Claims
- 1. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon and wherein the solid electrolyte is of the ionically conductive compounds alkali tetrahaloaluminates having the general formula XAlY.sub.4 where X is a metallic element selected from the group consisting of Li, Na, K, Rb and Cs, and where Y is a halogen selected from the group consisting of Cl, Br, I and F.
- 2. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon and wherein the solid electrolyte is LiAlCl.sub.4.
- 3. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 90 weight percent LiAlCl.sub.4 with about 10 weight percent of powdered Teflon.
- 4. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon and wherein the solid electrolyte is of the ionically conductive compounds that are inorganic ceramic materials that are lithium ion conducting and referred to as Lisicon.
- 5. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon and wherein the solid electrolyte is Li.sub.14 Zr.sub.1 Ge.sub.4 O.sub.16.
- 6. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon ad wherein the solid electrolyte is of the ionically conductive compounds that are inorganic ceramic materials that are sodium ion conducting and referred to as Nasicon.
- 7. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is selected from the group consisting of Na.sub.(1+x)Zr.sub.2 Si.sub.x P.sub.(3-x) O.sub.12 and Na.sub.3 Zr.sub.2 Si.sub.2 PO.sub.12.
- 8. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.(1+x) Zr.sub.2 Si.sub.x P.sub.(3-x) O.sub.12.
- 9. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.3 Zr.sub.z Si.sub.2 PO.sub.12.
- 10. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is of the ionically conductive compounds referred to as beta alumina.
- 11. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is selected from the group consisting of Na.sub.1.2 Al.sub.11 O.sub.17.1, Na.sub.1+x NiAl.sub.11 O.sub.17+x/2, Na.sub.1.67 MgAl.sub.10.33 O.sub.17, Na.sub.1+x MgAl.sub.11-x O.sub.17, Na.sub.1+x NiAl.sub.11-x O.sub.17, and Na.sub.1+x Zr.sub.1 Al.sub.11-x O.sub.17.
- 12. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1.2 Al.sub.11 O.sub.17.1.
- 13. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1+x NiAl.sub.11 O.sub.17+x/2.
- 14. A flexible solid electrolyte for use in solid state cell, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to a 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1.67 NgAl.sub.10.33 O.sub.17.
- 15. A flexible solid electrolyte for use in solid state cells, said flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1+x MgAl.sub.11-x O.sub.17.
- 16. A flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1-x NiAl.sub.11-x O.sub.17.
- 17. A flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1+x Ar.sub.1 Al.sub.11-x O.sub.17.
- 18. A flexible solid electrolyte comprising a milled mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 weight percent of powdered Teflon, and wherein the solid electrolyte is LiN.
- 19. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is of the ionically conductive compounds alkali tetrahaloaluminate having the general formula XAlY.sub.4 where X is a metallic element selected from the group consisting of Li, Na, K, Rb and Cs, and where Y is a halogen selected from the group consisting of Cl, Br, I and F.
- 20. A solid state cell according to claim 19 wherein the alkali tetrahaloaluminate is LiAlCl.sub.4.
- 21. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein about 90 weight percent of LiAlCl.sub.4 is mixed with about 10 weight percent of Teflon.
- 22. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is of the ionically conductive compounds that are inorganic ceramic materials that are lithium ion conducting and generally referred to as Lisicon.
- 23. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the Lisicon compound is Li.sub.14 Zr.sub.1 Ge.sub.4 O.sub.16.
- 24. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is of the ionically conductive compounds that are inorganic materials that are sodium ion conducting and referred to as Nasicon.
- 25. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is selected from the group consisting of Na.sub.(1+x) Zr.sub.2 Si.sub.x P.sub.(3-x) O.sub.12 and Na.sub.3 Zr.sub.2 Si.sub.2 PO.sub.12.
- 26. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.(1+x) Zr.sub.2 Si.sub.x P.sub.(3-x) O.sub.12.
- 27. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.3 Zr.sub.2 Si.sub.2 PO.sub.12.
- 28. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is of the ionically conductive compounds generally referred to as beta alumina.
- 29. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is selected from the group consisting of Na.sub.1.2 Al.sub.11 O.sub.17.1, Na.sub.1-x NiAl.sub.11 O.sub.17+x/2, Na.sub.1.67 MgAl.sub.10.33 O.sub.17, Na.sub.1+x MgAl.sub.11-x O.sub.17, Na.sub.1+x NiAl.sub.11-x O.sub.17, and Na.sub.1+x Zr.sub.1 Al.sub.11-x O.sub.17.
- 30. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1.2 Al.sub.11 O.sub.17.1.
- 31. A solid state cell including a sheet of flexible solid electrolyte less than 0..1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1+x NiAl.sub.11 O.sub.17+x/2.
- 32. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1.67 MgAl.sub.10.33 .sub.17.
- 33. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1+x MgAl.sub.11-x O.sub.17.
- 34. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1-x NiAl.sub.11-x O.sub.17.
- 35. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is Na.sub.1-x Zr.sub.1 Al.sub.11-x O.sub.17.
- 36. A solid state cell including a sheet of flexible solid electrolyte less than 0.1 mm in thickness between two electrodes wherein the flexible solid electrolyte is obtained from a mixture of about 80 to 95 weight percent solid electrolyte with about 5 to 20 percent of powdered Teflon, and wherein the solid electrolyte is LiN.
GOVERNMENT INTEREST
The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalty thereon.
US Referenced Citations (2)
Number |
Name |
Date |
Kind |
3717506 |
Hopkins |
Feb 1973 |
|
4828369 |
Hotomi |
May 1989 |
|