The natural intervertebral disc contains a jelly-like nucleus pulposus surrounded by a fibrous annulus fibrosus. Under an axial load, the nucleus pulposus compresses and radially transfers that load to the annulus fibrosus. The laminated nature of the annulus fibrosus provides it with a high tensile strength and so allows it to expand radially in response to this transferred load.
In a healthy intervertebral disc, cells within the nucleus pulposus produce an extracellular matrix (ECM) containing a high percentage of proteoglycans. These proteoglycans contain sulfated functional groups that retain water, thereby providing the nucleus pulposus within its cushioning qualities. These nucleus pulposus cells may also secrete small amounts of cytokines such as interleukin-1β and TNF-α as well as matrix metalloproteinases (“MMPs”). These cytokines and MMPs help regulate the metabolism of the nucleus pulposus cells.
In some instances of disc degeneration disease (DDD), gradual degeneration of the intervetebral disc is caused by mechanical instabilities in other portions of the spine. In these instances, increased loads and pressures on the nucleus pulposus cause the cells within the disc (or invading macrophages) to emit larger than normal amounts of the above-mentioned cytokines. In other instances of DDD, genetic factors or apoptosis can also cause the cells within the nucleus pulposus to emit toxic amounts of these cytokines and MMPs. In some instances, the pumping action of the disc may malfunction (due to, for example, a decrease in the proteoglycan concentration within the nucleus pulposus), thereby retarding the flow of nutrients into the disc as well as the flow of waste products out of the disc. This reduced capacity to eliminate waste may result in the accumulation of high levels of toxins that may cause nerve irritation and pain.
As DDD progresses, toxic levels of the cytokines and MMPs present in the nucleus pulposus begin to degrade the extracellular matrix, in particular, the MMPs (as mediated by the cytokines) begin cleaving the water-retaining portions of the proteoglycans, thereby reducing its water-retaining capabilities. This degradation leads to a less flexible nucleus pulposus, and so changes the loading pattern within the disc, thereby possibly causing delamination of the annulus fibrosus. These changes cause more mechanical instability, thereby causing the cells to emit even more cytokines, thereby upregulating MMPs. As this destructive cascade continues and DDD further progresses, the disc begins to bulge (“a herniated disc”), and then ultimately ruptures, causing the nucleus pulposus to contact the spinal cord and produce pain.
Two of the more common treatments of the herniated disc are the discectomy, total disc replacement and the fusion. In a discectomy, the surgeon removes the bulging disc material. In a fusion, the surgeon clears out a portion of the disc, inserts an intervertebral implant into the disc space. In each case, removal of disc material is an important step.
Automatic transportation of cut disc material has shown to be a significant challenge for automated disc removal tools, especially with small diameter tools designed for minimally invasive surgery. Auger designs have been shown to be very effective in terms of transportation. However, as flexibility and steerability are desirable in disc removal tools, transport augers should also be flexible.
U.S. Pat. No. 7,591,790 (“Pflueger”) discloses an apparatus for removing tissue and/or other material from a patient. The apparatus generally includes a handpiece and a tissue removal mechanism connected thereto. The tissue removal mechanism includes a cannula having an open distal tip and an outer diameter of less than about 5 mm, or less than about 2 mm. The mechanism further includes a rotatable element having a distal portion with helical threading. The distal portion of the rotatable element extends beyond the open distal tip of the cannula in order to allow tissue to prolapse between turns of the helical threading. The apparatus is designed to draw soft tissue into the cannula upon rotation of the rotatable element and without the need for supplemental sources of aspiration. The auger of the '790 patent design has a center axis that is solid, which means that the removed material is transported against the auger itself.
US 2013-0103067 (“Fabro”) discloses tissue removal devices, wherein the tissue removal device may comprise a handheld housing, a motor, and a tissue removal mechanism coupled to the handheld housing. The tissue removal mechanism may comprise a tubular member, a rotatable elongated member disposed within a lumen of the tubular member, a first impeller distal to the rotatable elongated member, and a second impeller adjacent the first impeller. Fabro discloses a discectomy device comprising a wire wrapped around a core.
U.S. Pat. No. 6,033,105 (“Barker”) discloses an integrated bone cement mixing and delivery system using an auger mechanism as the means for advancing the bone cement through the delivery chamber.
The present invention relates to a flexible hollow auger for low-torque transmitting drive shafts, which allows for effective tissue material transport through curved, flexible tubes and channels.
In one embodiment, the present invention describes a hollow flexible auger. An hollow auger has a hollow center, so that the helical member hugs the inner wall of an outer tube. In use, material is transported along both the center axis and the inner wall of the tube. The hollow flexible auger allows for transportation of material from an operative location in the patient (material removal) as well as to an operative location in the patient (material delivery).
When the hollow flexible auger allows for transportation of tissue material from an operative location in the patient (tissue removal), the target tissue may be soft tissue (such as intervertebral disc tissue) or hard tissue (such as the cancellous bone of a vertebral body).
This design has the potential of providing very low manufacturing costs, which could present an economic advantage in single-use applications. The present invention is especially designed for use in transporting excised material from an intervertebral disc, but could find application in other medical areas in which transportation of solid or liquid material along a curved or flexible tube or channel is desired.
In one embodiment, the flexible auger is made from a standard helical spring and a shrunken heat-shrink tube disposed over and contacting the spring. When the heat-shrink tube is shrunk through application of heat, the final assembly takes on a thread-like appearance.
Therefore, in accordance with the present invention, there is provided a biomedical material transfer device comprising:
Now referring to
Now referring to
Preferably, the hollow auger comprises a tube 15 and a substantially helical element 13 housed within the tube. More preferably, the tube has an inner surface 19 and the substantially helical element extends inwardly from the inner surface.
In some embodiments, a helical coil is integrated into the tubing.
In some embodiments, the transfer element comprises a substantially helical element and a membrane wrapped around the substantially helical element. Preferably, the membrane is a heat-shrunk membrane, the substantially helical element has a first diameter D1, the tube has a first diameter D2, and, and the first diameter D1 is greater than the second diameter D2. Preferably, this tube has a thread-like topology.
Now referring to
In some embodiments, the second tube of the transfer element rotates with the substantially helical element housed within the first tube, while in others the substantially helical element housed within the first tube rotates independently of the second tube of the transfer element.
In some embodiments, the substantially helical element housed within the first tube has a cross-sectional thickness, and the tube has an outer diameter, and the cross-sectional thickness of the helical element is between 3% and 30% of the diameter.
Preferably, the intermediate portion of the transfer element is flexible.
Preferably, the distal end portion of the transfer element is adapted to cut intervertebral disc tissue and to fit between opposing vertebrae.
Still referring to
Typically, the drive element 9 comprises either a drive handle or a motor.
In some embodiments, the device further comprises a tubular shaft surrounding the transfer element and connected to the housing that surrounds the drive element, this housing having a relative rotational or translational movement to the drive element. The tubular shaft is optionally transparent.
Now referring to
In some embodiments, the device further comprises an outer cannula, wherein the hollow auger is disposed within the outer cannula. In some embodiments, the outer cannula comprises a wall and an inner bore, wherein the wall has at least one lumen therein.
In some embodiments, the device further comprises a wire running longitudinally in the lumen. Preferably, the outer cannula comprises a wall and an inner bore, wherein the wall has at least one stationary wire running longitudinally therein.
In some embodiments, the hollow auger has one or more steering mechanisms attached thereto. These steering mechanisms may include at least one pulling mechanism, or at least one pushing mechanism, or a combination thereof.
In some embodiments, the proximal end portion of the transfer element is more rigid than the hollow auger.
In some embodiments, the proximal end portion of the transfer element comprises an inlet adapted to provide fluid transfer (for purposes such as irrigation, heating or cooling) to a space between the flexible auger and the flexible inner shaft.
In some embodiments, the proximal end portion of the transfer element comprises an inlet adapted to provide fluid transfer (for purposes such as irrigation, heating or cooling) to a space between the flexible auger and the outer cannula.
In some embodiments, the hollow auger has a length having a variable bending stiffness.
The stated pitch of the auger communicates the number of turns of the helix over a given distance. The pitch determines the ratio between speed and force during tissue removal. A steeply-pitched auger (i.e., a few turns per millimeter) is able to remove material more quickly than a shallow-pitched auger. However, a shallow pitched auger enables better force transmission than the steeper pitch. Hence, there is a tradeoff in pitch with respect to the desirable speed and force qualities. In preferred embodiments, the pitch of the flexible auger is between 3.5 and 7.0 mm.
It is believed that the variable pitch embodiments of the present invention may be advantageous in applications involving material delivery.
The geometry of the opening at the distal end portion of the transfer element determines how tissue enters the auger. As shown in
In some embodiments, the overall length of the material transfer element is between about 10 mm and 1000 mm, and preferably approximately 220 mm.
In some embodiments, the distal end portion of the transfer element has an outer diameter of no more than 30 mm.
In some embodiments, the distal end portion of the transfer element comprises a cutting tip adapted to cut intervertebral disc tissue, so that the overall device is a tissue removal device. Typically, a robust, inexpensive coupling method is carried out to connect the distal cutting tip to the intermediate auger. This coupling method should provide strength to the overall device and allow (e.g., not impede) tissue transport. In one coupling embodiment, the proximal end portion 27 of the cutting tip 25 is provided with a helical channel 28 to mate with the distal end portion of the helix of the hollow auger. In other embodiments, the distal end portion of the helix may be spot welded to the proximal end portion of the cutting tip.
In one embodiment, the tissue removal device comprises a flexible central shaft and a helically-shaped shrink tube (i.e., without a helical coil). The first step in the manufacture of this embodiment involves making the transfer device described above, inserting a flexible shaft down its center bore, and then removing the helical coil by screwing it out of the assembly, thereby leaving behind the helically-shaped shrink tube disposed over the flexible central shaft.
Therefore, in accordance with the present invention, there is provided a material transfer device comprising:
In one embodiment, the material transfer device consists of a flexible central shaft surrounded by a helical coil (i.e., without the shrink tube). If the particles-to-be-transported have an adequate size and sufficient viscosity, a flexible central shaft surrounded by a “floating” helical coil can be sufficient to transport that material. This coil can be moved axially relative to the central shaft to effect particle transport, or rotated relative to the central shaft, or both. Axial movement of the coil can include both advancement and retraction.
Therefore, in accordance with the present invention, there is provided a material transfer device comprising:
In one embodiment, the transfer element comprises a flexible central shaft surrounded by a flexible helical coil, which is surrounded by a flexible heat-shrink tube.
In one embodiment, this flexible central shaft could be formed from a narrow-wound helical spring.
In some embodiments, and now referring to
In some embodiments, and now referring to
Within narrow curves, and now referring to
In another embodiment, the bending stiffness along the flexible auger could be varied by producing the heat-shrink tube via an intermittent extrusion process, as described in U.S. Pat. No. 4,888,146, the specification of which is incorporated by reference in its entirety. This process can provide a soft tip or a combination of flexibility and stiffness for insertion. In many cases, such extrusions are used to replace manually assembled composite shaft constructions (i.e. hand layups).”
In some embodiments, the proximal portion of the transfer element is designed to be rigid in order to stabilize turning movement and bearing in case of torque transmission. In some embodiments thereof, the end of the shrink tube itself might be the bearing surface.
In some embodiments, and now referring to
In some embodiments, and now referring to
In some embodiments, reinforced wire technology could be adopted to achieve steering capabilities of the outer cannula that surrounds the flexible auger. These wires 83 are housed in the above-described lumen and should be able to be moved axially in order to provide a push/pull steering capability.
In other embodiments, the cannula comprises a wall and an inner bore, wherein the wall has at least one stationary wire running longitudinally therein. Longitudinal wires or fibers incorporated into an extrusion cross-section provide specific benefits, such as structural support or electrical data transmission. Wires can also provide excellent stretch resistance but limits flexibility depending on the number and location of reinforcing members. It is also possible to combine braided or spiral reinforcing with linear reinforcing elements to produce a hybrid design. Reinforcement material, tensile strength, size, and placement of the elements are critical aspects with linear reinforcing. High-tensile stainless steel round wire is commonly used for wire reinforcing. In thin wall sections, flat wire provides an excellent alternative. Other materials, such as aramid fiber or polymer monofilaments, can also be used for specialty linear reinforcement applications.
In some embodiments, the outer cannula could comprise an elastomer bulk with an internal metal wire pattern for reinforcement. The arrangement of the wire pattern can determine the outer cannula's ability to flex in certain directions, while being stiffer in other directions.
In some embodiments, the helical element in the flexible auger is a standard helical spring. Typically, this spring can be made out of biocompatible metals, such as titanium alloy, stainless steel and cobalt chrome. In some embodiments, the tube component of the flexible auger is a tube made out of heat shrink material. Typically, the heat shrink material is a polymeric, such as a PTFE.
Also in accordance with the present invention, there is provided a method comprising the steps of:
In addition to the above-described heat shrink method of making the auger of the present invention, there is further contemplated additional embodiments of creating a flexible auger that entail low manufacturing costs.
In a first embodiment, the method comprises physically expanding a tube over a helical spring and then letting the tube contract. In this embodiment, the tube member in its initial state has an inner diameter ID that is smaller than the outer diameter OD of the spring. The tube can then be physically expanded in diameter by known methods (e.g., with high-pressure air, or with heat) until it reaches a dimension where its ID is larger than the OD of the spring. In this expanded condition, the tube is passed over the spring. When the force/energy upon the tube is removed, the tube in this assembly reverts to its original dimensions, except in the locations where it touches the helical spring member. The resulting product is an auger-like assembly with peaks and valleys.
Therefore, in accordance with the present invention, there is provided a method comprising the steps of:
In a second embodiment, the method comprises radially compressing the helical spring and then applying heat to the spring to allow its stressed areas to expand to a larger diameter. In this embodiment, the helical spring's outer diameter is reduced from its resting state (e.g., by winding the helical spring very tightly, or by pulling the helical member and thereby producing an elongated spring having a smaller outer diameter). In this reduced-diameter configuration, the radially compressed spring can be inserted into the tube member. Upon release of the mechanical force causing diameter reduction, the helical spring reverts to its original dimensions. Because the tube member possesses some flexibility, the elastic nature of the tube allows it to be deformed by the pressure of the expanding helical member upon the tube ID. Another auger-like assembly with valleys and summits is thereby produced.
Therefore, in accordance with the present invention, there is provided a method comprising the steps of:
In a third embodiment, the method comprises simultaneously applying heat and vacuum to an ordinary polymeric tube to obtain the same effect as a heat shrink. In this embodiment, the tube member is made of a material that is not heat-shrinkable, but rather is plastically deformable under heat and so over time arrives at an elastomeric state. In this embodiment, the tube member has an inner diameter ID in its initial state that is larger than the outer diameter OD of the helical spring, so that the helical member can be inserted into the tube member. Once the spring is inside the tube, a low pressure region/vacuum is created inside of the tube member, and the tube member is heated at the same time. These conditions create deformation in the wall of the tube member caused by the vacuum pulling towards the center of the tube. This reduces the diameter of the tube member, except for the locations where the helical member contacts the inside of the tube and so prevents deformation of the tube member in these areas. This results in another auger-like assembly with valleys and summits.
Therefore, in accordance with the present invention, there is provided a method comprising the steps of:
This application claims priority from U.S. provisional patent application U.S. Ser. No. 62/032,754, filed Aug. 4, 2014, entitled “Flexible Transport Auger”, (Thommen et al.), the specification of which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4573448 | Kambin | Mar 1986 | A |
4646738 | Trott | Mar 1987 | A |
4653496 | Bundy | Mar 1987 | A |
4678459 | Onik et al. | Jul 1987 | A |
4732154 | Shiber | Mar 1988 | A |
4863430 | Klyce et al. | Sep 1989 | A |
4888146 | Dandeneau | Dec 1989 | A |
4914060 | Seas | Apr 1990 | A |
5041082 | Shiber | Aug 1991 | A |
5078723 | Dance | Jan 1992 | A |
5080662 | Paul | Jan 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5195541 | Obenchain | Mar 1993 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5395317 | Kambin | Mar 1995 | A |
5439464 | Shapiro | Aug 1995 | A |
5529580 | Kusunoki et al. | Jun 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5569290 | McAfee | Oct 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5601569 | Pisharodi | Feb 1997 | A |
5662300 | Michelson | Sep 1997 | A |
5688222 | Hluchy et al. | Nov 1997 | A |
5730754 | Obenchain | Mar 1998 | A |
5733242 | Rayburn et al. | Mar 1998 | A |
5735792 | Vanden Hoek et al. | Apr 1998 | A |
5820623 | Ng | Oct 1998 | A |
5885300 | Tokuhashi et al. | Mar 1999 | A |
5894369 | Akiba et al. | Apr 1999 | A |
5899425 | Corey, Jr. et al. | May 1999 | A |
5954635 | Foley et al. | Sep 1999 | A |
6033105 | Barker et al. | Mar 2000 | A |
6053907 | Zirps | Apr 2000 | A |
6063021 | Hossain et al. | May 2000 | A |
6110182 | Mowlai-Ashtiani | Aug 2000 | A |
6139508 | Simpson | Oct 2000 | A |
6200322 | Branch et al. | Mar 2001 | B1 |
6234961 | Gray | May 2001 | B1 |
6283966 | Houfburg | Sep 2001 | B1 |
6286179 | Byrne | Sep 2001 | B1 |
6296644 | Saurat et al. | Oct 2001 | B1 |
6322498 | Gravenstein et al. | Nov 2001 | B1 |
6354992 | Kato | Mar 2002 | B1 |
6371968 | Kogasaka et al. | Apr 2002 | B1 |
6383191 | Zdeblick et al. | May 2002 | B1 |
6447446 | Smith et al. | Sep 2002 | B1 |
6468289 | Bonutti | Oct 2002 | B1 |
6558407 | Ivanko et al. | May 2003 | B1 |
6575899 | Foley et al. | Jun 2003 | B1 |
6579281 | Palmer et al. | Jun 2003 | B2 |
6626830 | Califiore et al. | Sep 2003 | B1 |
6648915 | Sazy | Nov 2003 | B2 |
6676597 | Guenst et al. | Jan 2004 | B2 |
6688564 | Salvermoser et al. | Feb 2004 | B2 |
6758809 | Briscoe et al. | Jul 2004 | B2 |
6808505 | Kadan | Oct 2004 | B2 |
6887198 | Phillips et al. | May 2005 | B2 |
6983930 | La Mendola et al. | Jan 2006 | B1 |
7087058 | Cragg | Aug 2006 | B2 |
7104986 | Hovda et al. | Sep 2006 | B2 |
7137949 | Scirica et al. | Nov 2006 | B2 |
7182731 | Nguyen et al. | Feb 2007 | B2 |
7341556 | Shalman | Mar 2008 | B2 |
7434325 | Foley et al. | Oct 2008 | B2 |
7591790 | Pflueger | Sep 2009 | B2 |
7594888 | Raymond et al. | Sep 2009 | B2 |
7618431 | Roehm, III et al. | Nov 2009 | B2 |
7636596 | Solar | Dec 2009 | B2 |
7637905 | Saadat et al. | Dec 2009 | B2 |
7641659 | Emstad et al. | Jan 2010 | B2 |
7771384 | Ravo | Aug 2010 | B2 |
7794456 | Sharps et al. | Sep 2010 | B2 |
7803159 | Perez-Cruet | Sep 2010 | B2 |
7811303 | Fallin et al. | Oct 2010 | B2 |
7931579 | Bertolero et al. | Apr 2011 | B2 |
7946981 | Cubb | May 2011 | B1 |
7951141 | Sharps et al. | May 2011 | B2 |
7959564 | Ritland | Jun 2011 | B2 |
7988623 | Pagliuca et al. | Aug 2011 | B2 |
8007492 | DiPoto et al. | Aug 2011 | B2 |
8038606 | Otawara | Oct 2011 | B2 |
8043381 | Hestad et al. | Oct 2011 | B2 |
8062218 | Sebastian et al. | Nov 2011 | B2 |
8092464 | McKay | Jan 2012 | B2 |
8096944 | Harrel | Jan 2012 | B2 |
8096957 | Conquergood | Jan 2012 | B2 |
8201563 | Conquergood | Jun 2012 | B2 |
8202216 | Melkent et al. | Jun 2012 | B2 |
8236006 | Hamada | Aug 2012 | B2 |
8333690 | Ikeda | Dec 2012 | B2 |
8360970 | Mangiardi | Jan 2013 | B2 |
8372131 | Hestad et al. | Feb 2013 | B2 |
8382048 | Nesper et al. | Feb 2013 | B2 |
8397335 | Gordin et al. | Mar 2013 | B2 |
8435174 | Cropper et al. | May 2013 | B2 |
8460180 | Zarate et al. | Jun 2013 | B1 |
8460186 | Ortiz et al. | Jun 2013 | B2 |
8460310 | Stern | Jun 2013 | B2 |
8518087 | Lopez et al. | Aug 2013 | B2 |
8535220 | Mondschein | Sep 2013 | B2 |
8556809 | Vijayanagar | Oct 2013 | B2 |
8585726 | Yoon et al. | Nov 2013 | B2 |
8602979 | Kitano | Dec 2013 | B2 |
8622894 | Banik et al. | Jan 2014 | B2 |
8636655 | Childs | Jan 2014 | B1 |
8690764 | Clark et al. | Apr 2014 | B2 |
8721536 | Marino et al. | May 2014 | B2 |
8740779 | Yoshida | Jun 2014 | B2 |
8784421 | Carrison et al. | Jul 2014 | B2 |
8821378 | Morgenstern Lopez et al. | Sep 2014 | B2 |
8834507 | Mire et al. | Sep 2014 | B2 |
8845734 | Weiman | Sep 2014 | B2 |
8852242 | Morgenstern Lopez et al. | Oct 2014 | B2 |
8870753 | Boulais et al. | Oct 2014 | B2 |
8870756 | Maurice | Oct 2014 | B2 |
8876712 | Yee et al. | Nov 2014 | B2 |
8894573 | Loftus et al. | Nov 2014 | B2 |
8894653 | Solsberg et al. | Nov 2014 | B2 |
8926502 | Levy et al. | Jan 2015 | B2 |
8932207 | Greenburg et al. | Jan 2015 | B2 |
8932360 | Womble et al. | Jan 2015 | B2 |
8936605 | Greenberg | Jan 2015 | B2 |
8974381 | Lovell et al. | Mar 2015 | B1 |
8986199 | Weisenburgh, II et al. | Mar 2015 | B2 |
8992580 | Bar et al. | Mar 2015 | B2 |
9028522 | Prado | May 2015 | B1 |
9050146 | Woolley et al. | Jun 2015 | B2 |
9055936 | Mire et al. | Jun 2015 | B2 |
9072431 | Adams et al. | Jul 2015 | B2 |
9078562 | Poll et al. | Jul 2015 | B2 |
9131948 | Fang et al. | Sep 2015 | B2 |
9144374 | Maurice, Jr. | Sep 2015 | B2 |
9198674 | Benson et al. | Dec 2015 | B2 |
9211059 | Drach et al. | Dec 2015 | B2 |
9216016 | Fiechter et al. | Dec 2015 | B2 |
9216125 | Sklar | Dec 2015 | B2 |
9232935 | Brand et al. | Jan 2016 | B2 |
9247997 | Stefanchik et al. | Feb 2016 | B2 |
9265491 | Lins et al. | Feb 2016 | B2 |
9277928 | Morgenstern Lopez | Mar 2016 | B2 |
9307972 | Lovell et al. | Apr 2016 | B2 |
9320419 | Kirma et al. | Apr 2016 | B2 |
RE46007 | Banik et al. | May 2016 | E |
RE46062 | James et al. | Jul 2016 | E |
9386971 | Casey et al. | Jul 2016 | B1 |
9387313 | Culbert et al. | Jul 2016 | B2 |
9414828 | Abidin et al. | Aug 2016 | B2 |
9486296 | Mire et al. | Nov 2016 | B2 |
9492194 | Morgenstern Lopez et al. | Nov 2016 | B2 |
9510853 | Aljuri et al. | Dec 2016 | B2 |
9526401 | Saadat et al. | Dec 2016 | B2 |
9579012 | Vazales et al. | Feb 2017 | B2 |
9603510 | Ammirati | Mar 2017 | B2 |
9603610 | Richter et al. | Mar 2017 | B2 |
9610007 | Kienzle et al. | Apr 2017 | B2 |
9610095 | To | Apr 2017 | B2 |
9629521 | Ratnakar | Apr 2017 | B2 |
9655605 | Serowski et al. | May 2017 | B2 |
9655639 | Mark | May 2017 | B2 |
9668643 | Kennedy, II et al. | Jun 2017 | B2 |
9675235 | Lieponis | Jun 2017 | B2 |
9700378 | Mowlai-Ashtiani | Jul 2017 | B2 |
9706905 | Levy | Jul 2017 | B2 |
20020022762 | Beane et al. | Feb 2002 | A1 |
20020138020 | Pflueger | Sep 2002 | A1 |
20030083555 | Hunt et al. | May 2003 | A1 |
20030171744 | Leung et al. | Sep 2003 | A1 |
20030191474 | Cragg et al. | Oct 2003 | A1 |
20040122446 | Solar | Jun 2004 | A1 |
20040127992 | Serhan et al. | Jul 2004 | A1 |
20040143165 | Alleyne | Jul 2004 | A1 |
20050085692 | Kiehn et al. | Apr 2005 | A1 |
20050090848 | Adams | Apr 2005 | A1 |
20050187570 | Nguyen et al. | Aug 2005 | A1 |
20050256525 | Culbert et al. | Nov 2005 | A1 |
20060206118 | Kim et al. | Sep 2006 | A1 |
20070055259 | Norton et al. | Mar 2007 | A1 |
20070129634 | Hickey et al. | Jun 2007 | A1 |
20070149975 | Oliver et al. | Jun 2007 | A1 |
20070203396 | McCutcheon et al. | Aug 2007 | A1 |
20070225556 | Ortiz et al. | Sep 2007 | A1 |
20070260113 | Otawara | Nov 2007 | A1 |
20080015621 | Emanuel | Jan 2008 | A1 |
20080033251 | Araghi | Feb 2008 | A1 |
20080081951 | Frasier et al. | Apr 2008 | A1 |
20080109015 | Chu | May 2008 | A1 |
20080125856 | Perez-Cruet | May 2008 | A1 |
20080188714 | McCaffrey | Aug 2008 | A1 |
20090018566 | Escudero | Jan 2009 | A1 |
20090024158 | Viker | Jan 2009 | A1 |
20090062871 | Chin et al. | Mar 2009 | A1 |
20090105543 | Miller et al. | Apr 2009 | A1 |
20090156898 | Ichimura | Jun 2009 | A1 |
20090187080 | Seex | Jul 2009 | A1 |
20090192494 | Michishita | Jul 2009 | A1 |
20090240111 | Kessler et al. | Sep 2009 | A1 |
20090287061 | Feigenbaum et al. | Nov 2009 | A1 |
20090318765 | Torii | Dec 2009 | A1 |
20100004651 | Biyani | Jan 2010 | A1 |
20100022841 | Takahashi et al. | Jan 2010 | A1 |
20100076476 | To | Mar 2010 | A1 |
20100114147 | Biyani | May 2010 | A1 |
20100151161 | Da Rolo | Jun 2010 | A1 |
20100161060 | Schaller et al. | Jun 2010 | A1 |
20100256446 | Raju | Oct 2010 | A1 |
20100280325 | Ibrahim et al. | Nov 2010 | A1 |
20100284580 | Ouyang et al. | Nov 2010 | A1 |
20100286477 | Ouyang et al. | Nov 2010 | A1 |
20100312053 | Larsen | Dec 2010 | A1 |
20110028791 | Marino et al. | Feb 2011 | A1 |
20110054507 | Batten et al. | Mar 2011 | A1 |
20110106261 | Chin et al. | May 2011 | A1 |
20110125158 | Diwan et al. | May 2011 | A1 |
20110130634 | Solitario, Jr. et al. | Jun 2011 | A1 |
20110295070 | Yasunaga | Dec 2011 | A1 |
20110319941 | Bar et al. | Dec 2011 | A1 |
20120095296 | Trieu et al. | Apr 2012 | A1 |
20120101338 | O'Prey et al. | Apr 2012 | A1 |
20120209273 | Zaretzka et al. | Aug 2012 | A1 |
20120221007 | Batten et al. | Aug 2012 | A1 |
20120232350 | Seex | Sep 2012 | A1 |
20120232552 | Morgenstern Lopez et al. | Sep 2012 | A1 |
20120298820 | Manolidis | Nov 2012 | A1 |
20120316400 | Vijayanagar | Dec 2012 | A1 |
20130103067 | Fabro | Apr 2013 | A1 |
20130103103 | Mire et al. | Apr 2013 | A1 |
20130150670 | O'Prey et al. | Jun 2013 | A1 |
20130150674 | Haig et al. | Jun 2013 | A1 |
20130172676 | Levy et al. | Jul 2013 | A1 |
20130282022 | Yousef | Oct 2013 | A1 |
20130289399 | Choi et al. | Oct 2013 | A1 |
20130303846 | Cybulski et al. | Nov 2013 | A1 |
20140066940 | Fang et al. | Mar 2014 | A1 |
20140074170 | Mertens et al. | Mar 2014 | A1 |
20140142584 | Sweeney | May 2014 | A1 |
20140148647 | Okazaki | May 2014 | A1 |
20140180321 | Dias | Jun 2014 | A1 |
20140194697 | Seex | Jul 2014 | A1 |
20140215736 | Gomez et al. | Aug 2014 | A1 |
20140257489 | Warren et al. | Sep 2014 | A1 |
20140275799 | Schuele | Sep 2014 | A1 |
20140276840 | Richter et al. | Sep 2014 | A1 |
20140277204 | Sandhu | Sep 2014 | A1 |
20140318582 | Mowlai-Ashtiani | Oct 2014 | A1 |
20140357945 | Duckworth | Dec 2014 | A1 |
20150018623 | Friedrich et al. | Jan 2015 | A1 |
20150065795 | Titus | Mar 2015 | A1 |
20150073218 | Ito | Mar 2015 | A1 |
20150112398 | Morgenstern Lopez et al. | Apr 2015 | A1 |
20150164496 | Karpowicz et al. | Jun 2015 | A1 |
20150216593 | Biyani | Aug 2015 | A1 |
20150223676 | Bayer et al. | Aug 2015 | A1 |
20150230697 | Phee et al. | Aug 2015 | A1 |
20150342621 | Jackson, III | Dec 2015 | A1 |
20150374213 | Maurice, Jr. | Dec 2015 | A1 |
20160015467 | Vayser et al. | Jan 2016 | A1 |
20160066965 | Chegini et al. | Mar 2016 | A1 |
20160067003 | Chegini et al. | Mar 2016 | A1 |
20160074029 | O'Connell et al. | Mar 2016 | A1 |
20160095505 | Johnson et al. | Apr 2016 | A1 |
20160106408 | Ponmudi et al. | Apr 2016 | A1 |
20160166135 | Fiset | Jun 2016 | A1 |
20160174814 | Igov | Jun 2016 | A1 |
20160213500 | Beger et al. | Jul 2016 | A1 |
20160228280 | Schuele et al. | Aug 2016 | A1 |
20160235284 | Yoshida et al. | Aug 2016 | A1 |
20160287264 | Chegini et al. | Oct 2016 | A1 |
20160296220 | Mast et al. | Oct 2016 | A1 |
20160353978 | Miller et al. | Dec 2016 | A1 |
20170003493 | Zhao | Jan 2017 | A1 |
20170007226 | Fehling | Jan 2017 | A1 |
20170027606 | Cappelleri et al. | Feb 2017 | A1 |
20170042408 | Washburn et al. | Feb 2017 | A1 |
20170042411 | Kang et al. | Feb 2017 | A1 |
20170065269 | Thommen et al. | Mar 2017 | A1 |
20170065287 | Silva et al. | Mar 2017 | A1 |
20170086939 | Vayser et al. | Mar 2017 | A1 |
20170135699 | Wolf | May 2017 | A1 |
20170156755 | Poll et al. | Jun 2017 | A1 |
20170156814 | Thommen et al. | Jun 2017 | A1 |
20170196549 | Piskun et al. | Jul 2017 | A1 |
20170224391 | Biester et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
102727309 | Nov 2014 | CN |
9415039 | Nov 1994 | DE |
29916026 | Nov 1999 | DE |
0537116 | Apr 1993 | EP |
0807415 | Nov 1997 | EP |
2481727 | Jan 2012 | GB |
9629014 | Sep 1996 | WO |
0156490 | Aug 2001 | WO |
01089371 | Nov 2001 | WO |
0202016 | Jan 2002 | WO |
2004103430 | Aug 2005 | WO |
2008121162 | Oct 2008 | WO |
2009033207 | Mar 2009 | WO |
2013033426 | Mar 2013 | WO |
2013059640 | Apr 2013 | WO |
2014050236 | Apr 2014 | WO |
2014100761 | Jun 2014 | WO |
2014185334 | Nov 2014 | WO |
2016111373 | Jul 2016 | WO |
2016131077 | Aug 2016 | WO |
2016168673 | Oct 2016 | WO |
2017006684 | Jan 2017 | WO |
2017015480 | Jan 2017 | WO |
2017083648 | May 2017 | WO |
Entry |
---|
International Search Report and Written Opinion for Application No. PCT/US15/43554, dated Nov. 19, 2015 (8 pages). |
Iprenburg, M, “Percutaneous Transforaminal Endoscopic Discectomy: The Thessys Method,” in Lewandrowski, K., et al, Minimally Invasive Spinal Fusion Techniques, Summit Communications, 2008 pp. 65-81. |
International Search Report and Written Opinion for Application No. PCT/US2015/048485, mailed Feb. 9, 2016. (16 pages). |
International Search Report and Written Opinion for Application No. PCT/US2015/060978, mailed Feb. 15, 2016 (8 pages). |
Invitation to Pay Additional Fees for Application No. PCT/US2016/050022, mailed Nov. 3, 2016 (2 pages). |
International Search Report and Written Opinion for Application No. PCT/US2016/050022, issued Feb. 1, 2017 (19 pages). |
Jung, K., et al., “A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept,” Surg Endosc, 2017, vol. 31, pp. 974-980. |
Number | Date | Country | |
---|---|---|---|
20160030061 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62032754 | Aug 2014 | US |