1. Field of the Invention
The present invention relates to a contour sander. More particularly, the invention relates to a flexible sander and/or spreader for use on single or compound curved surfaces and also can be used to flatten surfaces.
2. Description of Related Art
One of the more common uses of contour sanders is repairing automobile body panels. Automobile body panels are typically made of light-weight metals, fiberglass, or plastic materials that are relatively thin. The panels are shaped into contoured (curved) body lines to provide strength and aerodynamic features for the body panels. The contoured body lines may include convex or concave curves, scooped areas, and/or channels. The sanders used on the body panels may have an adjustable curvature to allow the sander to conform to different shaped body panels and allow the sander to be used on multiple body panels and/or automobiles. The curvature of the sander may be adjusted to conform to the curvature of a specific body panel to provide accurate sanding on the body panel surface (e.g., sanding of the body panel to return the body panel as close to its original shape as possible).
U.S. Pat. No. 6,554,113 to Wheeler, which is incorporated by reference as if fully set forth herein, discloses a flexible sanding apparatus with adjustable curvature. This flexible sanding apparatus uses a flexible foam rubber handle with a thick profile. The flexibility of the foam rubber handle is controlled by the insertion/removal of three rods inside the handle. Flexing the foam rubber handle may, however, create build up in the handle because the top stretches as the handle is bent and the bottom portion does not compress since it is attached to a flat spring. The flat spring in the foam rubber handle is only bent by pressing down on the ends of the foam rubber handle. However, it may take significant pressure to bend the ends of the foam rubber handle down to curve the handle and the handle may have a limited amount of bend that prevents the handle from having the ability to work on smaller radius curves.
Because high pressure is needed to bend the flexible sanding apparatus described in U.S. Pat. No. 6,554,113 to Wheeler, the curve of the flexible sanding apparatus is determined by the profile of the surface being sanded instead of the curve being determined by the desire of the user (e.g., how much the user wants the sander to curve). In addition, when high pressure is applied, the flexible sanding apparatus may not provide the desired arc because of the thickness and stiffness of the flexible sanding apparatus. In some situations, the flexible sanding apparatus may require substantially equal high pressure to be applied substantially simultaneously to both the ends of the foam rubber handle to make it meet the contours of the surface. Providing high pressure substantially simultaneously to the ends may, however, be tiring to a user and not allow the user to have any “feel” for the contour of the body panel being worked on by the user.
Another problem with the flexible sanding apparatus described in U.S. Pat. No. 6,554,113 to Wheeler is that the foam rubber handle may bend backward (e.g., bend with the ends going away from the surface) when pressure is applied to the foam rubber handle. Thus, when sanding a relatively flat surface, the low spots on the flexible sanding apparatus may be lower than desired, making it difficult to obtain a flat sanding surface.
Thus, there is a need for a sander/spreader that has variable flexibility that is determined by the user without needing high pressure to curve the sander/spreader. The sander/spreader may be easily flexed by the user to conform to various curved surfaces with different curvatures while also allowing the sander/spreader to maintain a relatively flat profile when needed (e.g., when used on a flat surface). The sander/spreader may also allow for sanding of convex and/or concave profiles without bunching or crumpling of the sanding surface (e.g., sandpaper attached to the sander/spreader).
In certain embodiments, a flexible sanding apparatus includes a thin, relatively flat spring member and a plurality of disc-shaped members. The disc-shaped members may be attached to a first side of the flat spring member along a length of the flat spring member. The disc-shaped members may be horizontally stacked along the length of the flat spring member with at least one disc-shaped member at least partially contacting its adjacent disc-shaped members when the flat spring member lies flat. The disc-shaped members may be individually attached to the first side of the flat spring member along at least portions of outer edges of the disc-shaped members. A sanding surface may be coupled to a second side of the flat spring member. The disc-shaped members may allow concave flexing of the sanding surface and inhibit convex flexing of the sanding surface. In some embodiments, the sanding apparatus includes a cover that at least partially encloses the disc-shaped members.
In certain embodiments, a flexible sanding apparatus includes a thin, relatively flat spring member and a plurality of disc-shaped members. The disc-shaped members may be attached to a first side of the flat spring member along a length of the flat spring member. The disc-shaped members may be individually attached to the first side of the flat spring member along at least portions of outer edges of the disc-shaped members. The disc-shaped members may be horizontally stacked along the length of the flat spring member with a rotatable rod (e.g., flexible rotatable rod) passing through each of the horizontally stacked disc-shaped members. A variable thickness disc-shaped member may be mounted in between at least two of the horizontally mounted disc-shaped members. The variable thickness disc-shaped member may provide an adjustable limit between the two horizontally mounted disc-shaped members that varies the curve of the flat spring member when the disc-shaped members are in a closed position.
Features and advantages of the methods and apparatus of the present invention will be more fully appreciated by reference to the following detailed description of presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
In the context of this patent, the term “coupled” means either a direct connection or an indirect connection (e.g., one or more intervening connections) between one or more objects or components. The phrases “attached” and “directly connected” mean a direct connection between objects or components such that the objects or components are connected directly to each other so that the objects or components operate in a “point of use” manner.
In the context of this patent, the term “automobile” refers to any type of motor vehicle such as a car, truck, or SUV. It is to be understood that while reference is made to the use of the sanding/spreading apparatus (e.g., “sander”) on surfaces of an automobile that the sanding/spreading apparatus may be used in many other instances. For example, the sander may be used on single or compound curved surfaces and may also be used to flatten surfaces. The sander may be used on any surface that can be sanded to smooth out imperfections or to create smooth contours. Examples of surfaces included, but are not limited to, automobile bodies, boats, furniture, stone art work, metal, plaster, fiberglass, and wood. In some instances, the sander may be used in homes for trim, sheetrock, arches, columns, and/or general paint preparation.
Flat spring member 102 may be, for example, an elongated thin, relatively flat piece of strong, flexible material such as, but not limited to, steel (e.g., stainless steel), carbon fiber, or fiberglass. For example, flat spring member 102 may have a length greater than about 3″, about 6″, or about 12″ while having a width in a range between about ½″ and about 1.5″. In certain embodiments, flat spring member 102 stretches on one side and compresses on the other side for the flat spring member to bend. A thicker flat spring member may have more resistance to bending and have more stretching and compression than a thinner flat spring member. Having a thinner flat spring member 102 allows sandpaper or another similar material that has limited stretchability and/or compressibility to adhere to the surface of the flat spring member without tearing or buckling.
In certain embodiments, coil spring member 104 is an elongated steel coil spring. Coil spring member 104 may also be made of other strong, flexible materials such as, but not limited to, carbon fiber or fiberglass. Coil spring member 104 may be flexible because, as the spring is bent, each coil is twisted a small amount. The small amount of twist in each coil allows coil spring member 104 to be bent with very little build up in resistance. The diameter of the spring wire used to make the coils may determine the resistance to bending of coil spring member 104 rather than the diameter of the coil. In certain embodiments, coil spring member 104 has a relatively large diameter (e.g., between about ¼″ and about 1.5″). The relatively large coil diameter allows sander 100 to be very flexible and coil spring member 104 may have a size comfortable for a user to grip the sander using the coil spring member.
In certain embodiments, flat spring member 102 and coil spring member 104 are coupled together lengthwise (e.g., the spring members are elongated members coupled along their lengths). Flat spring member 102 and coil spring member 104 may be coupled, for example, using an adhesive material such as, but not limited to, an epoxy resin or glue. In some embodiments, flat spring member 102 and coil spring member 104 are fastened together using, for example, solder, braze, screws, or other fasteners known in the art.
In certain embodiments, flat spring member 102 and coil spring member 104 are able to be coupled and bent together because the coils at the coupling between the flat spring member and the coil spring member do not move in relation to the flat spring member. When flat spring member 102 and coil spring member 104 are bent to flex sander 100, a majority or all of the stretch or compression is on the outside of the coils away from the flat spring member. Thus, flat spring member 102 and coil spring member 104 may bend without interfering with each other.
As shown in
In certain embodiments, coil spring member 104 is substantially covered with a paint or sealant. Covering coil spring member 104 with paint or sealant inhibits dust or other particles from getting between the coils in the coil spring member. In certain embodiments, cover 112 is placed over coil spring member 104. Cover 112 may be, for example, a rubber or elastomeric cover. In certain embodiments, cover 112 is relatively thin and bends with little or no resistance. In some embodiments, cover 112 is a user graspable cover. Cover 112 may be coupled to coil spring member 104 and/or flat spring member 102 using an adhesive or the cover may be molded to or around the coil spring member. In some embodiments, cover 112 substantially covers end portions 106 of flat spring member 102 and fasteners 110.
In certain embodiments, a thin piece of sandpaper or another abrasive material is coupled to the bottom side of flat spring member 102 (e.g., the side opposite coil spring member 104). The sandpaper or abrasive material may be coupled to flat spring member 102 using an adhesive or other methods known in the art for coupling sandpaper to steel surfaces. The sandpaper may be used to sand the surface of the automobile or another surface while flat spring member 102 provides a supportive surface for the sandpaper. Coupling the sandpaper or abrasive material to flat spring member 102 inhibits buckling or bunching of the sandpaper when sander 100 (and the flat spring member) is flexed or curved for use on a curved surface. Buckling is inhibited because the surface of flat spring member 102 coupled to the sandpaper does not change in length during use (e.g., during flexing or bending of sander 100). Having the sandpaper coupled to flat spring member 102 also allows the sandpaper to be repeatedly flexed and straightened without tearing or buckling the sandpaper.
Flat spring member 102 and coil spring member 104 may be coupled together such that the members flex or bend together simultaneously. The presence of coil spring member 104 coupled to flat spring member 102 allows sander 100 to be easily flexed or curved or arced to accommodate the profile of the surface being worked on (e.g., the surface being sanded).
Sander 100 is shown flexed with a symmetrical curved profile in
The combination of flat spring member 102 and coil spring member 104 may allow sander 100 to be flexed (e.g., curved or arced) with minimal force by the user. For example, sander 100 may be flexed into an arc with a radius of about 15″ using only about 3 to 4 pounds of force on the ends of the sander. Typical sanders (such as the sander described in U.S. Pat. No. 6,554,113 to Wheeler) may require much more force (on the order of 20 pounds of force with the rods removed) to achieve a similar radius arc of about 15″, which is typically the minimum arc radius recommended for such sanders. In certain embodiments, sander 100 has a minimum arc radius that is about 3″, which provides more curvature than typical sanders. In some embodiments, sander 100 may have a minimum arc radius that less than about 3″. In addition, as described above, typical sanders may not provide a desired arc because of the thickness and stiffness of the flexible sanding apparatus. Sander 100 may, however, provide a desired arc with a smoothly curved profile because of the interaction of flat spring member 102 and coil spring member 104.
In some embodiments, flat spring member 102 and coil spring member 104 are coupled to allow sander 100 to be flexed in a twisting motion. Twisting sander 100 may be useful when working on (e.g., sanding) angled surfaces such as fenders of an automobile. The twisting motion of sander 100 allows the user to track the surfaces of the angled surface more closely by moving the sander at complementary angles.
In certain embodiments, sander 100 flexes into a concave shape, as shown in
Inhibiting convex flexing of sander 100 allows the sander to have a relatively flat profile sanding surface when desired (e.g., the sander is relatively flat or straight when the user tries to flex the sander convexly). With little or no spacing between the coils in coil spring member 104, the sanding surface may be straightened into the relatively flat profile by pushing the ends of sander 100 in a direction opposite the direction of the arrows shown in
In some embodiments, coil spring member 104 is an open coil spring member (e.g., there is some spacing between coils on the coil spring member).
In some embodiments, a sander includes two or more coil spring members coupled to a single flat spring member.
In some embodiments, a sander includes a second sanding surface. In embodiments with the coil spring member being a closed spring member, the second sanding surface may be used to sand concave shaped surfaces by providing a convex sanding surface.
In certain embodiments, as shown in
In certain embodiments, second flat spring member 102′ is coupled to second cover portion 112B, as shown in
In some embodiments, second cover portion 112B, with second flat spring member 102′ coupled to the second cover portion, is removed and replaced with another second cover portion that is used as a handle (e.g., a user graspable cover portion).
In certain embodiments, first cover portion 112A and second cover portion 112B, shown in
The two (or more) lines of contact may allow for faster sanding of the surface being sanded than sanders with only one line of contact. Using two (or more) flat spring members and two (or more) coil spring members separated by flexible materials allows each of the lines of contact to have a truer arc than, for example, a sponge sander.
In some embodiments, a limit is added to a sander to limit the concave bending of the sander. Providing the limit may inhibit over bending of the sander and potentially breaking bonds between spring members or deforming one or both of the spring members. The limit may be, for example, a cable or chain connected between ends of the coil spring member (e.g., a cable or chain connected between end caps on the coil spring member). The cable or chain may have a length selected such that the cable or chain tightens (does not lengthen further) when a desired amount of flexing (bending) occurs in the sander.
In certain embodiments, disc-shaped members 202 are made from a lightweight material that resists compression. For example, disc-shaped members 202 may be made from aluminum, glass filled plastic, or a polymer material (e.g., PTFE). In some embodiments, disc-shaped members 202 are made by extrusion of a desired material. For example, the desired material may be extruded to form an elongated member having the cross-sectional shape of disc-shaped members. The elongated member may then be separated (e.g., cut or diced) into discs to form disc-shaped members 202. In some embodiments, disc-shaped members 202 are formed by die-casting or injection molding of the desired material into the disc-shaped members.
In certain embodiments, disc-shaped members 202 have one or more hollow portions 208. Hollow portions 208 may include portions where material has been removed or no material has been placed. Having hollow portions 208 in disc-shaped members 202 may decrease the weight of the disc-shaped members and sander 200. Hollow portions 208 may also allow disc-shaped members 202 to have thin walls to reduce weight in sander 200. In certain embodiments, disc-shaped members 202 include center portion 210. Center portion 210 may be located at or near the center of disc-shaped members 202 to provide mechanical support to outer edges 206 of the disc-shaped members (e.g., inhibit collapsing or deformation of the disc-shaped members). Hollow portions 208 and center portion 210 may also allow disc-shaped members 202 to have thin walls around the perimeter of the disc-shaped members to reduce weight in sander 200.
In certain embodiments, flat portions 206A of disc-shaped members 202 are coupled to (e.g., attached to) flat spring member 102. Flat portions 206A may be attached to flat spring member 102 using adhesive layer 212, shown in
In certain embodiments, flat portions 206A provide an elongated (long) contact area for attaching disc-shaped members 202 to flat spring member 102. In some embodiments, flat portions 206A are in contact with flat spring member 102 along a majority, or all, of the width of the flat spring member (e.g., the contact area extends lengthwise across the majority or all of the width of the flat spring member). This elongated contact area allows adhesive layer 212 to be a thin adhesive layer. For example, adhesive layer 212 may have a thickness between about 2 mils and about 5 mils, or another thickness depending on the type of material in the adhesive layer.
In certain embodiments, the width of the contact area between flat portions 206A and flat spring member 102 (e.g., the dimension of the contact area lengthwise along the flat spring member) is relatively small or thin, as shown in
In certain embodiments, contact portions 214 of disc-shaped members 202 are separated such that gaps 216 are located between the contact portions when the disc-shaped members are attached to flat spring member 102. Gaps 216 separate the contact points (joints) between disc-shaped members 202 and flat spring member 102 so that flexing or bending of sander 200 is not inhibited by the joints. Gaps 216 along with the flexible joint at the thin, elongated contact points between disc-shaped members 202 and flat spring member 102 allows the flat spring member to be flexed or bent with an even radius.
In certain embodiments, disc-shaped members 202 are individually coupled to flat spring member 102, as shown in
When a plurality of disc-shaped members 202 are attached to flat spring member 102 along the length of the flat spring member, as shown, in portion, in
In certain embodiments, one or more of disc-shaped members 202 interlock with each other. As shown in
Projections 218 and indentations 220 may at least partially interlock together to resist vertical movement of disc-shaped members 202 in relation to each other when flat spring member 102 lies flat (e.g., two adjacent disc-shaped members may be inhibited from moving vertical relative to each other when the flat spring member lies flat and the disc-shaped members are in a “closed” position, shown in
Projections 218 and indentations 220 may also realign disc-shaped members 202 in the closed position when flat spring member 102 is returned to the normal, lie flat position from a bent or flexed position. Projections 218 and indentations 220 may allow disc-shaped members 202 to move in relation to each other along the contact surface when in the closed position. For example, disc-shaped members 202 may move in relation to each other when flat spring member 102 is twisted.
As shown in
Additionally, in certain embodiments, the portions of disc-shaped members 202 distal from flat spring member 102 (e.g., outer edges 206 or rounded portions 206B distal from the flat spring member) remain approximately equidistant to each other when the flat spring member is flexed. Thus, although the distance between the distal portions of disc-shaped members 202 changes between the embodiments depicted in
In certain embodiments, sander 200 has a minimum arc radius that is about 6″. In some embodiments, sander 200 may have a minimum arc radius that is less than about 6″ (e.g., if smaller disc-shaped members 202 are used). Sander 200 may also provide a desired arc with a smoothly curved profile because of the interaction of flat spring member 102 and disc-shaped members 202.
In some embodiments, the height of the disc-shaped members 202 is varied. For example, on extra long sanders, the cross-sectional height of disc-shaped members 202 may be taller or larger in the center portion of the sander than the cross-sectional height of the disc-shaped members in the end portions of the sander. Such variation in the cross-sectional height would increase the resistance of the sander to back bending when spanning a large, low area in the surface to be sanded. The varying height may also help keep the overall weight of the sander low while remaining very rigid on long spans of sanded surface.
In certain embodiments, disc-shaped members 202 at one or both ends of flat spring member 102 are thicker (e.g., wider) than other disc-shaped members in between the ends.
In certain embodiments, as shown in
In certain embodiments, cover 222 substantially covers the side edges of flat spring member 102, as shown in
In certain embodiments, cover 222 is coupled to disc-shaped members 202 at or near the surface of flat spring member 102, as shown in
In certain embodiments, as shown in
In some embodiments, a sander includes a variable thickness disc-shaped member mounted in between at least two adjacent disc-shaped members.
In certain embodiments, disc-shaped member 230 is a disc-shaped member with a varying thickness, as shown in
Rotation of disc-shaped members 230 varies the thickness of disc-shaped members 230 presented in gap 234 between adjacent disc-shaped members 202. Varying the thickness disc-shaped members 230 in gap 234 adjusts the limit (distance) between adjacent disc-shaped members 202. Adjusting the limit between adjacent disc-shaped members 202 may vary the radius of curvature allowed for flat spring member 102 when the disc-shaped members are in the closed position. For example, increasing the limit (distance) between adjacent disc-shaped members 202 will increase the flex in flat spring member 102 when disc-shaped members 202 are in the closed position.
In some embodiments, disc-shaped members 230 allow the radius of curvature of flat spring member 102 to be varied from flat to a selected radius (e.g., about 6″). In some embodiments, disc-shaped members 230 allow the radius of curvature of flat spring member 102 to be varied from slightly convex (bended backwards) to the selected radius. In some embodiments, a groove is placed on disc-shaped members 230 and a pin from adjacent protrusion 218 is guided by the groove to provide a stop for movement in either direction.
In certain embodiments, sanders described herein (e.g., sander 100, sander 100′, sander 100″, sander 100′″, sander 200, and/or sander 200′) are used in a process for repairing body panels on an automobile (or other similar surfaces). As an example, when repairing body panels, the normal procedure has been to bump the panels back into shape as much as possible using body hammers and dollies before adding filler or primer to the surface of the body panels. Because of the flexibility of the sanders described herein, the sander may be used as a guide to assess high and low spots on the surface by tilting up the closer edge of the sander enough to see the back edge of the sander. The back edge may be flexed to the proper contour to make contact with the surface and then be pulled across the surface. Low spots may show up as gaps between the edge of the sander and the surface while high spots may lift the sander edge on both sides. The low and high spots may be worked some more with the hammer and dolly until the overall contour looks approximately correct.
The low spots may then be filled with filler using the same process (e.g., moving the sander across the surface). Since the low spots have been identified with the edge of the sander, the filler may be applied to the low spots and then accurately smoothed to the proper contour with the sander being used as a spreader. After the filler has hardened, sandpaper may be attached to the sander and used to sand the filled area until it becomes smooth and properly contoured. After sanding, the surface may be primed and then sanded with finer sandpaper before adding the final color and/or clear coats.
On high quality paint work, the clear coat or final color may again be contour sanded with very fine sandpaper to remove any “orange peel” or other imperfections in the paint surface. During this process, it is important to use light pressure to keep the sandpaper from “loading up” and causing scratches. The flexible sander described herein allows the user to sand with such light pressure. After the final sanding, the paint may be polished to a high gloss.
It is to be understood the invention is not limited to particular systems described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a portion” includes a combination of two or more portions and reference to “a material” includes mixtures of materials.
In this patent, certain U.S. patents, U.S. patent applications, and other materials (e.g., articles) have been incorporated by reference. The text of such U.S. patents, U.S. patent applications, and other materials is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents, U.S. patent applications, and other materials is specifically not incorporated by reference in this patent.
Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
753251 | Ekvall | Mar 1904 | A |
955575 | Bell | Apr 1910 | A |
1165452 | Rudolph | Dec 1915 | A |
1668966 | Kirwin et al. | May 1928 | A |
1827300 | Pritchared et al. | Oct 1931 | A |
2307431 | Tilden et al. | Jan 1943 | A |
2547837 | Robbins | Apr 1951 | A |
2761257 | Mendelsohn | Sep 1956 | A |
2809476 | Bourdunis | Oct 1957 | A |
3106806 | Hutchins | Oct 1963 | A |
3123947 | Rawley | Mar 1964 | A |
3229428 | Sargolini et al. | Jan 1966 | A |
4295274 | Bricher et al. | Oct 1981 | A |
4730430 | Petrovich | Mar 1988 | A |
4918875 | Klocke | Apr 1990 | A |
4936055 | Ishihara | Jun 1990 | A |
5022189 | Saul | Jun 1991 | A |
5203123 | Travis | Apr 1993 | A |
5662519 | Arnold | Sep 1997 | A |
6120365 | Johnson | Sep 2000 | A |
6544113 | Wheeler | Apr 2003 | B1 |
6733376 | Williams | May 2004 | B2 |
7229346 | Minker | Jun 2007 | B1 |
7467991 | McCowen et al. | Dec 2008 | B2 |
8007349 | Turnbull | Aug 2011 | B2 |
8057286 | Walsh | Nov 2011 | B2 |
8210910 | McLain | Jul 2012 | B2 |
20020086627 | Andrews et al. | Jul 2002 | A1 |
20020164937 | Williams | Nov 2002 | A1 |
20030003854 | Deware et al. | Jan 2003 | A1 |
20030104777 | Deshler | Jun 2003 | A1 |
20110092143 | Unruh et al. | Apr 2011 | A1 |
20110271476 | Robideau | Nov 2011 | A1 |
20130109284 | Andonian | May 2013 | A1 |
Number | Date | Country |
---|---|---|
02131812 | May 1990 | JP |
0006342 | Feb 2000 | WO |
Entry |
---|
U.S. Appl. No. 14/486,494, filed Sep. 15, 2014, Thomas E. Foster. |