to the vessel. This method of adjusting the shape of the structure in motion to a fixed surface is used in skis that must follow the variation of the snow surface and absorb the shocks involved with moving over that surface at high speed.
The vessel has a pair of flexible hulls flexibly coupled to a “cabin” between and above the hulls, thereby allowing the hulls to independently follow the surface of the water. Motor pods are hinged to the back of the hulls to maintain the propulsion system in the water, even if the stern of one or both hulls tends to lift out of the water when crossing swells and the like. Various other embodiments and features are disclosed.
a, 1b and 1c are a side view, a top view and a front view, respectively, of one embodiment of the present invention.
a, 11b, 11c and 11d illustrate the use of an embodiment of the present invention for carrying and release and retrieval of another object or water vehicle, such as a submarine, a remotely operated vehicle or instrumentation package.
The type of boat design that lends itself most easily to the implementation of this invention is the catamaran. There are two main components in a catamaran: the twin hulls and the structure that holds the hulls together. This invention requires the hulls and the connecting structure to be made of such materials as to provide a high degree of flexibility and shock absorbing capability. Thus the hulls could be made of inflatable rubberized fabric (like nylon reinforced polyurethane) and the connecting structure with composite materials (like carbon reinforced epoxy, glass reinforced thermoplastics, etc.).
A problem for all existing power catamarans is the fact that, due to the wide beam necessary for stability, the stern sections of the hulls tend to come out of the water in a seaway, thus causing the propeller of the power plant to cavitate and lose forward driving force. This invention solves this problem by separating the stern section of each hull from the main hull. Each stern section is connected to its main hull by a horizontal hinge that allows up and down movements of the stern as it follow the water surface: this keeps the propeller immersed and driving at all times. The movements of such stern section can be actively controlled by servomechanisms like computer controlled hydraulics, passively controlled such as by hydraulic damping devices acting between the stern section and the respective main hull, or controlled simply by its own configuration and dynamics relative to its respective main hull.
A further advantage of the inflatable hulls made of flexible material is that very large vessels of very light weight can be constructed. The large size allows the vessel to negotiate heavier seas and the light weight allows much higher speeds than would be possible with a conventional vessel of equivalent driving power.
a, 1b and 1c show a possible embodiment of the invention described above. This vessel is 140 feet long overall, 70 feet wide, is powered by outboards 20 (inboards or turbines might alternatively be used) of total power in the range of 1000 hp, has a flexible structure 22 between the hulls 24 made of composite material struts 26 and has a cabin 28 suspended elastically under the flexible structure. The cabin 28 can be designed as a self-contained lifeboat that can be quickly released from the main vessel in case of emergency. It also may be interchangeable with “cabins” of other designs and functions, such a one cabin for passengers, another for rescue operations or for hauling cargo, etc.
The motor pods 30 are connected to the main hulls 24 by strong hinges 32 and may be limited in their up-down swing such as by suitable flexible elements and/or hydraulic shock absorbers. Control of the engines from the cabin may be by or within flexible members or hydraulics, by way of example, running from the cabin to the motor pods, or from the cabin to the hulls, and from there to the motor pods by the same or a different form of control.
The hulls and stern sections (motor pods) may be compartmentalized like an inflatable life raft or dinghy so that a puncture of one compartment will not deflate the entire hull. Similarly, each compartment may include a fuel storage sub compartment to distribute the fuel weight, particularly for long range operation of the vessel. In that regard, fuel may be stored in the motor pods, the main hulls or both, as desired.
The vessel described in
Now referring to
As before, motor pods 44 are hinged to the hulls 34 by hinges 46, best seen in FIG. 4. These hinges may be single door-type hinges fastened to the rear of the hulls in the forward section of the motor pods. In that regard, the stern 48 of the hulls, as well as the forward portion 50 of the motor pods 44, are preferably rigid members of metal or composite materials, such as fiberglass, to distribute the loads on the hinges across the periphery of the inflatable section. The front of the motor pods is preferably streamlined to reduce drag. Similarly, the stern 52 of the motor pods is also rigid to provide support for the outboard engine 54 supported thereon. If another form of propulsion is used, such as water jets, the engines driving the water jets may be positioned more forward in the motor pods 44, as desired. In either event, the motor pods 44 may have fiber reinforced composite tubes or rods 56 therein, as shown in
In the embodiments disclosed herein, the motor pods taper outward to a bigger cross-sectional area at the stern thereof to provide better flotation for the weight of the engines when the vessel is not moving or is moving at slow speed. In other embodiments, however, the outward taper might not be used. By way of example, in a configuration using a water jet, the engine may be positioned further forward in the motor pod, better distributing the engine weight along the length of the motor pod and even coupling some of the engine weight to the stern of the respective hull.
Also shown in phantom on
Commercial applications of this type of vessel are, but are not limited to:
Now referring to
In the embodiments disclosed herein, the flexible hulls and engine pods are inflatable structures, as suitable materials and construction techniques are well known and inflation may be varied to obtain the best performance or the resulting watercraft. However, other flexible materials might also be used instead or in addition to inflatable structures. By way of example, foam or foam filled or partially foam filled structures might be used, alone or together with inflatable structures to obtain greater flexibility in the cross-sectional shape of the hulls and/or engine pods, and tailored rigidity and flexibility alone or around the hulls. As another example, the hulls might be inflatable, with the engine pods being closed cell foam filled or substantially foam filled to prevent the engine pods from sinking, even if punctured by flotsam. Thus, while the present invention has been disclosed with respect to certain specific embodiments, such disclosure has been for purposes of illustration and not for purposes of limitation. Thus, many other embodiments will be obvious to those skilled in the art, all within the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application No. 60/359,868 filed Feb. 25, 2002.
| Number | Name | Date | Kind |
|---|---|---|---|
| 2119775 | Chase | Jun 1938 | A |
| 2347959 | Moore et al. | May 1944 | A |
| 2391326 | McKinley | Dec 1945 | A |
| 3002484 | Dube | Oct 1961 | A |
| 3316873 | Dismukes | May 1967 | A |
| 3348513 | Dishart | Oct 1967 | A |
| 3659546 | Miklos | May 1972 | A |
| 4365579 | Perez, Jr. | Dec 1982 | A |
| RE31563 | Stout et al. | Apr 1984 | E |
| 4495880 | Maniscalco et al. | Jan 1985 | A |
| 4968274 | Gregory | Nov 1990 | A |
| 5191848 | Hatfield | Mar 1993 | A |
| 5259331 | Hagan | Nov 1993 | A |
| 5657715 | Theriault | Aug 1997 | A |
| 6178911 | Hemphill et al. | Jan 2001 | B1 |
| Number | Date | Country |
|---|---|---|
| 439997 | Aug 1973 | AU |
| 2 590 861 | Jun 1987 | FR |
| 2 770 482 | May 1999 | FR |
| Number | Date | Country | |
|---|---|---|---|
| 20030164131 A1 | Sep 2003 | US |
| Number | Date | Country | |
|---|---|---|---|
| 60359868 | Feb 2002 | US |