Flexible quantization

Information

  • Patent Grant
  • 8711925
  • Patent Number
    8,711,925
  • Date Filed
    Friday, May 5, 2006
    18 years ago
  • Date Issued
    Tuesday, April 29, 2014
    10 years ago
Abstract
A digital media encoder/decoder uses a flexible quantization technique that provides the ability to vary quantization along various dimensions of the encoded digital media data, including spatial, frequency sub bands and color channels. The codec utilizes a signaling scheme to signal various permutations of flexible quantization combinations efficiently for primary usage scenarios. When a choice of quantizer is available, the codec efficiently encodes the current quantizer by defining a subset of quantizers and indexes the current quantizer from the set.
Description
BACKGROUND

1. Block Transform-Based Coding


Transform coding is a compression technique used in many audio, image and video compression systems. Uncompressed digital image and video is typically represented or captured as samples of picture elements or colors at locations in an image or video frame arranged in a two-dimensional (2D) grid. This is referred to as a spatial-domain representation of the image or video. For example, a typical format for images consists of a stream of 24-bit color picture element samples arranged as a grid. Each sample is a number representing color components at a pixel location in the grid within a color space, such as RGB, or YIQ, among others. Various image and video systems may use various different color, spatial and time resolutions of sampling. Similarly, digital audio is typically represented as time-sampled audio signal stream. For example, a typical audio format consists of a stream of 16-bit amplitude samples of an audio signal taken at regular time intervals.


Uncompressed digital audio, image and video signals can consume considerable storage and transmission capacity. Transform coding reduces the size of digital audio, images and video by transforming the spatial-domain representation of the signal into a frequency-domain (or other like transform domain) representation, and then reducing resolution of certain generally less perceptible frequency components of the transform-domain representation. This generally produces much less perceptible degradation of the digital signal compared to reducing color or spatial resolution of images or video in the spatial domain, or of audio in the time domain.


More specifically, a typical block transform-based codec 100 shown in FIG. 1 divides the uncompressed digital image's pixels into fixed-size two dimensional blocks (X1, . . . Xn), each block possibly overlapping with other blocks. A linear transform 120-121 that does spatial-frequency analysis is applied to each block, which converts the spaced samples within the block to a set of frequency (or transform) coefficients generally representing the strength of the digital signal in corresponding frequency bands over the block interval. For compression, the transform coefficients may be selectively quantized 130 (i.e., reduced in resolution, such as by dropping least significant bits of the coefficient values or otherwise mapping values in a higher resolution number set to a lower resolution), and also entropy or variable-length coded 130 into a compressed data stream. At decoding, the transform coefficients will inversely transform 170-171 to nearly reconstruct the original color/spatial sampled image/video signal (reconstructed blocks {circumflex over (X)}1, . . . {circumflex over (X)}n).


The block transform 120-121 can be defined as a mathematical operation on a vector x of size N. Most often, the operation is a linear multiplication, producing the transform domain output y=M x, where M is the transform matrix. When the input data is arbitrarily long, it is segmented into N sized vectors and a block transform is applied to each segment. For the purpose of data compression, reversible block transforms are chosen. In other words, the matrix M is invertible. In multiple dimensions (e.g., for image and video), block transforms are typically implemented as separable operations. The matrix multiplication is applied separably along each dimension of the data (i.e., both rows and columns).


For compression, the transform coefficients (components of vector y) may be selectively quantized (i.e., reduced in resolution, such as by dropping least significant bits of the coefficient values or otherwise mapping values in a higher resolution number set to a lower resolution), and also entropy or variable-length coded into a compressed data stream.


At decoding in the decoder 150, the inverse of these operations (dequantization/entropy decoding 160 and inverse block transform 170-171) are applied on the decoder 150 side, as show in FIG. 1. While reconstructing the data, the inverse matrix M−1 (inverse transform 170-171) is applied as a multiplier to the transform domain data. When applied to the transform domain data, the inverse transform nearly reconstructs the original time-domain or spatial-domain digital media.


In many block transform-based coding applications, the transform is desirably reversible to support both lossy and lossless compression depending on the quantization factor. With no quantization (generally represented as a quantization factor of 1) for example, a codec utilizing a reversible transform can exactly reproduce the input data at decoding. However, the requirement of reversibility in these applications constrains the choice of transforms upon which the codec can be designed.


Many image and video compression systems, such as MPEG and Windows Media, among others, utilize transforms based on the Discrete Cosine Transform (DCT). The DCT is known to have favorable energy compaction properties that result in near-optimal data compression. In these compression systems, the inverse DCT (IDCT) is employed in the reconstruction loops in both the encoder and the decoder of the compression system for reconstructing individual image blocks.


2. Quantization


According to one possible definition, quantization is a term used for an approximating non-reversible mapping function commonly used for lossy compression, in which there is a specified set of possible output values, and each member of the set of possible output values has an associated set of input values that result in the selection of that particular output value. A variety of quantization techniques have been developed, including scalar or vector, uniform or non-uniform, with or without dead zone, and adaptive or non-adaptive quantization.


The quantization operation is essentially a biased division by a quantization parameter QP which is performed at the encoder. The inverse quantization or multiplication operation is a multiplication by QP performed at the decoder. These processes together introduce a loss in the original transform coefficient data, which shows up as compression errors or artifacts in the decoded image. In a simplistic codec, a certain fixed value of QP can be applied to all transform coefficients in a frame. While this may be an acceptable solution in some cases, it has several deficiencies:


The human visual system is not equally sensitive to all frequencies, or to all spatial locations within a frame, or to all luminance and chrominance channels. Using different QP values for different coefficients may provide a visually superior encoding even with the same or smaller number of compressed bits. Likewise, other error metrics can be suitably optimized as well.


Rate control or the ability of an encoder to produce a compressed file of a desired size is not easy to perform with a single QP across the entire frame.


It is therefore desirable to allow the encoder to vary QP across the image in an arbitrary manner. However, this means that the actual value of QP used for each data partition should be signaled in the bitstream. This leads to an enormous overhead just to carry the QP signaling information, making it unsuitable in practice. What is desired is a flexible yet bit-economic means of signaling QP, particularly for commonly encountered scenarios.


In summary, quantization is the primary mechanism for most image and video codecs to control compressed image quality and compression ratio. Quantization methods supported by most popular codecs provide few features or little flexibility, or incur significant overhead of additional bits. Often, an image or a video frame is usually quantized uniformly, or with limited ability to vary quantization over spatial locations. This lack of flexibility hurts compression quality, and prevents accurate rate control on the fly. On the other hand, some codecs provide nearly unrestricted freedom in supporting quantization methods. Encoding to signal use of different quantizers takes additional bits in the encoded media, and could itself adversely affect compression efficiency. Further, the process of building a conformant decoder requires a large number of test passes generated by all possible combinations of the quantizer methods, which can be onerous.


SUMMARY

The following Detailed Description presents variations of a flexible quantization technique that provides the ability to vary quantization along various dimensions of the encoded digital media data. For example, one representative implementation of the flexible quantization technique can vary quantization over three dimensions—over (i) spatial locations, (ii) frequency sub bands, and (iii) color channels. The Detailed Description further presents ways to efficiently signal the flexible quantization in the encoded digital media data. The benefit of this quantization approach is that the overhead incurred by quantization related side information is minimized for the primary usage scenarios, while allowing maximum flexibility if desired by the encoder.


This Summary is provided to introduce a selection of concepts in a simplified form that is further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Additional features and advantages of the invention will be made apparent from the following detailed description of embodiments that proceeds with reference to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a conventional block transform-based codec in the prior art.



FIG. 2 is a flow diagram of a representative encoder incorporating the block pattern coding.



FIG. 3 is a flow diagram of a representative decoder incorporating the block pattern coding.



FIG. 4 is a table containing a pseudo-code definition for signaling of a DC quantizer according to a flexible quantization technique.



FIG. 5 is a table containing a pseudo-code definition for signaling of a low-pass quantizer according to the flexible quantization technique.



FIG. 6 is a table containing a pseudo-code definition for signaling of a high-pass quantizer according to the flexible quantization technique.



FIG. 7 is a table containing a pseudo-code definition for signaling of quantizers at a frame layer according to the flexible quantization technique.



FIG. 8 is a table containing a pseudo-code definition for signaling of quantizers at a tile layer in spatial mode according to the flexible quantization technique.



FIG. 9 is a table containing a pseudo-code definition for signaling of quantizers of a DC sub-band at the tile layer in frequency mode according to the flexible quantization technique.



FIG. 10 is a table containing a pseudo-code definition for signaling of quantizers of a low-pass sub-band at the tile layer in frequency mode according to the flexible quantization technique.



FIG. 11 is a table containing a pseudo-code definition for signaling of quantizers of a high-pass sub-band at the tile layer in frequency mode according to the flexible quantization technique.



FIG. 12 is a table containing a pseudo-code definition for signaling of quantizers at a macroblock layer in spatial mode according to the flexible quantization technique.



FIG. 13 is a table containing a pseudo-code definition for signaling of low-pass quantizers at the macroblock layer in frequency mode according to the flexible quantization technique.



FIG. 14 is a table containing a pseudo-code definition for signaling of high-pass quantizers at the macroblock layer in frequency mode according to the flexible quantization technique.



FIG. 15 is a block diagram of a suitable computing environment for implementing a media encoder/decoder with flexible quantization.





DETAILED DESCRIPTION

The following description relates to coding and decoding techniques that provide efficient flexible quantization that can vary the quantization applied along spatial, frequency and color dimensions (referred to herein as “Flexible Quantization”). The following description describes an example implementation of the technique in the context of a digital media compression system or codec. The digital media system codes digital media data in a compressed form for transmission or storage, and decodes the data for playback or other processing. For purposes of illustration, this exemplary compression system incorporating this flexible quantization is an image or video compression system. Alternatively, the technique also can be incorporated into compression systems or codecs for other 2D data. The flexible quantization technique does not require that the digital media compression system encodes the compressed digital media data in a particular coding format.


1. Encoder/Decoder



FIGS. 2 and 3 are a generalized diagram of the processes employed in a representative 2-dimensional (2D) data encoder 200 and decoder 300. The diagrams present a generalized or simplified illustration of a compression system incorporating the 2D data encoder and decoder that implement the block pattern coding. In alternative compression systems using the block pattern coding, additional or fewer processes than those illustrated in this representative encoder and decoder can be used for the 2D data compression. For example, some encoders/decoders may also include color conversion, color formats, scalable coding, lossless coding, macroblock modes, etc. The compression system (encoder and decoder) can provide lossless and/or lossy compression of the 2D data, depending on the quantization which may be based on a quantization parameter varying from lossless to lossy.


The 2D data encoder 200 produces a compressed bitstream 220 that is a more compact representation (for typical input) of 2D data 210 presented as input to the encoder. For example, the 2D data input can be an image, a frame of a video sequence, or other data having two dimensions. The 2D data encoder divides a frame of the input data into blocks (illustrated generally in FIG. 2 as partitioning 230), which in the illustrated implementation are non-overlapping 4×4 pixel blocks that form a regular pattern across the plane of the frame. These blocks are grouped in clusters, called macroblocks, which are 16×16 pixels in size in this representative encoder. In turn, the macroblocks are grouped into regular structures called tiles. The tiles also form a regular pattern over the image, such that tiles in a horizontal row are of uniform height and aligned, and tiles in a vertical column are of uniform width and aligned. In the representative encoder, the tiles can be any arbitrary size that is a multiple of 16 in the horizontal and/or vertical direction. Alternative encoder implementations can divide the image into block, macroblock, tiles, or other units of other size and structure.


A “forward overlap” operator 240 is applied to each edge between blocks, after which each 4×4 block is transformed using a block transform 250. This block transform 250 can be the reversible, scale-free 2D transform described by Srinivasan, U.S. patent application Ser. No. 11/015,707, entitled, “Reversible Transform For Lossy And Lossless 2-D Data Compression,” filed Dec. 17, 2004. The overlap operator 240 can be the reversible overlap operator described by Tu et al., U.S. patent application Ser. No. 11/015,148, entitled, “Reversible Overlap Operator for Efficient Lossless Data Compression,” filed Dec. 17, 2004; and by Tu et al., U.S. patent application Ser. No. 11/035,991, entitled, “Reversible 2-Dimensional Pre-/Post-Filtering For Lapped Biorthogonal Transform,” filed Jan. 14, 2005. Alternatively, the discrete cosine transform or other block transforms and overlap operators can be used. Subsequent to the transform, the DC coefficient 260 of each 4×4 transform block is subject to a similar processing chain (tiling, forward overlap, followed by 4×4 block transform). The resulting DC transform coefficients and the AC transform coefficients are quantized 270, entropy coded 280 and packetized 290.


The decoder performs the reverse process. On the decoder side, the transform coefficient bits are extracted 310 from their respective packets, from which the coefficients are themselves decoded 320 and dequantized 330. The DC coefficients 340 are regenerated by applying an inverse transform, and the plane of DC coefficients is “inverse overlapped” using a suitable smoothing operator applied across the DC block edges. Subsequently, the entire data is regenerated by applying the 4×4 inverse transform 350 to the DC coefficients, and the AC coefficients 342 decoded from the bitstream. Finally, the block edges in the resulting image planes are inverse overlap filtered 360. This produces a reconstructed 2D data output.


In an exemplary implementation, the encoder 200 (FIG. 2) compresses an input image into the compressed bitstream 220 (e.g., a file), and the decoder 300 (FIG. 3) reconstructs the original input or an approximation thereof, based on whether lossless or lossy coding is employed. The process of encoding involves the application of a forward lapped transform (LT) discussed below, which is implemented with reversible 2-dimensional pre-/post-filtering also described more fully below. The decoding process involves the application of the inverse lapped transform (ILT) using the reversible 2-dimensional pre-/post-filtering.


The illustrated LT and the ILT are inverses of each other, in an exact sense, and therefore can be collectively referred to as a reversible lapped transform. As a reversible transform, the LT/ILT pair can be used for lossless image compression.


The input data 210 compressed by the illustrated encoder 200/decoder 300 can be images of various color formats (e.g., RGB/YUV4:4:4, YUV4:2:2 or YUV4:2:0 color image formats). Typically, the input image always has a luminance (Y) component. If it is a RGB/YUV4:4:4, YUV4:2:2 or YUV4:2:0 image, the image also has chrominance components, such as a U component and a V component. The separate color planes or components of the image can have different spatial resolutions. In case of an input image in the YUV 4:2:0 color format for example, the U and V components have half of the width and height of the Y component.


As discussed above, the encoder 200 tiles the input image or picture into macroblocks. In an exemplary implementation, the encoder 200 tiles the input image into 16×16 pixel areas (called “macroblocks”) in the Y channel (which may be 16×16, 16×8 or 8×8 areas in the U and V channels depending on the color format). Each macroblock color plane is tiled into 4×4 pixel regions or blocks. Therefore, a macroblock is composed for the various color formats in the following manner for this exemplary encoder implementation:

    • 1. For a grayscale image, each macroblock contains 16 4×4 luminance (Y) blocks.
    • 2. For a YUV4:2:0 format color image, each macroblock contains 16 4×4 Y blocks, and 4 each 4×4 chrominance (U and V) blocks.
    • 3. For a YUV4:2:2 format color image, each macroblock contains 16 4×4 Y blocks, and 8 each 4×4 chrominance (U and V) blocks.
    • 4. For a RGB or YUV4:4:4 color image, each macroblock contains 16 blocks each of Y, U and V channels.


Accordingly, after transform, a macroblock in this representative encoder 200/decoder 300 has three frequency sub bands: a DC sub band (DC macroblock), a low pass sub band (low pass macroblock), and a high pass sub band (high pass macroblock). In the representative system, the low pass and/or high pass sub bands are optional in the bitstream—these sub bands may be entirely dropped.


Further, the compressed data can be packed into the bitstream in one of two orderings: spatial order and frequency order. For the spatial order, different sub bands of the same macroblock within a tile are ordered together, and the resulting bitstream of each tile is written into one packet. For the frequency order, the same sub band from different macroblocks within a tile are grouped together, and thus the bitstream of a tile is written into three packets: a DC tile packet, a low pass tile packet, and a high pass tile packet. In addition, there may be other data layers.


Thus, for the representative system, an image is organized in the following “dimensions”:

  • Spatial dimension: Frame→Tile→Macroblock;
  • Frequency dimension: DC|Low pass|High pass; and
  • Channel dimension: Luminance|Chrominance0|Chrominance1 . . . (e.g. as Y|U|V).


    The arrows above denote a hierarchy, whereas the vertical bars denote a partitioning.


Although the representative system organizes the compressed digital media data in spatial, frequency and channel dimensions, the flexible quantization approach described here can be applied in alternative encoder/decoder systems that organize their data along fewer, additional or other dimensions. For example, the flexible quantization approach can be applied to coding using a larger number of frequency bands, other format of color channels (e.g., YIQ, RGB, etc.), additional image channels (e.g., for stereo vision or other multiple camera arrays).


2. Flexible Quantization Overview


In the representative encoder/decoder, the quantization operation is essentially a biased division by a quantization parameter QP which is performed at the encoder. The inverse quantization or multiplication operation is a multiplication by QP performed at the decoder. However, alternative implementations of the flexible quantization described herein can utilize other forms of quantization, including uniform and non-uniform, scalar or vector, with or without dead zone, etc. The quantization/inverse quantization processes together introduce a loss in the original transform coefficient data, which shows up as compression errors or artifacts in the decoded image. In a simplistic codec, a certain fixed value of QP can be applied to all transform coefficients in a frame. While this may be an acceptable solution in some cases, it has several deficiencies:


The human visual system is not equally sensitive to all frequencies, or to all spatial locations within a frame, or to all luminance and chrominance channels. Using different QP values for different coefficients may provide a visually superior encoding even with the same or smaller number of compressed bits. Likewise, other error metrics can be suitably optimized as well.


Rate control or the ability of an encoder to produce a compressed file of a desired size is not easy to perform with a single QP across the entire frame.


Ideally therefore, it should be possible to allow the encoder to vary QP across the image in an arbitrary manner. However, this means that the actual value of QP used for each data partition (macroblock/tile/channel/sub band, etc.) should be signaled in the bitstream. This leads to an enormous overhead just to carry the QP signaling information, making it unsuitable in practice. What is desired is a flexible yet bit-economic means of signaling QP, particularly for commonly encountered scenarios.


The flexible quantization technique described herein provides the ability to vary quantization along various partitions or dimensions of the encoded digital media data. For example, one implementation of the flexible quantization technique in the representative encoder 200/decoder 300 system can vary quantization over three dimensions—over (i) spatial locations, (ii) frequency sub bands, and (iii) color channels. However, quantization can be varied over fewer, additional or other dimensions or partitions of the data in other alternative implementations of the flexible quantization technique. This technique also includes ways to efficiently signal the flexible quantization in the encoded media data. The benefit of this quantization approach is that the overhead incurred by quantization related side information is minimized for the primary usage scenarios, while allowing maximum flexibility if desired by the encoder.


The flexible quantization technique provides fine spatial granularity control of the quantization. In one particular implementation, the flexible quantization allows control over quantization applied to the frame, tile, or down to the macroblock. If the frame is not quantized uniformly, then each tile can be quantized uniformly; if a tile is not quantized uniformly, then each macroblock will be quantized differently.


The flexible quantization further allows quantization control along the frequency sub band dimension. In one particular implementation, the flexible quantization includes a sub band mode to specify a quantization relationship among frequency sub bands. The sub bands can be quantized uniformly, or partially uniformly (low pass sub band using DC sub band quantizer, and/or high pass sub band using low pass quantizer), or independently.


The flexible quantization also allows control over quantization applied along the channel dimension of the data. In one particular implementation, the flexible quantization includes a channel mode to specify a quantization relationship among color channels. The channels can be quantized uniformly, or partially uniformly (chrominance channels uniformly but luminance independently), or independently.


The flexible quantization described herein also provides techniques to efficiently signal in side information of the compressed digital media data, combinations of the above quantization control over spatial, frequency sub band and channel that are of significance to the primary usage scenarios. Further, the flexible quantization technique provides a way to efficiently define choice of quantizer by indexing from a defined subset of possible quantizers in the digital media data.


3. Flexible Quantization in the Spatial Dimension:


In the spatial dimension, three choices are provided by the flexible quantization technique in the representative encoder/decoder:

    • The entire frame can be coded using the same quantization rule.
    • Else, an entire tile can be coded using the same quantization rule and different tiles within the frame can use different quantization rules.
    • Else, each macroblock within a tile can be coded using the same quantization rule and different macroblocks within the tile can use different quantization rules.


One means of signaling these possibilities is as follows: A binary signal is sent in the bitstream at the frame level indicating whether the first possibility is true. If not, a fixed length symbol is sent in the bitstream within each tile indicating the number of quantization rules used for this tile. If the tile uses more than 1 quantization rule, then a variable length symbol is sent within each macroblock within the corresponding tile that indicates the quantization rule used by the macroblock. The decoder interprets the bitstream in a manner consistent with the encoder.


The representative encoder 200/decoder 300 uses a variant of the above signaling. A binary signal, represented by a generic syntax element, herein labeled as “XXX_FRAME_UNIFORM,” is only sent at the frame level (where XXX is a placeholder specifying the particular frequency sub band or channel dimension of quantizer control). At the tile level, the number of distinct quantizer rules is sent in a tile-level syntax element (XXX_QUANTIZERS) only when the frame level syntax element (XXX_FRAME_UNIFORM) is false. If this number is equal to 1, it means that there is only one rule and therefore all macroblocks within the tile are uniformly coded with the same quantization rule (indicating choice 2), and if not it indicates choice of the third possibility.


4. Flexible Quantization Across Frequency Bands:


For flexible quantization across frequency bands, the bitstream syntax of the representative encoder 200/decoder 300 defines two switches:

    • The low pass macroblock uses the same quantization rule as the DC macroblock at the same spatial location. This corresponds to the syntax element USE_DC_QUANTIZER.
    • The high pass macroblock uses the same quantization rule as the low pass macroblock at the same spatial location. This corresponds to the syntax element USE_LP_QUANTIZER.


These switches are enabled at the frame layer when the entire frame uses the same quantization rule, or at the tile layer otherwise. These switches are not enabled at the macroblock layer. All macroblocks within a tile therefore obey the same rules across frequency bands. A binary symbol is sent for each of the switches at the appropriate (frame or tile) layer.


5. Flexible Quantization Across Image Channels:


For flexible quantization across channels, the bitstream syntax of the representative encoder 200/decoder 300 permits three choices:

    • All channels—luminance and chrominance have the same quantization rule. This is indicated by the generic syntax element XXX_CH_MODE=CH_UNIFORM.
    • Luminance follows one quantization rule and all chrominance channels follow a different quantization rule, indicated by XXX_CH_MODE=CH_MIXED.
    • All channels are free to choose different quantization rules, indicated by XXX_CH_MODE=CH_INDEPENDENT.


6. Combinatorial Flexible Quantization:


The representative encoder 200/decoder 300 uses a bitstream syntax defined in the code tables shown in FIGS. 4-14 that can efficiently encode the particular choice out of the flexible quantization options across the dimensions discussed above. With several quantization options available across each of the spatial, frequency sub band and channel dimensions, the number of permutations of the available quantization options is large. Adding to the complexity of flexible quantization across the three dimensions is the fact that the bitstream of the representative encoder 200/decoder 300 can be laid out in spatial or frequency ordering. However, this does not change the available quantization options, and only affects the serialization of the signals. The syntax defined in FIGS. 4-14 provides an efficient coding of the combinatorial flexible quantization rules.


Some salient features of the combinatorial quantization rules as defined in the syntax of the representative encoder/decoder are as follows.


DC quantization is not allowed to vary on a macroblock basis. This allows the differential coding of quantized DC values without having to do an inverse scaling operation. Coding the DC band of an image tile with a relatively small quantizer even when the AC (low pass and high pass) bands are coded with varying quantization does not appreciably affect the bit rate.


At one end of the scale, all transform coefficients within a frame use the same quantization parameter. At the other end of the scale, low pass and high pass quantization rules for all channels are allowed to vary independently for each macroblock of the tile/frame. The only restriction is that the number of distinct low pass and high pass quantizer rules (covering all channels) is each restricted to 16. Each such rule may specify independent values of quantization parameter for each channel.


Between these extremes, several combinations are permitted as specified by the syntax tables shown in FIGS. 4-14.


7. Indexing of Quantizer Parameters:


The specific quantization parameter (QP) in the representative encoder/decoder is based on a harmonic scale. An 8 bit value of a quantizer parameter index (QPI) corresponds to a value of QP which can be relatively large. A second level of indexing is performed so that QPIs varying across macroblocks can be coded in an efficient manner.


More particularly, the encoder 200 can define a set in the bitstream containing between 1 and 16 QPI “vectors.” Each QPI vector is composed of one or more QPI values, based on which XXX_CHANNEL_MODE is chosen. Such sets are defined for DC, low pass and high pass sub bands, based on the frequency band switch. Further, the DC set has only one QPI vector since only one DC quantizer is permissible in a tile-channel. The coding of these sets is defined in the tables shown in FIGS. 4-6.


As shown in the tables of FIGS. 7-11, signaling of the QPI vector sets of DC, low pass and high pass frequency sub bands occurs as follows. Based on the other coding modes, the cardinality of each set (i.e., the number of QPI vectors in the set) is indicated for low pass and high pass sub bands at the start of the corresponding tile or frame. The cardinality of the DC set is 1. In the pseudo-code tables, the syntax element denoting cardinality is labeled as “XXX_QUANTIZERS.” (In practice, XXX_QUANTIZERS—1 is sent in the bitstream.) The syntax elements labeled “XXX_QUANTIZER” in the tables denotes the coding of QPI sets, which is defined in the tables shown in FIGS. 4-6.


At the macroblock level, it is sufficient to send only the index QI of the desired QPI vector from within the QPI set. The tables in FIGS. 12-14 define the syntax of sending QI on a macroblock basis. The syntax element corresponding to QI is labeled, “XXX_QUANTIZER_INDEX.” A variable length code is used to signal QI. First, a one bit symbol is sent indicating whether QI is zero or not. If not, then a fixed length code of length being given by ceil(log2(XXX_QUANTIZERS—1)) is sent indicating the specific QI different from zero. This allows for an efficient encoding of a “default” quantization rule (QI=0) with as low as one bit per macroblock. When XXX_QUANTIZERS is 1, XXX_QUANTIZER_INDEX is uniquely zero and therefore QI need not be signaled.


8. Extensions


The above description of the flexible quantization is specific to its implementation in a representative encoder and decoder, and syntax. However, the principles of this technique are extensible to other digital media compression systems and formats as well. For instance, the representative encoder/decoder has only three frequency sub bands (DC, low pass and high pass). But, more generally, alternative implementations of the flexible quantization can be extended in a straightforward manner to a multitude of frequency sub bands. Likewise, alternative flexible quantization implementations can vary the quantizer at finer spatial granularity, such as by sending quantization index (QI) information at the sub-macroblock (such as block) level. Many extensions to the underlying principles of the flexible quantization technique are possible within the same framework.


9. Computing Environment


The above-described processing techniques for flexible quantization can be realized on any of a variety of digital media encoding and/or decoding systems, including among other examples, computers (of various form factors, including server, desktop, laptop, handheld, etc.); digital media recorders and players; image and video capture devices (such as cameras, scanners, etc.); communications equipment (such as telephones, mobile phones, conferencing equipment, etc.); display, printing or other presentation devices; and etc. The flexible quantization techniques can be implemented in hardware circuitry, in firmware controlling digital media processing hardware, as well as in communication software executing within a computer or other computing environment, such as shown in FIG. 15.



FIG. 15 illustrates a generalized example of a suitable computing environment (1500) in which described embodiments may be implemented. The computing environment (1500) is not intended to suggest any limitation as to scope of use or functionality of the invention, as the present invention may be implemented in diverse general-purpose or special-purpose computing environments.


With reference to FIG. 15, the computing environment (1500) includes at least one processing unit (1510) and memory (1520). In FIG. 15, this most basic configuration (1530) is included within a dashed line. The processing unit (1510) executes computer-executable instructions and may be a real or a virtual processor. In a multi-processing system, multiple processing units execute computer-executable instructions to increase processing power. The memory (1520) may be volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the two. The memory (1520) stores software (1580) implementing the described digital media encoding/decoding with flexible quantization techniques.


A computing environment may have additional features. For example, the computing environment (1500) includes storage (1540), one or more input devices (1550), one or more output devices (1560), and one or more communication connections (1570). An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computing environment (1500). Typically, operating system software (not shown) provides an operating environment for other software executing in the computing environment (1500), and coordinates activities of the components of the computing environment (1500).


The storage (1540) may be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CD-ROMs, CD-RWs, DVDs, or any other medium which can be used to store information and which can be accessed within the computing environment (1500). The storage (1540) stores instructions for the software (1580) implementing the described digital media encoding/decoding with flexible quantization techniques.


The input device(s) (1550) may be a touch input device such as a keyboard, mouse, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computing environment (1500). For audio, the input device(s) (1550) may be a sound card or similar device that accepts audio input in analog or digital form from a microphone or microphone array, or a CD-ROM reader that provides audio samples to the computing environment. The output device(s) (1560) may be a display, printer, speaker, CD-writer, or another device that provides output from the computing environment (1500).


The communication connection(s) (1570) enable communication over a communication medium to another computing entity. The communication medium conveys information such as computer-executable instructions, compressed audio or video information, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired or wireless techniques implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.


The described digital media encoding/decoding with flexible quantization techniques herein can be described in the general context of computer-readable media. Computer-readable media are any available media that can be accessed within a computing environment. By way of example, and not limitation, with the computing environment (1500), computer-readable media include memory (1520), storage (1540), communication media, and combinations of any of the above.


The described digital media encoding/decoding with flexible quantization techniques herein can be described in the general context of computer-executable instructions, such as those included in program modules, being executed in a computing environment on a target real or virtual processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Computer-executable instructions for program modules may be executed within a local or distributed computing environment.


For the sake of presentation, the detailed description uses terms like “determine,” “generate,” “adjust,” and “apply” to describe computer operations in a computing environment. These terms are high-level abstractions for operations performed by a computer, and should not be confused with acts performed by a human being. The actual computer operations corresponding to these terms vary depending on implementation.


In view of the many possible embodiments to which the principles of our invention may be applied, we claim as our invention all such embodiments as may come within the scope and spirit of the following claims and equivalents thereto.

Claims
  • 1. A method of decoding digital media, comprising: with a computer, receiving compressed digital image data, the compressed digital image data having been partitioned along more than one dimension;determining multiple sets of quantization parameter indices from signals in the compressed digital image data, the compressed digital image data having been quantized across more than one partitioned dimension of the digital image data, the signals indicating whether quantization parameter indices used during decoding vary within a frequency band dimension and within a color channel dimension, the quantization parameter indices available across the frequency band dimension including, for a given set of the multiple sets of quantization parameter indices, a first quantization parameter index for one or more DC components, a second quantization parameter index for multiple low-pass components, and a third quantization parameter index for multiple high-pass components;for each of multiple macroblocks of the compressed digital image data: selecting one of the multiple sets of quantization parameter indices based on a value signaled for the macroblock; anddetermining one or more quantization parameters for the selected set of quantization parameter indices;dequantizing the compressed digital image data in accordance with the determined quantization parameters;applying an inverse of a block transform to blocks of the dequantized digital image data; andoutputting decompressed digital image data,wherein: (a) the multiple high-pass coefficients are AC coefficients from first transforms of values of blocks of a macroblock; (b) the multiple low-pass coefficients are AC coefficients from a second transform of DC coefficients from the first transforms; and (c) the one or more DC coefficients include a DC coefficient from the second transform of the DC coefficients from the first transforms.
  • 2. The method of claim 1, wherein the signals further include (i) a signal indicating whether the low-pass components are to be decoded using the first quantization parameter index for the DC components and (ii) a signal indicating whether the high-pass components are to be quantized using the second quantization parameter index for low-pass components.
  • 3. The method of claim 1, wherein the signals further indicate whether quantization parameters used during dequantization vary within a color channel dimension, and wherein the signals further include a signal indicating (i) whether to dequantize DC components of a luminance channel and both chrominance channels uniformly, (ii) whether to dequantize the DC component of the luminance channel separately from the DC components of the chrominance channels, or (iii) whether to dequantize the DC component of the luminance channel and each of the DC components for the chrominance channels independently.
  • 4. The method of claim 1, wherein said determining quantization parameters further comprises: determining whether to specify DC quantization parameters (a) uniformly for a luminance channel and all chrominance channels; (b) separately between (i) the luminance channel and (ii) all chrominance channels; or (c) independently for the luminance channel and each of the chrominance channels.
  • 5. The method of claim 4, wherein said determining quantization parameters further comprises: determining whether to specify LP quantization parameters using the DC quantization parameters and, if not, determining whether to specify the LP quantization parameters (a) uniformly for a luminance channel and all chrominance channels; (b) separately between (i) the luminance channel and (ii) all chrominance channels; or (c) independently for the luminance channel and each of the chrominance channels.
  • 6. The method of claim 1 wherein the signals include a flag that indicates whether the second quantization parameter index is same as the third quantization parameter index.
  • 7. A digital media processing device comprising: a memory for storing digital media data; anda digital media processor programmed to encode and/or decode the digital media data by applying forward or inverse operations of a transform to blocks of the digital media data, and applying quantizers to the blocks of digital media data, wherein the quantizers include a set of frequency band quantizers, the set of frequency band quantizers including: (a) an HP quantizer for multiple high-pass coefficients of a macroblock, wherein the multiple high-pass coefficients are AC coefficients from first transforms of values of blocks of the macroblock;(b) an LP quantizer for multiple low-pass coefficients of the macroblock, wherein the multiple low-pass coefficients are AC coefficients from a second transform of DC coefficients from the first transforms; and(c) a DC quantizer for a DC coefficient of the macroblock, wherein the DC coefficient is a DC coefficient from the second transform of the DC coefficients from the first transforms.
  • 8. The device of claim 7 wherein the set of frequency band quantizers are controlled by signals in the bitstream that allow variation of quantization spatially and across color channels.
  • 9. At least one memory device or magnetic disk having program code stored thereon for causing a digital media processing device to perform a method of processing digital media data according to a codec, the method comprising: selecting combinations of available quantization modes to be applied to the digital media data, the available quantization modes including at least a first quantization mode in which low pass coefficients use the same quantizer as a DC coefficient and a second quantization mode in which high pass coefficients use the same quantizer as low pass coefficients, the first quantization mode being signaled by a first syntax element, the second quantization mode being signaled by a second syntax element;applying a two-stage transform to blocks of the digital media data;quantizing the digital media data according to the selected combinations of quantization modes;encoding the quantized digital media data in a compressed data stream; andsignaling the selected combinations of quantization modes in the compressed data stream, the compressed data stream including the first syntax element and the second syntax element,wherein the high pass coefficients are AC coefficients from first transforms of values of the blocks, and wherein the low pass coefficients are AC coefficients from a second transform of DC coefficients from the first transforms.
  • 10. The at least one memory device or magnetic disk of claim 9 wherein the available quantization modes further comprise a mode for uniform quantization per frame of the digital media data, a mode for uniform quantization per tile of the digital media data, and a mode for independently quantizing each macroblock of the digital media data.
  • 11. The at least one memory device or magnetic disk of claim 9 wherein the available quantization modes further comprise a mode for uniform quantization across color channels of the digital media data, a mode for partially uniformly quantizing across the color channels of the digital media data, and a mode for independently quantizing the color channels of the digital media data.
  • 12. The at least one memory device or magnetic disk of claim 9 wherein the method further comprises defining a set of available quantizers and specifying a current quantizer by indexing from the set.
  • 13. At least one memory device or magnetic disk having program code stored thereon for causing a digital media processing device to perform a method of processing digital media data according to a codec, the method comprising decoding a compressed data stream encoded according to the method of claim 9.
  • 14. At least one memory device or magnetic disk having program code stored thereon for causing a digital media processing device to perform a method of processing digital media data according to a codec, the method comprising: receiving compressed digital image data;determining multiple sets of quantization parameter indices from signals in the compressed digital image data, the signals indicating whether quantization parameter indices used during decoding vary within a frequency band dimension and within a color channel dimension, the quantization parameter indices available across the frequency band dimension including, for a given set of the multiple sets of quantization parameter indices, a first quantization parameter index for one or more DC components, a second quantization parameter index for multiple low-pass components, and a third quantization parameter index for multiple high-pass components;for each of multiple macroblocks of the compressed digital image data: selecting one of the multiple sets of quantization parameter indices based on a value signaled for the macroblock; anddetermining one or more quantization parameters for the selected set of quantization parameter indices;dequantizing the compressed digital image data in accordance with the determined quantization parameters;applying an inverse of a block transform to blocks of the dequantized digital image data; andoutputting decompressed digital image data,wherein (a) the multiple high-pass coefficients are AC coefficients from first transforms of values of blocks of a macroblock; (b) the multiple low-pass coefficients are AC coefficients from a second transform of DC coefficients from the first transforms; and (c) the one or more DC coefficients include a DC coefficient from the second transform of the DC coefficients from the first transforms.
  • 15. The at least one memory device or magnetic disk of claim 14, wherein the signals further indicate whether quantization parameters used during dequantization vary within a color channel dimension, and wherein said determining quantization parameters comprises: determining whether to specify DC quantization parameters (a) uniformly for a luminance channel and all chrominance channels; (b) separately between (i) the luminance channel and (ii) all chrominance channels; or (c) independently for the luminance channel and each of the chrominance channels.
  • 16. The at least one memory device or magnetic disk of claim 15, wherein said determining quantization parameters further comprises: determining whether to specify LP quantization parameters using the DC quantization parameters and, if not, determining whether to specify the LP quantization parameters (a) uniformly for a luminance channel and all chrominance channels; (b) separately between (i) the luminance channel and (ii) all chrominance channels; or (c) independently for the luminance channel and each of the chrominance channels.
  • 17. The at least one memory device or magnetic disk of claim 14, wherein the signals include a flag that indicates whether the second quantization parameter index is same as the third quantization parameter index.
US Referenced Citations (336)
Number Name Date Kind
4583114 Catros Apr 1986 A
4679079 Catros et al. Jul 1987 A
4774574 Daly et al. Sep 1988 A
4821119 Gharavi Apr 1989 A
4862264 Wells et al. Aug 1989 A
4965830 Barham et al. Oct 1990 A
4992889 Yamagami et al. Feb 1991 A
5072295 Murakami et al. Dec 1991 A
5128758 Azadegan et al. Jul 1992 A
5136377 Johnston et al. Aug 1992 A
5144426 Tanaka et al. Sep 1992 A
5146324 Miller et al. Sep 1992 A
5179442 Azadegan et al. Jan 1993 A
5237410 Inoue Aug 1993 A
5241395 Chen Aug 1993 A
5253058 Gharavi Oct 1993 A
5263088 Hazu et al. Nov 1993 A
5301242 Gonzales et al. Apr 1994 A
5303058 Fukuda et al. Apr 1994 A
5317396 Fujinami May 1994 A
5317672 Crossman et al. May 1994 A
5333212 Ligtenberg Jul 1994 A
5351310 Califano et al. Sep 1994 A
5374958 Yanagihara Dec 1994 A
5412429 Glover May 1995 A
5452104 Lee Sep 1995 A
5461421 Moon Oct 1995 A
5473377 Kim Dec 1995 A
5481553 Suzuki et al. Jan 1996 A
5506916 Nishihara et al. Apr 1996 A
5510785 Segawa et al. Apr 1996 A
5537440 Eyuboglu et al. Jul 1996 A
5537493 Wilkinson Jul 1996 A
5539469 Jung Jul 1996 A
5559557 Kato Sep 1996 A
5565920 Lee et al. Oct 1996 A
5587708 Chiu Dec 1996 A
5590139 Suzuki et al. Dec 1996 A
5606371 Gunnewiek et al. Feb 1997 A
5623424 Azadegan et al. Apr 1997 A
5629779 Jeon May 1997 A
5631644 Katata et al. May 1997 A
5654760 Ohtsuki Aug 1997 A
5657087 Jeong et al. Aug 1997 A
5663763 Yagasaki et al. Sep 1997 A
5724097 Hibi et al. Mar 1998 A
5724456 Boyack et al. Mar 1998 A
5731836 Lee Mar 1998 A
5731837 Hurst, Jr. Mar 1998 A
5739861 Music Apr 1998 A
5751358 Suzuki et al. May 1998 A
5751379 Markandey et al. May 1998 A
5761088 Hulyalkar et al. Jun 1998 A
5764803 Jacquin et al. Jun 1998 A
5781788 Woo et al. Jul 1998 A
5786856 Hall et al. Jul 1998 A
5802213 Gardos Sep 1998 A
5809178 Anderson et al. Sep 1998 A
5815097 Schwartz et al. Sep 1998 A
5819035 Devaney et al. Oct 1998 A
5825310 Tsutsui Oct 1998 A
5835145 Ouyang et al. Nov 1998 A
5835237 Ebrahimi Nov 1998 A
5844613 Chaddha Dec 1998 A
5850482 Meany et al. Dec 1998 A
5867167 Deering Feb 1999 A
5870435 Choi et al. Feb 1999 A
5877813 Lee et al. Mar 1999 A
5878166 Legall Mar 1999 A
5880775 Ross Mar 1999 A
5883672 Suzuki et al. Mar 1999 A
5926791 Ogata et al. Jul 1999 A
5969764 Sun et al. Oct 1999 A
5970173 Lee et al. Oct 1999 A
5990957 Ryoo Nov 1999 A
6044115 Horiike et al. Mar 2000 A
6049630 Wang et al. Apr 2000 A
6058362 Malvar May 2000 A
6072831 Chen Jun 2000 A
6084636 Fujiwara et al. Jul 2000 A
6088392 Rosenberg Jul 2000 A
6091777 Guetz et al. Jul 2000 A
6104751 Artieri Aug 2000 A
6118817 Wang Sep 2000 A
6118903 Liu Sep 2000 A
6125140 Wilkinson Sep 2000 A
6148107 Ducloux et al. Nov 2000 A
6148109 Boon et al. Nov 2000 A
6160846 Chiang et al. Dec 2000 A
6167091 Okada et al. Dec 2000 A
6182034 Malvar Jan 2001 B1
6212232 Reed et al. Apr 2001 B1
6215905 Lee et al. Apr 2001 B1
6223162 Chen et al. Apr 2001 B1
6240135 Kim May 2001 B1
6240380 Malvar May 2001 B1
6243497 Chiang et al. Jun 2001 B1
6249614 Bocharova et al. Jun 2001 B1
6256422 Mitchell et al. Jul 2001 B1
6256423 Krishnamurthy et al. Jul 2001 B1
6263022 Chen et al. Jul 2001 B1
6263024 Matsumoto Jul 2001 B1
6275614 Krishnamurthy et al. Aug 2001 B1
6278735 Mohsenian Aug 2001 B1
6292588 Shen et al. Sep 2001 B1
6314208 Konstantinides et al. Nov 2001 B1
6337881 Chaddha Jan 2002 B1
6347116 Haskell et al. Feb 2002 B1
6348945 Hayakawa Feb 2002 B1
6356709 Abe et al. Mar 2002 B1
6359928 Wang et al. Mar 2002 B1
6360017 Chiu et al. Mar 2002 B1
6370502 Wu et al. Apr 2002 B1
6373894 Florencio et al. Apr 2002 B1
6385343 Kuroda et al. May 2002 B1
6389171 Washington May 2002 B1
6393155 Bright et al. May 2002 B1
6408026 Tao Jun 2002 B1
6418166 Wu et al. Jul 2002 B1
6438167 Shimizu et al. Aug 2002 B1
6456744 Lafe Sep 2002 B1
6463100 Cho et al. Oct 2002 B1
6466620 Lee Oct 2002 B1
6473534 Merhav et al. Oct 2002 B1
6490319 Yang Dec 2002 B1
6493385 Sekiguchi et al. Dec 2002 B1
6519284 Pesquet-Popescu et al. Feb 2003 B1
6526096 Lainema et al. Feb 2003 B2
6546049 Lee Apr 2003 B1
6571019 Kim et al. May 2003 B1
6593925 Hakura et al. Jul 2003 B1
6600836 Thyagarajan et al. Jul 2003 B1
6647152 Willis et al. Nov 2003 B2
6654417 Hui Nov 2003 B1
6678422 Sharma et al. Jan 2004 B1
6687294 Yan et al. Feb 2004 B2
6693645 Bourges-Sevenier Feb 2004 B2
6704718 Burges et al. Mar 2004 B2
6721359 Bist et al. Apr 2004 B1
6728317 Demos Apr 2004 B1
6731811 Rose May 2004 B1
6738423 Lainema et al. May 2004 B1
6747660 Olano et al. Jun 2004 B1
6759999 Doyen Jul 2004 B1
6760482 Taubman Jul 2004 B1
6765962 Lee et al. Jul 2004 B1
6771830 Goldstein et al. Aug 2004 B2
6785331 Jozawa et al. Aug 2004 B1
6788740 Van der Schaar et al. Sep 2004 B1
6792157 Koshi et al. Sep 2004 B1
6795584 Karczewicz et al. Sep 2004 B2
6801572 Yamada et al. Oct 2004 B2
6807317 Mathew et al. Oct 2004 B2
6810083 Chen et al. Oct 2004 B2
6831947 Ribas Corbera Dec 2004 B2
6862320 Isu et al. Mar 2005 B1
6865291 Zador Mar 2005 B1
6873654 Rackett Mar 2005 B1
6876703 Ismaeil et al. Apr 2005 B2
6882753 Chen et al. Apr 2005 B2
6907142 Kalevo et al. Jun 2005 B2
6909745 Puri et al. Jun 2005 B1
6947045 Ostermann et al. Sep 2005 B1
6975680 Demos Dec 2005 B2
6977659 Dumitras et al. Dec 2005 B2
6983018 Lin et al. Jan 2006 B1
6990242 Malvar Jan 2006 B2
7016546 Fukuhara et al. Mar 2006 B2
7020204 Auvray et al. Mar 2006 B2
7027506 Lee et al. Apr 2006 B2
7027507 Wu Apr 2006 B2
7035473 Zeng et al. Apr 2006 B1
7042941 Laksono et al. May 2006 B1
7058127 Lu et al. Jun 2006 B2
7099389 Yu et al. Aug 2006 B1
7099515 Lin et al. Aug 2006 B2
7110455 Wu et al. Sep 2006 B2
7162096 Horowitz Jan 2007 B1
7200277 Joshi et al. Apr 2007 B2
7280700 Tourapis et al. Oct 2007 B2
7289154 Gindele Oct 2007 B2
7295609 Sato et al. Nov 2007 B2
7301999 Filippini et al. Nov 2007 B2
7307639 Dumitras et al. Dec 2007 B1
7356085 Gavrilescu et al. Apr 2008 B2
7463780 Fukuhara et al. Dec 2008 B2
7471830 Lim et al. Dec 2008 B2
7580584 Holcomb et al. Aug 2009 B2
7738554 Lin et al. Jun 2010 B2
7778476 Alvarez et al. Aug 2010 B2
7801383 Sullivan Sep 2010 B2
7869517 Ghanbari Jan 2011 B2
7889790 Sun Feb 2011 B2
7995649 Zuo et al. Aug 2011 B2
20010048718 Bruls et al. Dec 2001 A1
20020021756 Jayant et al. Feb 2002 A1
20020024999 Yamaguchi et al. Feb 2002 A1
20020044602 Ohki Apr 2002 A1
20020118748 Inomata et al. Aug 2002 A1
20020118884 Cho et al. Aug 2002 A1
20020136297 Shimada et al. Sep 2002 A1
20020136308 Le Maguet et al. Sep 2002 A1
20020154693 Demos et al. Oct 2002 A1
20020186890 Lee et al. Dec 2002 A1
20030021482 Lan et al. Jan 2003 A1
20030053702 Hu Mar 2003 A1
20030095599 Lee et al. May 2003 A1
20030103677 Tastl et al. Jun 2003 A1
20030108100 Sekiguchi et al. Jun 2003 A1
20030113026 Srinivasan et al. Jun 2003 A1
20030128754 Akimoto et al. Jul 2003 A1
20030128756 Oktem Jul 2003 A1
20030138150 Srinivasan Jul 2003 A1
20030185420 Sefcik et al. Oct 2003 A1
20030194010 Srinivasan et al. Oct 2003 A1
20030206582 Srinivasan et al. Nov 2003 A1
20030215011 Wang et al. Nov 2003 A1
20030219073 Lee et al. Nov 2003 A1
20030223493 Ye et al. Dec 2003 A1
20030235247 Wu et al. Dec 2003 A1
20040008901 Avinash Jan 2004 A1
20040022316 Ueda et al. Feb 2004 A1
20040036692 Alcorn et al. Feb 2004 A1
20040090397 Doyen et al. May 2004 A1
20040091168 Jones et al. May 2004 A1
20040151243 Bhaskaran et al. Aug 2004 A1
20040158719 Lee et al. Aug 2004 A1
20040190610 Song et al. Sep 2004 A1
20040202376 Schwartz et al. Oct 2004 A1
20040228406 Song Nov 2004 A1
20040264568 Florencio Dec 2004 A1
20040264580 Chiang Wei Yin et al. Dec 2004 A1
20050002575 Joshi et al. Jan 2005 A1
20050008075 Chang et al. Jan 2005 A1
20050013365 Mukerjee et al. Jan 2005 A1
20050013497 Hsu et al. Jan 2005 A1
20050013498 Srinivasan et al. Jan 2005 A1
20050013500 Lee et al. Jan 2005 A1
20050015246 Thumpudi et al. Jan 2005 A1
20050015259 Thumpudi et al. Jan 2005 A1
20050024487 Chen Feb 2005 A1
20050031034 Kamaci et al. Feb 2005 A1
20050036698 Beom Feb 2005 A1
20050036699 Holcomb et al. Feb 2005 A1
20050041738 Lin et al. Feb 2005 A1
20050052294 Liang et al. Mar 2005 A1
20050053151 Lin et al. Mar 2005 A1
20050053158 Regunathan et al. Mar 2005 A1
20050084009 Furukawa et al. Apr 2005 A1
20050084013 Wang et al. Apr 2005 A1
20050094731 Xu et al. May 2005 A1
20050105612 Sung et al. May 2005 A1
20050105622 Gokhale May 2005 A1
20050123048 Kondo et al. Jun 2005 A1
20050123274 Crinon et al. Jun 2005 A1
20050135484 Lee et al. Jun 2005 A1
20050147163 Li et al. Jul 2005 A1
20050152451 Byun Jul 2005 A1
20050180500 Chiang et al. Aug 2005 A1
20050180502 Puri Aug 2005 A1
20050190836 Lu et al. Sep 2005 A1
20050207492 Pao Sep 2005 A1
20050232501 Mukerjee Oct 2005 A1
20050238096 Holcomb et al. Oct 2005 A1
20050254719 Sullivan Nov 2005 A1
20050259729 Sun Nov 2005 A1
20050276493 Xin et al. Dec 2005 A1
20060013307 Olivier et al. Jan 2006 A1
20060013309 Ha et al. Jan 2006 A1
20060018552 Malayath et al. Jan 2006 A1
20060034368 Klivington Feb 2006 A1
20060038826 Daly Feb 2006 A1
20060056508 Lafon et al. Mar 2006 A1
20060071825 Demos Apr 2006 A1
20060083308 Schwarz et al. Apr 2006 A1
20060088098 Vehvilainen Apr 2006 A1
20060098733 Matsumura et al. May 2006 A1
20060104350 Liu May 2006 A1
20060104527 Koto et al. May 2006 A1
20060126724 Cote Jun 2006 A1
20060126728 Yu et al. Jun 2006 A1
20060133478 Wen Jun 2006 A1
20060133479 Chen et al. Jun 2006 A1
20060140267 He et al. Jun 2006 A1
20060165176 Raveendran et al. Jul 2006 A1
20060188014 Civanlar et al. Aug 2006 A1
20060197777 Cha et al. Sep 2006 A1
20060227868 Chen et al. Oct 2006 A1
20060238444 Wang et al. Oct 2006 A1
20060239576 Mukherjee Oct 2006 A1
20060245506 Lin et al. Nov 2006 A1
20060256851 Wang et al. Nov 2006 A1
20060256867 Turaga et al. Nov 2006 A1
20060257037 Samadani Nov 2006 A1
20060268990 Lin et al. Nov 2006 A1
20060268991 Segall et al. Nov 2006 A1
20070002946 Bouton et al. Jan 2007 A1
20070009039 Ryu Jan 2007 A1
20070009042 Craig et al. Jan 2007 A1
20070053603 Monro Mar 2007 A1
20070081586 Raveendran et al. Apr 2007 A1
20070081588 Raveendran et al. Apr 2007 A1
20070140333 Chono et al. Jun 2007 A1
20070147497 Bao et al. Jun 2007 A1
20070160138 Wedi et al. Jul 2007 A1
20070160151 Bolton et al. Jul 2007 A1
20070189626 Tanizawa et al. Aug 2007 A1
20070201553 Shindo Aug 2007 A1
20070230565 Tourapis et al. Oct 2007 A1
20070237221 Hsu et al. Oct 2007 A1
20070237222 Xia et al. Oct 2007 A1
20070237236 Chang et al. Oct 2007 A1
20070237237 Chang et al. Oct 2007 A1
20070248163 Zuo et al. Oct 2007 A1
20070248164 Zuo et al. Oct 2007 A1
20070258519 Srinivasan Nov 2007 A1
20080008394 Segall Jan 2008 A1
20080031346 Segall Feb 2008 A1
20080068446 Barkley et al. Mar 2008 A1
20080080615 Tourapis et al. Apr 2008 A1
20080089410 Lu et al. Apr 2008 A1
20080101465 Chono et al. May 2008 A1
20080144951 Zhang Jun 2008 A1
20080187042 Jasinschi Aug 2008 A1
20080192822 Chang et al. Aug 2008 A1
20080240235 Holcomb et al. Oct 2008 A1
20080240250 Lin et al. Oct 2008 A1
20080240257 Chang et al. Oct 2008 A1
20080260278 Zuo et al. Oct 2008 A1
20080304562 Chang et al. Dec 2008 A1
20090207919 Yin et al. Aug 2009 A1
20090213930 Ye et al. Aug 2009 A1
20090245587 Holcomb et al. Oct 2009 A1
20090290635 Kim et al. Nov 2009 A1
20090296808 Regunathan et al. Dec 2009 A1
20100177826 Bhaumik et al. Jul 2010 A1
Foreign Referenced Citations (45)
Number Date Country
1327074 Feb 1994 CA
0932306 Jul 1999 EP
1465349 Oct 2004 EP
1871113 Dec 2007 EP
897363 May 1962 GB
05-227525 Sep 1993 JP
07-222145 Aug 1995 JP
07-250327 Sep 1995 JP
08-336139 Dec 1996 JP
09-200758 Jul 1997 JP
10-174106 Jun 1998 JP
10-336656 Dec 1998 JP
11-041610 Feb 1999 JP
2000-013794 Jan 2000 JP
2001-008215 Jan 2001 JP
2001-358948 Dec 2001 JP
2002-058029 Feb 2002 JP
2003061090 Feb 2003 JP
2003-230142 Aug 2003 JP
2004-023288 Jan 2004 JP
2004-194076 Jul 2004 JP
2004-247889 Sep 2004 JP
6-296275 Oct 2004 JP
2005-260467 Sep 2005 JP
2007-281949 Oct 2007 JP
132895 Oct 1998 KR
2119269 Sep 1998 RU
2119727 Sep 1998 RU
2127962 Mar 1999 RU
WO 9309636 May 1993 WO
WO 9721302 Jun 1997 WO
WO 9925121 May 1999 WO
WO 9948300 Sep 1999 WO
WO 0021207 Apr 2000 WO
WO0072599 Nov 2000 WO
WO 0207438 Jan 2002 WO
WO 02080575 Oct 2002 WO
WO 2004100554 Nov 2004 WO
WO 2004100556 Nov 2004 WO
WO 2005065030 Jul 2005 WO
WO 2005076614 Aug 2005 WO
WO 2006075895 Jul 2006 WO
WO 2006112620 Oct 2006 WO
WO 2007015047 Feb 2007 WO
WO 2007130580 Nov 2007 WO
Non-Patent Literature Citations (120)
Entry
Search Report and Written Opinion from PCT/US2007/010848 dated Nov. 1, 2007.
Augustine et al., “Region of Interest Editing of MPEG-2 Video Streams in the Compressed Domain,” 2004 IEEE Int'l Conf. on Multimedia and Expo: ICME'04, vol. 1, Issue 27-30, pp. 559-562 (Jun. 2004).
Chrysafis et al., “Context-based Adaptive Image Coding,” Proc. of the 30th Asilomar Conf. on Signals, Systems, and Computers, 5 pp. (Nov. 1996).
Gavrilescu et al., “Embedded Multiple Description Scalar Quantizers,” IEE Electronics Letters, vol. 39, No. 13, 12 pp. (Jun. 2003).
Golner et al., “Region Based Variable Quantization for JPEG Image Compression,” IEEE Symp. on Circuits and Systems, pp. 604-607 (Aug. 2000).
Hannuksela et al., “Sub-picture: ROI coding and unequal error protection,” Proc. 2002 Int'l Conf. on Image Processing, vol. 3, Issue 24-28, pp. 537-540 (Jun. 2002).
Lei et al., “Rate Adaptation Transcoding for Precoded Video Streams,” 13 pp. (month unknown, 2000).
Lin et al, “Low-complexity face-assisted coding scheme for low bit rate video telephony,” IEICE Trans. Inf. & Sys., vol. E86-D, No. 1, pp. 101-108 (Jan. 2003).
Lin et al, “Low-complexity face-assisted video coding,” Proc. 2000 Int'l Conf. on Image Processing, vol. 2, pp. 207-210 (Sep. 2000).
Schallauer et al., “PRESTO—Preservation Technologies for European Broadcast Archives, D5.4—High Quality Compression for Film and Video,” 80 pp. (Sep. 18, 2002).
Kopp, “Lossless Wavelet Based Image Compression with Adaptive 2D Decomposition”, Proceedings of the Fourth International Conference in Central Europe on Computer Graphics and Visualization 96, (WSCG96), pp. 141-149 Czech Republic (Feb. 12-16, 1996).
Xiong et al., “Wavelet Packet Image Coding Using Space-Frequency Quantization”, IEEE Transactions on Image Processing, vol. 7, No. 6, pp. 892-898 (Jun. 1998).
Atzori et al., “Adaptive Anisotropic Filtering (AAF) for Real-Time Visual Enhancement of MPEG-Coded Video Sequences,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, No. 5, pp. 285-298 (May 2002).
Bist et al., “Adaptive Quantization for Low Bit Rate Video Coding,” Proc. 1998 Int'l Conf. on Image Processing (ICIP 98), pp. 925-928 (1998).
Farvardin et al., “Optimum quantizer performance for a class of non-Gaussian memoryless sources,” IEEE Trans. Inform. Theory, vol. IT-30, No. 3, pp. 485-497 (May 1984).
Flierl et al., “A Video Codec Incorporating Block-Based Multi-Hypothesis Motion-Compensated Prediction,” in Proceedings of the SPIE Conference on Visual Communications and image Processing, Perth, Australia, vol. 4067, pp. 238-249 (Jun. 2000).
Flierl et al., “Generalized B Pictures and the Draft H.264/AVC Video Compression Standard,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, No. 7, pp. 587-597 (Jul. 2003).
Foos et al., “JPEG 2000 compression of medical imagery,” Proc. SPIE, vol. 3980, pp. 85-96 (2000).
Garrigues et al., “Atom position coding in a matching pursuit based video coder,” Lecture Notes in Computer Science, 4 pp. (2005).
Gish et al., “Asymptotically efficient quantizing,” IEEE Trans. Inform. Theory, vol. IT-14, No. 5 (Sep. 1968).
Golston et al., “Video codecs tutorial: Trade-offs with H.264, VC-1 and other advanced codecs,” Video/Imaging Design Line, 9 pp. (Mar. 2006).
“H.264 & IPTV Over DSL—Enabling New Telco Revenue Opportunities,” White Paper, Intel/Envivio, May 15, 2004, available at http://www.envivio.com/images/products/H264whitepaper.pdf.
Impoco, “JPEG2000—a Short Tutorial,” 16 pp. (2004).
“ISO/IEC 11172-2 Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s,” MPEG (Moving Pictures Expert Group), International Organization for Standardization, MPEG1 Video, 122 pp. (1993).
“ISO/IEC 13818-2. Generic coding of moving pictures and associated audio information,” MPEG (Moving Pictures Expert Group), International Organization for Standardization, MPEG2 Video (1994).
ISO/IEC, “14496-2: Information Technology—Coding of Audio-Visual Objects—Part 2: Visual,” 724 pp. (2004).
ISO/IEC, “10918-1: CCITT Recommendation T.81: Digital Compression and Coding of Continuous Tone Still Images,” pp. 337-547 (1992).
ITU-T, “ITU-T Recommendation H.261: Video Codec for Audiovisual Services at p×64 kbits,” 28 pp. (1993).
ITU-T, “ITU-T Recommendation H.262: Information Technology—Generic Coding of Moving Pictures and Associated Audio Information: Video,” 218 pp. (1995).
ITU-T, “ITU-T Recommendation H.263: Video Coding for Low Bit Rate Communication,” 167 pp. (1998).
ITU-T, “ITU-T Recommendation T.800: JPEG 2000 Image Coding System: Core Coding System,” 212 pp. (2002).
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10 AVC,” 253 pp. (May 2003).
“JPEG 2000,” EEE 508—Lecture 18, 25 pp.
Kim et al., “Still image coding based on vector quantization and fractal approximation,” IEEE Transactions on Image Processing, vol. 5, No. 4, pp. 587-597 (1996).
Kingsbury, “Use of Laplacian PDFs in Image Compression,” 5 pp. (2003).
Lam et al., “A mathematical analysis of the DCT coefficient distributions for images,” IEEE Trans. Image Proc., vol. IP-9, No. 10, pp. 1661-1666 (Oct. 2000).
LeGall, “MPEG: A Video Compression Standard for Multimedia Application,” Communications of the ACM, vol. 34, No. 4, pp. 47-58 (Apr. 1991).
LeGall, “The MPEG Video Compression Algorithm,” Signal Processing: Image Communication 4, vol. 4, No. 2, pp. 129-140 (Apr. 1992).
LeGall et al., “Transmission of HDTV signals under 140 Mbit/s using a subband decomposition and Discrete Cosine Transform coding,” in Signal Processing of HDTV, Elsevier, Amsterdam, pp. 287-293 (1988).
Limb, “A Picture-Coding Algorithm for the Merli Scan,” IEEE Transactions on Communications, pp. 300-305 (Apr. 1973).
Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theory, vol. IT-28, No. 2, pp. 7-12 (Mar. 1982) (reprint of work originally presented in Jul. 1957).
Loomis, “Using the Advanced Settings of the Windows Media Video 9 Advanced Profile Codec,” 13 pp. (Document dated Apr. 2006) [Downloaded from the World Wide Web on May 31, 2007].
Lopresto et al., “Image Coding Based on Mixture Modeling of Wavelet Coefficients and a Fast Estimation-Quantization Framework,” Proc. IEEE Data Compression Conference, (Snowbird, UT), pp. 221-230 (Mar. 1997).
Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. and Machine Intell., vol. PAMI-11, No. 7, pp. 674-692 (Jul. 1989).
Marcellin et al., “An Overview of JPEG-2000,” IEEE Data Compression Conference, 19 pp. (2000).
Masala et al., “Perceptually Optimized MPEG Compression of Synthetic Video Sequences,” Proc. ICIP, pp. I-601-I-604 (2005).
Max, “Quantizing for minimum distortion,” IEEE Trans. Inform. Theory, vol. IT-6, No. 1, pp. 7-12 (Mar. 1960).
Microsoft Corporation, “Microsoft Debuts New Windows Media Player 9 Series, Redefining Digital Media on the PC,” 4 pp. (Sep. 4, 2002) [Downloaded from the World Wide Web on May 14, 2004].
Mitra et al., “Two-Stage Color Palettization for Error Diffusion,” Proceedings of SPIE, pp. 207-217 (Jun. 2002).
Mook, “Next-Gen Windows Media Player Leaks to the Web,” BetaNews, 17 pp. (Jul. 19, 2002) [Downloaded from the World Wide Web on Aug. 8, 2003].
Muller, “Distribution shape of two-dimensional DCT coefficients of natural images,” IEEE Electronics Letters, vol. 29, No. 22 (Oct. 1993).
Murakami et al., “Comparison between DPCM and Hadamard transform coding in the composite coding of the NTSC color TV signal,” IEEE Trans. on Commun., vol. COM-30, No. 3, pp. 469-479 (Mar. 1982).
Musmann et al., “Advances in Picture Coding,” Proceedings of the IEEE, vol. 73, No. 4, pp. 523-548 (Apr. 1985).
Neff et al., “Modulus Quantization for Matching Pursuit Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, No. 6, pp. 895-912 (Sep. 2000).
Nguyen et al., “Set Theoretic Compression with an Application to Image Coding,” IEEE Transactions on Image Processing, vol. 7, No. 7, pp. 1051-1056 (Jul. 1998).
Park et al., “A post processing method for reducing quantization effects in low bit-rate moving picture coding,” IEEE Trans. Circuits Syst. Video Technology, vol. 9, pp. 161-171 (Feb. 1999).
Puri et al., “Motion-Compensated Video Coding with Adaptive Perceptual Quantization,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, No. 4, pp. 351-361 (Dec. 1991).
Reininger et al., “Distribution of two-dimensional DCT coefficients for images,” IEEE Trans. on Commun., vol. COM-31, No. 6, pp. 835-839 (Jun. 1983).
Ribas Corbera et al., “Rate Control in DCT Video Coding for Low-Delay Communications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, No. 1, pp. 172-185 (Feb. 1999).
Santa Cruz et al., “An Analytical Study of JPEG 2000 Functionalities” / “JPEG 2000 Still Image Coding Versus Other Standards,” Proc. SPIE vol. 4115, 10 pp. (2000).
Schuster et al., “A Theory for the Optimal Bit Allocation Between Displacement Vector Field and Displaced Frame Difference,” IEEE J. on Selected Areas in Comm., vol. 15, No. 9, pp. 1739-1751 (Dec. 1997).
Shanableh et al., “Heterogeneous Video Transcoding to Lower Spatio-Temporal Resolutions and Different Encoding Formats,” IEEE Transactions on Multimedia, vol. 2, No. 2, pp. 101-110 (Jun. 2000).
Shen et al., “Rate-Distortion Optimization for Fast Hierarchical B-Picture Transcoding,” IEEE, pp. 5279-5282 (2006).
Shoushun et al., “Adaptive-Quantization Digital Image Sensor for Low-Power Image Compression,” in IEEE Transactions on Circuits and Systems—I. Regular Papers, vol. 54, No. 1, pp. 13-25 (Jan. 2007).
Sony Electronics Inc., “Sony Vizaro DVD Encoder System DVA-V700,” 4 pp. (2001).
Sullivan, “Efficient scalar quantization of exponential and Laplacian random variables,” IEEE Trans. Inform. Theory, vol. IT-42, No. 5, pp. 1365-1374 (Sep. 1996).
Sullivan et al., “Rate-Distortion Optimization for Video Compression,” IEEE Signal Processing Magazine, pp. 74-90 (Nov. 1998).
Sullivan et al., “The H.264/AVC Advanced V ideo Coding Standard: Overview and Introduction to the Fidelity Range Extensions,” 21 pp. (Aug. 2004).
Tao et al., “Adaptive Model-driven Bit Allocation for MPEG Video Coding,” IEEE Transactions on Circuits and Systems for Video Tech., vol. 10, No. 1, pp. 147-157 (Feb. 2000).
Taubman et al., “JPEG2000: Image Compression Fundamentals, Standards and Practice,” pp. 110-113 and 348-353 (2002).
Taubman et al., “Embedded Block Coding in JPEG2000,” 4 pp. (2000).
Tsang et al., “Fuzzy Based Rate Control for Real-Time MPEG Video,” IEEE Transactions on Fuzzy Systems, pp. 504-516 (1998).
Wien, “Variable Block-Size Transforms for Hybrid Video Coding,” Dissertation, 182 pp. (Feb. 2004).
Wu et al., “Context-based adaptive lossless codec,” IEEE Trans. Communications, vol. 45, pp. 437-444 (1997).
Wu et al., “Joint Estimation of Forward and Backward Motion Vectors for Interpolative Prediction of Video,” IEEE Transactions on Image Processing, vol. 3, No. 5, pp. 684-687 (Sep. 1994).
Yang et al., “Rate Control for Videophone Using Local Perceptual Cues,” IEEE Transactions on Circuits and Systems for Video Tech., vol. 15, No. 4, pp. 496-507 (Apr. 2005).
Yuen et al., “A survey of hybrid MC/DPCM/DCT video coding distortions,” Signal Processing, vol. 70, pp. 247-278 (1998).
Zaid et al., “Wavelet Image Coding with Adaptive Thresholding,” 4 pp. (2002).
Zhang et al., “Adaptive Field/Frame Selection for High Compression Coding,” SPIE Conf on Image and Video Communications and Processing, 13 pp. (Jan. 2003).
De Simone, et al., “A comparative study of JPEG 2000, AVC/H.264, and HD Photo,” http://infoscience.epfl.ch/getfile.py?docid=14194&name=FirstPaper&format=pdf&version=1, 12 pages, downloaded from the World Wide Web (2007).
International Search Report of the International Searching Authority, mailed Nov. 1, 2007, for International Patent Application No. PCT/US2007/010848.
Radha, et al., “The MPEG-4 Fine-Grained Scalable Video Coding Method for Multimedia Streaming Over IP,” http://citeseer.ist.psu.edu/cache/papers/cs/33041/http:zSzzSzwww.egr.msu.eduzSzwaveszSzpeoplezSzRadha—fileszSz2001zSzieee—tmm—MP4—FGS—00909594.pdf/radha01mpeg.pdf, 16 pages, downloaded from the World Wide Web (2001).
Wang, et al., “A Framework for Adaptive Scalable Video Coding Using Wyner-Ziv Techniques,” http://www-scf.usc.edu/˜huishenw/Pubs/HuishengWangJASP06.pdf, 18 pages, downloaded from the World Wide Web (2006).
Chang et al., “Adaptive Wavelet Thresholding for Image Denoising and Compression,” IEEE Trans on Image Processing, vol. 9, No. 9, pp. 1532-1546 (Sep. 2000).
Luo et al., “A Scene Adaptive and Signal Adaptive Quantization for Subband Image and Video Compression Using Wavelets,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 7, No. 2, pp. 343-357 (Apr. 1997).
Watson et al., “Visibility of Wavelet Quantization Noise,” IEEE Trans. on Image Processing, vol. 6, No. 8, pp. 1164-1175 (Aug. 1997).
Examiner's First Report dated Jun. 4, 2010, from Australian Patent Application No. 2007248524, 2 pp.
First Office Action dated Mar. 23, 2010, from Chinese Patent Application No. 200780015871.9 (with English translation), 9 pp.
Joshi et al., “Comparison of generalized Gaussian and Laplacian modeling in DCT image coding,” IEEE Signal Proc. Letters, vol. SPL-2, No. 5, pp. 81-82 (May 1995).
Notice on the Second Office Action dated Jan. 18, 2011, from Chinese Patent Application No. 200780015871.9 (with English translation), 8 pp.
Calderbank et al., “Wavelet transforms that map integers to integers,” Mathematics Subject Classification, Aug. 1996, 39 pages.
Donoho et al., “Data compression and Harmonic Analysis,” IEEE transaction on information theory, vol. 44, No. 6, Oct. 1998, pp. 2435-2476.
ISO/IEC, “Study text (version 3) of ISO/IEC 14496-10:2005/FPDAM3 Scalable Video Coding (in integrated form with ISO/IEC 14996-10),” ISO/IEC JTC 1/SC29/WG 11 N8962, pp. 59-103, 175-196, 404-423, 453-470 (Apr. 2007).
Decision on Grant dated Aug. 30, 2012, from Russian Patent Application No. 2008143599, 20 pp.
Notice of Rejection dated Oct. 2, 2012, from Japanese Patent Application No. 2009-509744, 9 pp.
Chai et al., “Face Segmentation Using Skin-Color Map in Videophone Applications,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 9, No. 4, pp. 551-564 (Jun. 1999).
Correia et al., “Classification of Video Segmentation Application Scenarios,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, No. 5, pp. 735-741 (May 2004).
Daly et al., “Face-Based Visually-Optimized Image Sequence Coding,” 1998 International Conference on Image Processing, vol. 3, pp. 443-447 (Oct. 1998).
ITU'-T, “CCITT Recommendation T.81: Information Technology—Digital Compresion and Coding of Continuous-Tone Still Images—Requirements and Guidelines,” 190 pp. (Sep. 1992).
ITU-T, “ITU-T Recommendation T.84: Terminals for Telematic Services—Information Technology—Digital Compression and Coding of Continuous-Tone Still Images: Extensions,” 84 pp. (Jul. 1996).
ITU-T, “ITU-T Recommendation T.801: JPEG 2000 image coding system: Extensions,” 334 pp. (Aug. 2002).
Lee et al., “Spatio-Temporal Model-Assisted Compatible Coding for Law and Very Low Bitrate Videotelephony,” 3rd IEEE International Conference on Image Processing, 4 pp. (Sep. 1996).
Man et al., “Three-Dimensional Subband Coding Techniques for Wireless Video Communications,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 12, No. 6, pp. 386-397 (Jun. 2002).
Marcellin et al., “An overview of quantization in JPEG 2000,” Signal Processing: Image Communication, vol. 17, pp. 73-84 (Jan. 2002).
Srinivasan et al., “HD Photo: A new image coding technology for digital photography,” Proc. of SPIE, Vo. 6696, 19 pp. (Jan. 2007).
Supplementary European Search Report dated Aug. 26, 2011, from European Patent Application No. 07794559.0, 13 pp.
Tong, “A perceptually adaptive JPEG coder,” Thesis, University of Toronto, 124 pp. (1997).
Watson, “Perceptual Optimization of DCT Color Quantization Matrices,” IEEE Conf. on Image Processing, pp. 100-104 (Nov. 1994).
Yoo et al., “Adaptive Quantization of Image Subbands with Efficient Overhead Rate Selection,” IEEE Conf. on Image Processing, pp. 361-364 (Sep. 1996).
Examiner's report No. 2 dated Feb. 15, 2012, from Australian Patent Application No. 2007248524, 2 pp.
Malah, “Time-Domain Algorithms for Harmonic Reduction and Time Scaling of Speech Signals,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-27, No. 2, 13 pp. (Apr. 1979).
Notice on the Third Office Action dated Feb. 3, 2012, from Chinese Patent Application No. 200780015871.9, 9 pp.
Richardson, H.264 and MPEG-4 Video Compression, pp. 50-56 and 187-196.
Eleftheriadis et al., “Dynamic Rate Shaping of Compressed Digital Video,” IEEE Transactions on Multimedia, vol. 8, No. 2, pp. 297-314 (Apr. 2006).
Office action dated Jan. 29, 2012, from Israeli Patent Application No. 194133, 2 pp.
Notice of Preliminary Rejection dated Jun. 28, 2013, from Korean Patent Application No. 10-2008-7026543, 4 pp.
Communication dated May 24, 2013, from European Patent Application No. 07794559.0, 9 pp.
Sethuraman et al., “Model Based Multi-Pass Macroblock-Level Rate Control for Visually Improved Video Coding,” IEEE Proc. of Workshop and Exhibition on MPEG-4, pp. 59-62 (Jun. 2001).
Tong, “Region of Interest (ROI) Based Rate Control for H.236 Compatible Video Conferencing,” The University of Texas at Arlington, Ph.D. Thesis, 115 pp. (Dec. 2005).
Wiegand et al., “Joint Draft 10 of SVC Amendment,” JVT-W201, 23rd meeting of Joint Video Team, San Jose, CA, sections 7.4.2.2, 7.4.5, 8.5.8, G.7.3.6 and G.7.4.5, 19 pp. (Apr. 2007).
Related Publications (1)
Number Date Country
20070258518 A1 Nov 2007 US