Flexible patch for fluid delivery and monitoring body analytes

Information

  • Patent Grant
  • 11724029
  • Patent Number
    11,724,029
  • Date Filed
    Wednesday, June 12, 2019
    4 years ago
  • Date Issued
    Tuesday, August 15, 2023
    9 months ago
Abstract
A wearable, conductive textile patch is provided that may include any of a number of features for monitoring body analytes and/or delivering fluids to a body. In one embodiment of the invention, a single, patch-mounted system monitors glucose levels of a diabetic person and provides appropriate doses of insulin in response to the glucose measurements. A hand-held user interface can be provided for wirelessly controlling the system and/or receiving information from it. Conductive pathways can be formed in the fabric of the patch. Components that can be integrated into the flexible patch include a power source, controller, transmitter, antenna, temperature and other sensors, fluid pump, infusion set, electrical pathways, switches, controls, electrodes, connectors, resistors and other circuit elements. Such components can be embedded, interwoven or coated on to the flexible patch instead of or in addition to surface mounting. Methods associated with use of the flexible patch system are also covered.
Description
FIELD OF THE INVENTION

The present invention relates to medical devices for monitoring analytes in a living body and delivering fluids thereto, such as monitoring glucose levels and delivering insulin to people with diabetes. More particularly, the invention relates to analyte monitoring and fluid delivery systems integrated into a flexible patch.


BACKGROUND OF THE INVENTION

In recent years, people with diabetes have typically measured their blood glucose level by lancing a finger tip or other body location to draw blood, applying the blood to a disposable test strip in a hand-held meter and allowing the meter and strip to perform an electrochemical test of the blood to determine the current glucose concentration. Such discrete, in vitro testing is typically conducted at least several times per day. Continuous in vivo glucose monitoring devices are currently being developed to replace in vitro devices. Some of these continuous systems employ a disposable, transcutaneous sensor that is inserted into the skin to measure glucose concentrations in interstitial fluid. A portion of the sensor protrudes from the skin and is coupled with a durable controller and transmitter unit that is attached to the skin with adhesive. A wireless handheld unit is used in combination with the skin-mounted transmitter and sensor to receive glucose readings periodically, such as once a minute. Every three, five or seven days, the disposable sensor is removed and replaced with a fresh sensor which is again coupled to the reusable controller and transmitter unit. With this arrangement, a person with diabetes may continuously monitor their glucose level with the handheld unit. Detailed descriptions of such a continuous glucose monitoring system and its use are provided in U.S. Pat. No. 6,175,752, issued to Abbott Diabetes Care, Inc., formerly known as TheraSense, Inc., on Jan. 16, 2001, which is incorporated by reference herein in its entirety.


Portable insulin pumps are widely available and are used by diabetic people to automatically deliver insulin over extended periods of time. Currently available insulin pumps employ a common pumping technology, the syringe pump. In a syringe pump, the plunger of the syringe is advanced by a lead screw that is turned by a precision stepper motor. As the plunger advances, fluid is forced out of the syringe, through a catheter to the patient. Insulin pumps need to be very precise to deliver the relatively small volume of insulin required by a typical diabetic (about 0.1 to about 1.0 cm3 per day) in a nearly continuous manner. The delivery rate of an insulin pump can also be readily adjusted through a large range to accommodate changing insulin requirements of an individual (e.g., various basal rates and bolus doses) by adjusting the stepping rate of the motor. In addition to the renewable insulin reservoir, lead-screw and stepper motor, an insulin pump includes a battery, a controller and associated electronics, and typically a display and user controls. A typical insulin pump has a footprint about the size of a deck of cards and can be worn under clothing or attached with a belt clip. A disposable infusion set is coupled with the pump to deliver insulin to the person. The infusion set includes a cannula that is inserted through the skin, an adhesive mount to hold the cannula in place and a length of tubing to connect the cannula to the pump.


The continuous glucose monitoring and insulin delivery systems described above include various drawbacks. The rigid, flat mounting surfaces of the skin-mounted transmitters currently being developed can make them uncomfortable to wear. Additionally, since these transmitter units do not conform to the portion of the body they are mounted to, adherence to the skin and the locations on the body available for use can be limited. Currently available insulin pumps are complicated and expensive pieces of equipment costing thousands of dollars. The overall size and weight of the insulin pump and the long length of infusion set tubing can make currently available pumping systems cumbersome to use. Additionally, because of their cost, currently available insulin pumps have an intended period of use of up to two years, which necessitates routine maintenance of the device such as recharging the power supply and refilling with insulin.


Various attempts to significantly miniaturize and combine the monitoring and pumping systems described above while making them more reliable, less complex and less expensive have not been successful. Constraints which hinder such development efforts include the system requirements of sensors, insulin supplies and batteries which require periodic replacement, and the need to reduce risk of infection, increase user comfort and ease of use.


SUMMARY OF THE INVENTION

According to aspects of some embodiments of the present invention, an analyte monitoring and/or fluid delivery system is provided having components integrated into a flexible textile patch. The flexible patch may be configured to be worn on the skin of a person or animal. In one embodiment of the invention, a single, patch-mounted system monitors glucose levels of a diabetic person and may provide appropriate doses of insulin in response to the glucose measurements. According to other aspects of the invention, a hand-held user interface may be provided for wirelessly controlling the system and/or receiving information from it.


In some embodiments of the invention, conductive pathways are formed in the fabric of the patch. Components that may be integrated with the flexible patch include, but are not limited to: a power source, controller, transmitter, antenna, temperature and other sensors, fluid pump, infusion set, electrical pathways, switches, controls, electrodes, connectors, resistors and other circuit elements. Such components may be embedded, interwoven or coated on to the flexible patch instead of or in addition to surface mounting.


The flexible patch can be constructed of polyester, nylon, polyurethane, Lycra® or other synthetic or natural fibers. In one embodiment, the patch has elastomeric properties that come from properties of the fibers themselves, or from how the fibers are combined to form patch. The flexible patch may be woven, non-woven, knitted, spun or constructed of a textured film, preferably to form an electro-active fabric. Conductive aspects of the textile may come from fine metal wires, either in the yarn used to make the fabric of the patch or woven into the fabric alongside ordinary textile fibers. Alternatively, the electrical properties of patch 12 may come from inherently conductive polymers or nanocomposites deposited as coatings on the fabric's fibers.


According to aspects of some embodiments of the invention, the flexible patch may be soft, stretchable and breathable to increase patient comfort during use. The fabric of the flexible patch may be rolled, crumpled and folded without damaging its functionality. The flexible patch may also be constructed or coated to be flame resistant, water-resistant, or waterproof.


According to aspects of some embodiments of the invention, portions of a flexible patch system or the entire system itself may be disposable, for instance after a predetermined period of use and/or after a particular consumable, such as an insulin supply, is exhausted. For example, just an analyte sensor, an infusion set, and a mounting adhesive may be disposable, while the rest of the flexible patch system is reusable. In such an arrangement, an insulin or other fluid reservoir may be refillable, and/or may comprise a removable cartridge. A portion of electronic circuitry and/or fluid pump may also be removed and reused with a new flexible patch while the remainder of the used patch is discarded. Alternatively, a flexible patch monitoring and fluid delivery system may be constructed inexpensively enough, according to aspects of the present invention, so that the entire system can be disposed of and replaced periodically. Such arrangements would have the advantage of lowering the fixed and recurring costs associated with the use of a monitoring and/or fluid delivery system.


Various analytes may be monitored using aspects of the present invention. These analytes may include, but are not limited to, lactate, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hematocrit, hemoglobin (e.g. HbA1c), hormones, ketones, lactate, oxygen, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin, in samples of body fluid. Monitoring systems may also be configured to determine the concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, warfarin and the like. Such analytes may be monitored in blood, interstitial fluid and other bodily fluids. Fluids that can be delivered include but are not limited to insulin and other medicines.





BRIEF DESCRIPTION OF THE DRAWINGS

Each of the figures diagrammatically illustrates aspects of the invention. Of these:



FIG. 1 is a plan view showing an exemplary embodiment of a flexible patch system constructed according to aspects of the present invention;



FIG. 2 is a side view of the system of FIG. 1 shown mounted on a patient P;



FIG. 3 is a perspective view illustrating the use of the system of FIG. 1 on a person.





Variation of the invention from that shown in the figures is contemplated.


DETAILED DESCRIPTION

The following description focuses on one variation of the present invention. The variation of the invention is to be taken as a non-limiting example. It is to be understood that the invention is not limited to particular variation(s) set forth and may, of course, vary. Changes may be made to the invention described and equivalents may be substituted (both presently known and future-developed) without departing from the true spirit and scope of the invention. In addition, modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention.



FIG. 1 shows a top view of an exemplary embodiment of a combined fluid delivery and analyte monitoring system 10 constructed according to some aspects of the present invention, while FIG. 2 shows an elevational end view of system 10 mounted on the skin of patient P. Flexible fabric patch 12 forms the base of system 10. Flexible patch 12 may be provided with an adhesive on a bottom surface to secure patch 12 to the skin of the patient during use. Various components may be attached to or integrated into flexible patch 12, such as power source 14, controller and transmitter module 16, antenna 18, temperature sensor 20, fluid pump 22 and infusion set 24. Electrical pathways 26 may be integrated into flexible patch 12 for interconnecting components of system 10.


Flexible patch 12 may be provided with a thicker area 28, generally towards its center, to afford sufficient support for mounting components. In one embodiment, central area 28 is about 1 mm thick. A peripheral area 30 of flexible patch 12 may be made thinner to promote attachment and adhesion to the skin, particularly as the skin moves and flexes.


Power source 14 may be one or more solar cells, disposable or rechargeable batteries or device, an electrochemical device generating power from an analyte of the patient, and/or other power source suitable for satisfying the power requirements of the components located on flexible patch 12. Such power sources may be directly integrated into flexible patch 12, or removably inserted into a holder attached to patch 12. Power source 14 may itself be flexible by constructing a battery from one or more layers of paper or fabric. Such a paper or fabric battery can convert chemical energy directly into electricity by oxidizing metal on one side of the layer and allowing an oxide to be reduced on the other side when the battery is connected. The metal may be zinc, aluminum, nickel or other metals, the oxide can be manganese oxide, or other oxides, and the paper or fabric layer can contain an electrolyte. Such flexible batteries are currently being developed by companies such as Enfucell Ltd. of Espoo, Finland (www.enfucell.com). Flexible patch 12 itself may comprise one or more layers that can be used to form a flexible battery. Such an arrangement can reduce the need for electrical connectors for the battery, thereby contributing to making the overall system 10 smaller, softer, more conforming to the user and more comfortable to wear.


Circuitry for controller and transmitter 16 may be directly integrated into flexible patch 12. Alternatively, controller and transmitter 16 can be constructed using traditional electronic component assembly techniques then physically and electronically attached to patch 12. Such attachment of module 16 can be permanent or removable. Permanent attachment can be achieved by soldering electrical leads of module 16 to electrical leads on patch 12. Removable attachment of module 16 can be achieved with a traditional electrical connector or with a snap type fitting 32 having electrical pathways interconnecting module 16 to patch 12. Module 16 is preferably powered by power source 14, but may include its own power source in addition to or instead of power source 14.


Antenna 18 preferably is at least somewhat flexible to provide enhanced fit and comfort of patch 12. Antenna 18 can be a separate element physically and electrically coupled with patch 12, but preferably is formed by a conductive layer or layers of patch 12. Antenna 18 is electrically connected to controller and transmitter module 16 to transmit radio frequency (RF) signals such as analyte readings therefrom to an external device, such as a handheld user interface. If module 16 is configured to receive information as well, antenna 18 can be arranged to both transmit and receive RF signals. An infrared (IR) transmitter or transceiver (not shown) can be utilized in addition to or instead of antenna 18 to wirelessly communicate information between system 10 and an external device. A transducer coil and/or cable connector (not shown) can also be provided for external communications, such as to a computer for running diagnostics, or uploading or downloading information.


Flexible patch 12 may be provided with one or more sensor sites 34 for receiving transcutaneous analyte sensors. Multiple sensors can be used simultaneously to provide redundant analyte readings. Alternatively, one sensor may be inserted at a time. After each sensor is used for a predetermined period, such as three, five or seven days each, it can be removed, and a fresh sensor can be inserted at an unused sensor site. Preferably, once all of the sensor sites 34 of a particular patch 12 have been used, patch 12 is removed from the skin and a new patch 12 is applied to a different location on the user's skin. Alternatively, a portion of patch 12 can be reused with a new adhesive portion.


Transcutaneous analyte sensors can be inserted into the user's skin using an automatic introducer or inserter device, such as those described in U.S. patent application Ser. No. 10/703,214, published Jul. 8, 2004 under Publication No. 2004/0133164, now U.S. Pat. No. 7,381,184, incorporated herein by reference in its entirety. An inserted sensor can be electrically connected to controller and transmitter module 16 directly, with external conductors or through internal electrical pathways within flexible patch 12. The sensors may include adhesive mounts, or some type of mounting feature such as one or more snaps, hooks, clamps, pins, clips or other means molded onto or attached to the patch to secure the sensor to flexible patch 12 or to the user's skin during use.


Monitoring and delivery system 10 can also include a temperature sensor 20 for sensing ambient temperature, skin surface temperature or sub-dermal temperature. Ideally, sub-dermal temperature is measured to more accurately calibrate the readings taken by the analyte sensors, since such readings are typically temperature sensitive. However, sub-dermal temperature measurement can be impractical, since this typically necessitates another puncture to the user's skin. Placing a temperature sensor below the surface of the skin can cause discomfort and increased chance of infection. Accordingly, temperature sensor 20 can be mounted to or integrated with the bottom surface of flexible patch 12 to measure the local surface temperature of the skin. From this temperature reading, the higher sub-dermal temperature may be estimated for the depth of penetration associated with sensor 20. In one embodiment, temperature sensor 20 may be connected to controller and transmitter module 16 with internal electrical pathways within flexible patch 12.


A fluid pump 22, such as for delivering insulin or other medicine, can also be located on flexible patch 12. In this exemplary embodiment, fluid pump 22 includes a removable fluid reservoir 36. Reservoir 36 may be a disposable or refillable vial that is replaced by another vial when depleted. Reservoir 36 may be flexible so that it collapses like a balloon when its contents are emptied, or it may include a flexible diaphragm portion. Alternatively, reservoir 36 may be a rigid cylinder with a plunger 38 that forces fluid out when advanced into the reservoir 36. Actuator 40 may be a stepper motor, a shape-memory alloy actuator or other suitable mechanism for advancing plunger 38 or otherwise moving fluid out of reservoir 36. A shape-memory alloy actuator is preferred because of its small size, simplicity and reliability. It's low cost of manufacture also allows pump 22 to be disposable with patch 22 if desired. Details of such a shape-memory alloy driven pump are provided in U.S. patent application Ser. No. 10/683,659, published Jun. 17, 2004 under Publication No. 2004/0115067, now U.S. Pat. No. 6,916,159, incorporated herein by reference in its entirety. Reservoir 36 need not be removable from pump 22 and/or patch 12, particularly if patch 12 is designed to be disposed of after the fluid is depleted.


Pump 22 preferably is powered by power source 14, but may have its own power source. Internal conductive pathways 26 can be used to connect pump 22 with power source 14 and/or controller and transmitter module 16. Pump 22 may be removably or fixedly attached to patch 12. Pump 22 or a pump mounting base may be attached to patch 12 by sandwiching a portion of the patch material between the pump or base and a plate or washer(s) on the opposite side. Alternatively, pump 22 or a mounting base may be attached to patch 12 with an adhesive, fasteners or other suitable means.


In operation, pump 22 can receive control signals from controller and transmitter module 16, causing actuator 40 to push fluid from reservoir 36 into tubing 42 of infusion set 24, through cannula 44 and into the patient. Infusion set 24 may include an adhesive mount 46 for securing the distal end of infusion set 24 to patch 12 or directly to the patient's skin. The proximal end of infusion set 24 may be removably connected to an output port 48 of pump 22. Multiple sites 50 may be provided in the thin region 30 of patch 12 for alternately placing infusion sets 24. An automatic inserter or introducer may be used to insert cannula 44 of infusion set 24 into the patient. Preferably, a single puncture device can be used to insert cannulas 44 and the transcutaneous analyte sensors described above. After a predetermined period of use, typically 3 days, infusion set 24 can be removed by lifting adhesive mount 46, removing cannula 44 from the patient and disconnecting tubing 42 from pump output port 48. A fresh infusion set 24 may then be placed in another one of the sites 50 and connected to pump 22. It may be advantageous to separate infusion set insertion sites 50 as far as possible from sensor insertion sites 34 as shown so that the local effect of the infusion of insulin or other fluid does not interfere with glucose monitoring or other analyte measurement. In one embodiment, infusion sites 50 are spaced about 1 inch apart.


In arranging system 10 components on flexible patch 12, the longitudinal axis of components such as controller and transmitter module 16, antenna 18 and pump 22 may be aligned with each other. This allows the overall system to be highly flexible in at least one direction. Since these components may be fairly long and rigid, the exemplary system 10 shown in FIG. 1 is more flexible along the y-axis shown than along the x-axis. With such an arrangement, patch 12 can more compliantly conform to curves of a patient's body when the y-axis is aligned with the direction of the sharpest curve at the application site of patch 12. An example of such an alignment is shown in FIG. 3, where patch 12 is attached to an upper arm of a patient P. As shown, the more compliant y-axis of flexible patch 12 is arranged horizontally to traverse the curve of the arm, while the less compliant x-axis is arranged vertically along the straighter, longitudinal axis of the arm. System 10 may be adhered to other suitable locations of the body, such as the torso, thigh or calf. In this exemplary embodiment, system 10 is about 4 inches long along the x-axis, about 3 inches long along the y-axis and has a maximum thickness of about 0.75 inches at pump 22.


Flexible patch 12 itself can be constructed of polyester, nylon, polyurethane, Lycra® or other synthetic or natural fibers. Preferably, patch 12 has elastomeric properties that come from properties of the fibers themselves, or from how the fibers are combined to form patch 12. Patch 12 can be woven, non-woven, knitted, spun or constructed of a textured film, preferably to form an electro-active fabric. Conductive aspects of the textile can come from fine metal wires, either in the yarn used to make the fabric of patch 12 or woven into the fabric alongside ordinary textile fibers. Alternatively, the electrical properties of patch 12 can come from inherently conductive polymers or nanocomposites deposited as coatings on the fabric's fibers.


As discussed above, various components of system 10 can be woven directly into the fabric of patch 12, including, but not limited to, complex electronic pathways, circuits, controls, electrodes, temperature and other sensors, traces, connectors, resistors, antenna, batteries, switches and other components. Switches and other controls can be incorporated into flexible patch 12 by using a multilayered fabric. For example, three electro-active layers can be used. Two outer conductive layers can surround an inner resistive layer that separates the conductive layers until the layers are momentarily pressed together.


Using fabrics as discussed above, flexible patch 12 can be soft, stretchable and breathable to provide patient comfort during use. Existing fabrics can provide a high moisture vapor transmission rate (MVTR). Such fabrics can be rolled, crumpled and folded without damaging functionality. Patch 12 may also be constructed or coated to be flame resistant, waterproof or water-resistant if desired.


Further information on suitable fabrics, general construction and component integration methods for flexible patch 12 may be obtained from companies currently developing “smart fabrics” or “conductive textiles, such as Textronics (www.textronics.com), Konarka (www.konarka.com), Nanosonic (www.nanosonic.com), Eleksen (www.eleksen.com) and Eeonyx (www.eeonyx.com). For instance, Eeonyx has a proprietary process for coating textiles with inherently conductive polymers based on doped polypyrrole. The company polymerizes the materials in situ—or on the surface of the fabric itself—so the coating material fills interstices in the surface and forms a physical bond with the fibers. See also “Fabrics Get Smart”, by Joseph Ogando, Design News, May 15, 2006 (www.designnews.com/article/ca6330247.html), incorporated herein by reference in its entirety.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A fluid delivery system comprising: a flexible patch having a first axis and a second axis and configured to be adhered to an area of skin of a living body along the first axis and the second axis, wherein the flexible patch is more compliant along the first axis than along the second axis;a fluid reservoir coupled with the flexible patch;an actuator coupled to the reservoir, the actuator being configured to move a predetermined amount of fluid from the reservoir such that the fluid can be infused to the body;a power source coupled with the flexible patch;wireless communication circuitry coupled with the flexible patch and adapted for wireless communication of information from or to an external device; andcontrol circuitry coupled with the flexible patch, wherein the control circuitry is powered by the power source, and configured to control the actuator.
  • 2. The fluid delivery system of claim 1, wherein the patch is configured to be worn on skin of a person.
  • 3. The fluid delivery system of claim 1, wherein the fluid reservoir contains insulin.
  • 4. The fluid delivery system of claim 1, further comprising an infusion set attached to the flexible patch and configured for insertion into the skin of the body.
  • 5. The fluid delivery system of claim 1, wherein the fluid reservoir is embedded in the flexible patch.
  • 6. The fluid delivery system of claim 1, wherein the power source is selected from the group consisting of a solar cell, a battery, or an electrochemical device.
  • 7. The fluid delivery system of claim 1, wherein the wireless communication circuitry comprises a transceiver.
  • 8. The fluid delivery system of claim 1, wherein the wireless communication circuitry comprises an antenna.
  • 9. The fluid delivery system of claim 1, wherein the wireless communication circuitry comprises a transducer coil.
  • 10. The fluid delivery system of claim 1, wherein the flexible patch further comprises an analyte sensor site for receiving an analyte sensor.
  • 11. The fluid delivery device of claim 10, further comprising an analyte sensor received within the analyte sensor site.
  • 12. The fluid delivery system of claim 1, further comprising a temperature sensor.
  • 13. The fluid delivery system of claim 12, wherein the temperature sensor senses a temperature selected from the group consisting of ambient temperature, skin surface temperature, and sub-dermal temperature.
  • 14. The fluid delivery system of claim 1, wherein the fluid reservoir is rigid.
  • 15. The fluid delivery system of claim 1, wherein the fluid reservoir is flexible.
  • 16. The fluid delivery system of claim 1, wherein the actuator is a shape-memory alloy actuator.
  • 17. The fluid delivery system of claim 1, wherein the flexible patch has multiple layers.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 14/989,548, filed Jan. 6, 2016, which is a continuation of U.S. patent application Ser. No. 11/552,065, filed Oct. 23, 2006, now U.S. Pat. No. 9,259,175, both of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (1085)
Number Name Date Kind
3123790 Tyler Mar 1964 A
3211001 Petit Oct 1965 A
3260656 Ross, Jr. Jul 1966 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danninger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4441968 Emmer et al. Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatasetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia et al. Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardieri Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4757022 Shults et al. Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4865038 Rich et al. Sep 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890620 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5001054 Wagner Mar 1991 A
5002054 Ash et al. Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoguist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320715 Berg Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftel Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Hogen Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390670 Centa et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Diebold et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5543326 Heller et al. Aug 1996 A
5545191 Mann et al. Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5613978 Harding Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5693024 Flower Dec 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746697 Swedlow et al. May 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5918603 Brown Jul 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931814 Gross et al. Aug 1999 A
5931868 Gross et al. Aug 1999 A
5938679 Freeman Aug 1999 A
5942979 Luppino Aug 1999 A
5948006 Mann Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5951582 Thome et al. Sep 1999 A
5954643 Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Burnham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6059946 Yukawa et al. May 2000 A
6068399 Tseng May 2000 A
6071391 Gotoh et al. Jun 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6096066 Chen Aug 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6144837 Quy Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299757 Feldman et al. Oct 2001 B1
6302866 Marggi Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6433743 Massy et al. Aug 2002 B1
6435017 Nowicki, Jr. et al. Aug 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6461496 Feldman et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6503381 Gotoh et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6540891 Stewart et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6554795 Lam et al. Apr 2003 B2
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6600997 Deweese et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6616819 Liamos et al. Sep 2003 B1
6618934 Feldman et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650471 Doi Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6699218 Flaherty et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6730200 Stewart et al. May 2004 B1
6733446 Lebel et al. May 2004 B2
6736957 Forrow et al. May 2004 B1
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6749740 Liamos et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6770030 Schaupp et al. Aug 2004 B1
6773671 Lewis et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Ughigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6893545 Gotoh et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932892 Chen Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7866026 Wang et al. Jan 2011 B1
7955297 Radmer et al. Jun 2011 B2
8062253 Nielsen et al. Nov 2011 B2
8298172 Nielsen Oct 2012 B2
9072476 Shah Jul 2015 B2
9259175 Stafford Feb 2016 B2
10363363 Stafford Jul 2019 B2
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020040208 Flaherty Apr 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020050250 Peterson et al. May 2002 A1
20020055711 Lavi et al. May 2002 A1
20020057993 Maisey et al. May 2002 A1
20020066764 Perry et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 VanAntwerp et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133066 Miller et al. Sep 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20030002682 Smith et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040072357 Steine et al. Apr 2004 A1
20040096959 Steine et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040140211 Broy et al. Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sleburg Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038331 Silaski Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050267327 Iizuka et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050096520 Maekawa et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050239156 Drucker et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060020300 Nghiem et al. Jan 2006 A1
20060025662 Buse et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060091006 Wang et al. May 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060193375 Lee Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070056858 Chen et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070068807 Feldman et al. Mar 2007 A1
20070073129 Shah Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070095661 Wang et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070108048 Wang et al. May 2007 A1
20070110124 Zaragoza et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070199818 Petyt et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070227911 Wang et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244379 Boock et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderbunk et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderbunk et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080066305 Wang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080099332 Scott et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080119707 Stafford May 2008 A1
20080129486 Jeckelmann et al. Jun 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080147041 Kristensen Jun 2008 A1
20080161664 Mastrototaro et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214481 Challoner et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262330 Reynolds et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090124877 Shariati et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100036281 Doi Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100100113 Iio et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode et al. Jul 2010 A1
20100185069 Brister et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100240976 Goode et al. Sep 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110040256 Bobroff et al. Feb 2011 A1
20110040263 Hordum et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110118579 Goode et al. May 2011 A1
20110118580 Goode et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode et al. May 2011 A1
20110125410 Goode et al. May 2011 A1
20110130970 Goode et al. Jun 2011 A1
20110130971 Goode et al. Jun 2011 A1
20110130998 Goode et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110191044 Stafford Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode et al. Sep 2011 A1
20110231141 Goode et al. Sep 2011 A1
20110231142 Goode et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257521 Fraden Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
20130047981 Bacon Feb 2013 A1
Foreign Referenced Citations (48)
Number Date Country
2291105 Dec 1998 CA
1177802 Feb 2002 EP
1630898 Mar 2006 EP
0987982 Jan 2007 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2327362 Jun 2011 EP
2335587 Jun 2011 EP
11-506629 Jun 1999 JP
2003-516011 May 2003 JP
2004-520103 Jul 2004 JP
2004-520898 Jul 2004 JP
WO-1996039977 May 1996 WO
WO-1997021457 Jun 1997 WO
WO-1998056293 Dec 1998 WO
WO-1999033504 Jul 1999 WO
WO-2002050534 Jun 2002 WO
WO-2002058537 Aug 2002 WO
WO-2003028784 Apr 2003 WO
WO-2003073936 Sep 2003 WO
WO-2003076893 Sep 2003 WO
WO-2003082091 Oct 2003 WO
WO-2004054445 Jul 2004 WO
WO-2004060436 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2005084534 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006042811 Apr 2006 WO
WO-2006108809 Oct 2006 WO
WO-2007016399 Feb 2007 WO
WO-2007027788 Mar 2007 WO
WO-2007041069 Apr 2007 WO
WO-2007041070 Apr 2007 WO
WO-2007041248 Apr 2007 WO
WO-2007120363 Oct 2007 WO
WO-2007140783 Dec 2007 WO
WO-2007143225 Dec 2007 WO
WO-2008031106 Mar 2008 WO
WO-2008031110 Mar 2008 WO
WO-2008039944 Apr 2008 WO
WO-2008051920 May 2008 WO
WO-2008051924 May 2008 WO
WO2008065646 Jun 2008 WO
WO2008133702 Nov 2008 WO
WO-2008150917 Dec 2008 WO
WO2009062675 May 2009 WO
WO2010112521 Oct 2010 WO
WO-20111002815 Jan 2011 WO
Non-Patent Literature Citations (73)
Entry
Alcock & Turner, “Continuous analyte monitoring to aid clinical practice,” IEEE Engineering in Medicine & BioloXY Magazine, 13:319-25 (1994).
Armour et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs,” Diabetes, vol. 39, pp. 1519-1526, Dec. 1990.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics vol. 4 No. 1, 2002, pp. 25-33.
Bindra, D.S. et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Anal. Chem., 63(17):1692-1696 (Sep. 1, 1991).
Blank, T. B., et al., “Clinical Results From a Non-lnvasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE vol. 4624, 2002, pp. 1-10.
Bobbioni-Harsch, E. et al., “Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats,” J. Biomed. Eng. 15:457-463 (1993).
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3,1987/88, pp. 45-56.
Cass, A.E.G. et al., “Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose”, Anal. Chem., 56(4):667-671 (Apr. 1984).
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired EnzymeTM Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gregg, B. A. et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62(3):258-263 (Feb. 1, 1990).
Harrison, DJ. et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Anal. Chem., 60 (19):2002-2007 (Oct. 1, 1988).
Heller, A., “Electrical Connection of Enzyme Redox Centers to Electrodes,” J. Phys. Chem., 96 (9):3579-3587 (1992).
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice vol. 5 No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice vol. 5 No. 5, 1997, pp. 709-719.
Johnson, K., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue”, Biosensors and Bioelectronics, 1992, vol. 7, pp. 709-714.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142,548,549.
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Maidan, R. et al., “Elimination of Electroaxidizable Interferant-Produced Currents in Amperometric Biosensors,” Analytical Chemistry, 64(23):2889-2896 (Dec. 1, 1992).
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
Mastrototaro, J.J. et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Biosensors B Chemical, B5: 139-144 (1991).
Mcgarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
Mcgarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
Mckean, B et al. “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, (Jul. 1988), pp. 526-532.
Moatti-Sirat, D. et al., “Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue,” Diabetolocia, 35(3) (1 page—Abstract only) (Mar. 1992).
Ohara, T. J. et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2CI]+/2+Complexed Poly(lvinylimadazole) Films,” Analytical Chemistry, 65(23):3512-3516 (Dec. 1, 1993).
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V. et al., “In vitro and in vivo evaluation in dogs of a miniaturized glucose sensor,” ASAIO Transactions, 37(3) (1 page—Abstract only) (Jul.-Sep. 1991).
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Reach, G. et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?” Analytical Chemistry, 64(6):381-386 (Mar. 15, 1992).
Rebrin, K. et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, 32(8):573-576 (Aug. 1989).
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M. et al., “Ferrocene-mediate needle-type glucose sensor covered with newly designed biocompatible membrane,” Sensors and Actuators B, 13-14:319-322 (1993).
Sakakida, M., et al., “Development offerrocene-mediated needle-type glucose sensor as a measure of true subcutaneous tissue glucose concentrations”, Artif Organs Today. 1992, vol. 2, No. 2, pp. 145-458.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M. et al., “Glycaemic Control in Pancrearetomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, 24(3):179-184 (Mar. 1983).
Shichiri, M. et al., “Telemetry Glucose Monitoring Device with Needle-type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3 (May-Jun. 1986), pp. 298-301.
Shichiri, M., et al., “In vivo characteristics of needle-type glucose sensor—Measurement of subcutaneous glucose concentrations in human volunteers”. Hormone and Metabolic Res Suppl. 1988, vol. 20, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Wearable artificial endocrine pancreas with needle-type glucose sensor”. The Lancet. Nov. 20, 1982, vol. 2, No. 8308, pp. 1129-1131.
Shults, M., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10 (Oct. 1994), pp. 937-942.
Sternberg, R. et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors,” Biosensors, 4:27-40 (1988).
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A.P.F. et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, 1:85-115 (1985).
Updike, S. et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucase from Inside a Subcataneous Foreign Body Capsule (FBC)” in “Biosensors in the Body: Continuous in vivo Monitoring” (John Wiley & Sons, Ltd., 1997) Chapter 4, pp. 117-137.
Velho, G. et al., “Strategies for calibrating a subcutaneous glucose sensor,” Biomed. Biochim. Acta, 48 (11112):957-964 (1989).
Wilson, G. S. et al., “Progress toward the Development of an Implantable Sensor for Glucose,” Clinical Chemistry, 38(9):1613-1617 (1992).
Ye, L. et al., “High Current Density ”Wired“ Quinoprotein Glucose Dehydrogenase Electroade,” Anal. Chem., 65(3):238-241 (Feb. 1, 1993).
Australian Patent Application No. 2007309070, Examination Report dated Apr. 26, 2012.
Chinese Patent Application No. 200780039416.2 Office Action dated Apr. 25, 2012.
Chinese Patent Application No. 200780039416.2 Office Action dated Mar. 30, 2011.
European Patent Application No. EP-07854298.2, Extended European Search Report dated Mar. 29, 2010.
PCT/US2007/082121 International Search Report and Written Opinion dated May 9, 2008.
Japanese Patent Application No. 2009-534799 Office Action dated Feb. 19, 2013.
Japanese Patent Application No. 2009-534799 Office Action dated Sep. 27, 2011.
Japanese Patent Application No. 2013-169447 Office Action dated Sep. 2, 2014.
Mexican Patent Application No. MX/a12009/004322 Office Action dated Sep. 19, 2012.
Mexican Patent Application No. MX/a12009/004322 Office Action dated Mar. 11, 2013.
Russian Patent Application No. 2009-119430 Office Action dated Jun. 5, 2011.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System”, Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, 889-892.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995.
Related Publications (1)
Number Date Country
20190298921 A1 Oct 2019 US
Continuations (2)
Number Date Country
Parent 14989548 Jan 2016 US
Child 16438556 US
Parent 11552065 Oct 2006 US
Child 14989548 US