The present disclosure relates generally to protective equipment and in particular to flexible protective body armor to be worn while engaging in sports activities for protecting against injury due to impact.
It is common practice for athletes to wear protective guards and/or armor while participating in sports. This armor is intended to protect the athlete from the consequences of impact with both fixed hard structures, such as the ground, and with moving items, such as other people.
Traditionally, protective guards have been comprised of a hard plastic outer shell, injection molded, blow molded or thermoformed, with a lining of a softer compressible material, such as padding or foam. In such arrangements, the lining provides cushioning while the outer shell protects against impact by distributing impact load across its surface. However, these guards tend to be bulky and may limit movement and flexibility. Additionally, the use of foam padding decreases ventilation, which may cause discomfort to the wearer.
Various efforts have been made to create flexible, shock absorbing protection devices in body armor over the years. For instance, U.S. Pat. No. 4,610,034 issued to Johnson and U.S. Pat. No. 7,150,217 issued to Kershaw are directed to flexible, shock absorbing protection devices in body armor, utilizing a honeycomb construction bonded to a rigid skin. Specifically, Johnson discloses a protective pad that is readily deformable. However, such a readily deformable pad does not provide the required protection from point loads. Kershaw teaches a protective body armor comprising various layers of a non-deformable material.
However, when these layered armors are exposed to impact, such impact may produce a bulge which deforms the armor. Since the armor is worn adjacent to the body, such deformation may project into the body of the wearer, causing tissue damage or trauma to underlying organs. Therefore, although the honeycomb layered armor arrangements are flexible, they lack the necessary degree of stiffness to adequately protect a wearer from impact.
Thus, to be most desirable to an athlete, protective armor must: not hinder movement; have the ability to mitigate impacts from both small and large hard objects without deforming; and be able to “breathe” by defining a plurality of apertures therein such that air may pass freely therethrough, thus providing ventilation to the wearer. Accordingly, the present application is directed to a protective armor to be worn during sporting activities to protect the wearer from impact. The object of the present disclosure is to provide a protective armor having the most desirable balance between flexibility and rigidity whilst being lightweight and breathable.
The problems presented by existing protective guards are solved by the present protective armor. The present application is generally directed to protective body armor to be worn while engaging in sports activities to protect against injury due to impact. It is an object of the present disclosure to provide a flexible protective armor able to mitigate impacts from both small and large hard objects. The present protective body armor is intended to protect an athlete from the consequences of impact with both fixed hard structures, such as the ground, and with moving objects, such as other people. It is an object of the present protective body armor to: be flexible; have the ability to mitigate impacts from both small and large hard objects without bottoming out; and define a plurality of apertures therein such that air may pass freely therethrough, providing ventilation to the wearer.
Accordingly, the present disclosure is directed to protective armor to be worn during sporting activities to adequately protect the wearer from impact, while allowing for freedom of movement. The protective armor is made of a network of beams and spring elements. The spring elements extend from beams at a select angle and are arranged to form a select pattern. This arrangement of beamed spring elements facilitates absorption and distribution of force. Additionally, the present protective armor is comprised of a lightweight and breathable material such that the wearer is comfortable during exertion.
a is a perspective view of a first embodiment of the present protective armor in use by a skier.
b is another perspective view of the first embodiment present protective armor in use by a soccer player.
c is a detailed perspective view of the first embodiment of network of beams and spring elements in accordance with the present protective armor.
d is a cross-sectional depiction of an aspect of the embodiment of
a is a front side view of a second embodiment of the present protective armor, including a transversally mounted sliding beam.
b is a side view of the second embodiment of
c is a front side view of the embodiment of
d is a side view of the embodiment of
e is a side view of the embodiment of
f is a front side view of the embodiment of
a is a perspective view of a third embodiment of the present spring element network.
b is a detailed perspective view of the connection junction of the third embodiment of
a is a perspective front view of the embodiment of
b is another perspective front view of the embodiment of
c is another perspective top view of the embodiment of
a is a side view of the embodiment of
b is a side view of the embodiment of
Embodiments of the present disclosure relate to protective body armor to be worn while engaging in physical activities for protecting against injury due to impact. The following description is presented to enable one of ordinary skill in the art to make and use the present protective body armor and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the present disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described herein. Advantages of the present protective body armor will now be described in detail with references to the accompanying drawings.
The present protective body armor is intended to protect a person from the consequences of impact with both fixed hard structures, such as the ground, and with moving objects, such as other people. For example, an armor may be provided for a person participating in various physical activities (e.g., an armor 100a-c for a person participating in skiing or soccer, as illustrated in
In one embodiment, illustrated in
The network 103 of beams 102 and spring elements 101 may be composed of plastic, PVC, fiberglass, rubber, polycarbonate, polypropylene, Nylon, polyethylene, polyurethane or other similar materials. Moreover, the network 103 material may be injection molded, blow molded, sintered, vacformed or compression molded as an integral construction. The outer border 107 may be composed of a substantially soft and flexible material, such as Lycra®, rubber, foam, or fabric.
As shown in
The hollow area defined by each diamond shape 106 further allows lateral movement of the network 103 of beams 102 and spring elements 101. Thus, the larger the aperture defined by each diamond shape, the more flexibility the wearer will have. As shown in
Alternatively, in another embodiment (not shown), the beams may be arranged to form a circular, honeycomb or hexagonal pattern throughout the network of beams and spring elements. In this embodiment, each hexagon formed by the beams defines an aperture in its center, such that each hexagon is hollow.
As described above, the network 103 is further comprised of a plurality of spring elements 101 in connection with and extending from the plurality of beams 102. Preferably, each beam 102 includes a spring element 101 extending therefrom at a select angle to facilitate distribution of a set amount of force. More specifically, each spring element 101 includes a top portion 108 and a bottom portion 110. The top portion 108 is connected to and extends from the beam 102 at a select fixed angle. The bottom portion 110 extends from the top portion at a select angle, and may be generally curved. In a collision, each spring elements 101 absorbs the force of impact and distributes it to its corresponding beam 102, such that the force is dispersed throughout the network 103. Thus, the force of impact is sent away from the wearer, thereby protecting the wearer from injury. More specifically, as illustrated in
Each spring element 101 in the network has a select stiffness for distributing a set amount of force. The stiffness of each spring element 101 is a function of its width, depth, thickness, material composition and the angle at which it extends from the beam 102. As described above, each spring element 101 is positioned at a select angle to its corresponding beam 102 to facilitate distribution of force. More specifically, the angle (A) at which the top portion 108 of the spring element 101 extends from the beam 102 determines the compressibility of the bottom portion 110. Accordingly, the angle (A) defined between the top portion 108 of the spring element 101 and the beam 102, in part, determines the stiffness of the spring element 101.
The angle (A) that the top portion 108 of the spring element 101 is positioned relative to beam 102 directly corresponds to the flexibility of the spring element 101, and inversely corresponds to impact force able to be dispersed. Thus, the smaller the angle (A) defined between the top portion 108 of the spring element 101 and the beam 102, the less flexibility the wearer will have, and the more force will be able to be dispersed. The angle (A) defined between the top portion 108 of the spring element 101 and the beam 102 is generally selected from an angle between about 0° and about 90°, where 0° provides the most rigidity to the spring and 90° provides the most flexibility. For example,
Moreover, as described above, the stiffness of the spring element 101 is further a function of its depth, width and thickness, and material composition thereof. Specifically, the dimensions of the spring element directly correspond to the stiffness of the spring element 101 and to the amount impact force it is able to absorb. For example, each spring element 101 illustrated in
The present armor 100 may also be comprised of variously shaped or angled spring elements selected for specific groupings within the network or on separate armors to provide for varying regions of impact protection and varying regions of flexibility. For example,
Specifically, the thigh guard 100b is generally rigid, as the thigh of a skier's body does not require much flexibility to perform the activity. In this example, the thigh guard 100b is comprised of a network 103 including spring elements 101 having top portions 108 situated at a 0° angle relative to their corresponding beams. As a result, each spring element is generally stiff and thus able to absorb increased force, thus protecting the wearer from injury. Moreover, the network 103 includes relatively small diamond shapes 106 to further limit flexibility. By contrast, the spinal guard 100a requires increased flexibility because a skier must be able to bend and move his spine freely. Therefore, the spinal guard of
Additionally, the present protective armor may further include a means of securing the armor to a person's body. For example, as shown in
a through 2f illustrate another embodiment of the present protective armor comprised of a network 203 of a plurality of beams 202 formed integrally with a plurality of spring elements 201. In this embodiment, the present protective armor may further include a plurality of transversally mounted sliding beams 212 for locking a plane of movement in one direction only. For example, the transversally mounted sliding beams 212 may be used to provide convex flexibility of the network 203, while providing concave rigidity. The sliding beam 212 is mounted at one end 213 to an anchor 214 situated adjacent to a beam 202 of the network 203. The other end 215 of the sliding beam 212 is supported by a guide 216. End 215 of sliding beam 212 has an end stop 217 dimensioned for engaging guide 216 and for inhibiting movement of sliding beam 212 in a given direction. For example, end stop 217 can be dimensioned to engage the body or portion thereof or extension thereof such as a shoulder to prevent movement of sliding beam 212 in a given direction.
As illustrated in
Thus, the sliding beam 212 only allows the network 203 to bend on one plane. The transversally mounted sliding beams create concave stiffness in the armor such that it maintains its shape. Specifically, because the transversally mounted sliding beams are rigid, they prevent the armor from bending in a concave direction, meaning the armor is concavely rigid. For example, when the armor of the present embodiment is used as a spinal guard, the sliding beam allows the armor to bend convexly to allow the spine to bend forward freely. However, the sliding beam prevents concave bending, so that the wearer may not bend backwards. As a result, the spine is properly protected.
a and 3b illustrate another embodiment of the present protective armor comprised of a network 303 and an outer border (not shown). The network 303 comprised of a plurality of beams 302 formed integrally with a plurality of spring elements 301. In this embodiment, the beams 302 and spring elements 301 are modular such that the armor 300 may be customized to fit the wearer. Each beam 302 may include a connector 320 for selective adaptation of the network 303. In this embodiment, the connector 320 may be comprised of a tongue 321a and groove 321b connection. Specifically, one beam 302 includes a tongue 321a, whereas another beam 302 includes a corresponding groove 321b. As specifically illustrated in
Moreover, the mesh structure 420 adds rigidity to the armor to provide more protection for the wearer upon impact. Additionally, as illustrated in
As illustrated specifically in
The stiffness of each spring element 401 is a function of its width, depth, thickness, material composition and the angle at which it extends from the beam 402. Each spring element is positioned at a select angle to its corresponding beam to facilitate distribution of force. Specifically, the angle at which the spring element 401 is positioned, relative to the beam, directly corresponds to the flexibility of the spring element 401 and inversely corresponds to impact force able to be dispersed. Therefore, a spring element 401 that extends at a larger angle relative to the beam 402 is generally flexible, but is unable to disperse a large amount of impact force. By contrast, a spring element 401 which extends at a smaller angle relative to the beam 402 is generally stiff, and able to disperse a larger amount of impact force.
As described above, the stiffness of the spring element 401 is further a function of its depth, width and thickness. Generally, a relatively stiff spring element 401 has a larger depth, width and thickness. By contrast, a flexible spring element 401 has a comparably smaller depth, width and thickness. A stiffer spring element 401, having a larger depth, width and/or thickness, provides a larger area for forces to be dispersed through. However, stiffer spring elements 401 restrict movement of the wearer. Flexible spring elements 401 are not able to deflect and disperse as much force as stiff spring elements 401. However, such flexible spring elements 401 facilitate movement of the wearer. Accordingly, the present armor includes a select combination of flexible and stiff spring elements 401 in the network 400 such that force of impact may be effectively deflected and dispersed, while allowing ample freedom of movement for the wearer.
Additionally, the spring elements 401 provide integrated cushioning in the armor, such that the wearer need not wear additional foam or padding to protect against chafing or other irritation from the armor. As a result, fabric breathability and ventilation is improved, preventing the wearer from over-heating during exertion. Moreover, as described above, the mesh structure defines a plurality of apertures therein. Each aperture defined in the mesh structure provides a passage for air to reach the wearer. As a result, the armor is aerated and comfortable for the wearer.
Various modifications to the preferred embodiments of the protective armor and the generic principles and features described above will be readily apparent to those skilled in the art. Thus, the present protective armor is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features described above. The present protective armor has been described in accordance with the embodiments shown, and one of ordinary skill in the art will readily recognize that there could be variations to the embodiments, and any variations would be within the spirit and scope of the present disclosure. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.
The present patent application is a non-provisional application claiming the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/440,031, filed on Feb. 7, 2011, and entitled “FLEXIBLE PROTECTIVE ARMOR,” naming Gavin Reay as inventor, the complete disclosure thereof being incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61440031 | Feb 2011 | US |