Blood treatment involves removing blood from a patient, treating the blood, and then directing treated blood, or a component thereof, back to the patient. There are many types of blood treatment sets. Some sets include arterial and venous lines. Other sets include a shared line that handles both treated and untreated blood both to and from the body.
The largest number of blood treatment sets in use today are those having membranes in the flow treatment device. Such treatment devices include hemodialysis units, plasmapheresis units, hemofiltration units, and membrane-type blood oxygenators for open heart surgery. Also included are bubble-type oxygenators and other, more exotic blood treatment devices, in which the blood passes across a unit carrying a fixed bed of enzyme or other bioactive agent for various forms of blood treatment, which are at the present time largely experimental. While most references herein will be directed to hemodialyzers, it is to be understood that other flow-through blood treatment devices are intended for modification in accordance with this invention.
The circulation of blood is a complex process requiring a number of parts connected together at various points to form a complete system. For example, in hemodialysis, a membrane dialyzer is attached to a hemodialyzer hardware unit for providing dialysis solution, and controlling the parameters of blood flow through the membrane dialyzer. The dialyzer is connected at its respective arterial and venous blood flow ports with an arterial set and a venous set at one end of each, while the arterial and venous sets are connected to typically the fistula of a patient at the other set ends, to provide the circulatory flow path of blood from the patient, through the dialyzer, and back to the patient. Such arterial and venous sets carry connected branch lines, which connect the set to various important ancillary functions of the dialysis operation. One of the branch connection lines connects with a source of anticoagulant such as heparin. This source typically comprises a syringe which may be controlled by the dialyzer hardware unit to provide a proper heparinization of the blood, to prevent clotting in the dialyzer or other blood treatment unit. Other branch lines may connect with one or more pressure monitors. Another branch line from one of the sets typically connects with a container of intravenous quality saline solution for priming of the set, flushing it out, and for the emergency addition of saline to the patient in the event of a crisis brought onto the patient by excessive ultrafiltration. Also, the sets may have branch tubing extending from a blood chamber of the sets to which a syringe may be connected, to add or remove air to adjust the blood level in the chamber. Accordingly, a blood treatment set requires a number of connection points and valves to properly function.
There are, however, drawbacks to the existing technology used for these connection points. For instance, when a large, rigid syringe or the like is attached to blood chamber using a rigid, needless valve, the syringe can act as a large lever arm. If the syringe is jostled, struck, or moved accidentally, the syringe may act as a lever and snap the valve from the blood treatment set, thereby damaging the set and causing blood to leak from the system. Accordingly, what is needed is a valve that is engineered to prevent such a mishap.
In one aspect the invention comprises a medical valve. The medical valve includes a first chamber, a second chamber, and a flexible barrier with a slit connecting the first chamber and the second chamber, and positioned therebetween. An actuating member is in rotating engagement with the flexible barrier. The actuating member is moveable between a first position, in which the slit is closed, and a second position in which the slit is open. The flexible barrier may be part of a flexible fitting, preferably made of an elastomer.
In another aspect, the invention comprises a system including a blood treatment chamber having at least one rigid access port, and a medical valve providing access to the blood treatment chamber and connected to the port. The medical valve includes a flexible barrier attached to the rigid port, and an actuating member rotationally engaged with the flexible barrier.
In a further aspect, the invention comprises a method of controlling fluid communication into a blood treatment chamber. A medical valve including a flexible barrier and an actuating member is attached to a rigid access port on the chamber. The actuating member is rotated to compress the flexible barrier such that the fluid can flow through an opening in the barrier and through the medical valve.
The flexible fitting may comprise, in some embodiments, a first end including a female port for engagement with a male connector of a blood flow tubing assembly, and a second end for engagement with a rigid port of a blood treatment chamber. Alternatively, any known type of connection for a blood treatment chamber may be used.
Also, the first end portion of the flexible fitting may have a threaded end for engagement with a corresponding threaded portion of a mating flow connector such as a male luer lock connector. Thus, the threaded end is made of flexible material, providing ease of manufacture with good, sealing threaded retention.
The actuating member may comprise a ring portion having an aperture with the flexible barrier being positioned within the aperture. In some embodiments, the aperture may comprise a generally rectangular portion having opposed, arcuate ends, in which opposed sides of the aperture act as cams to compress the flexible barrier when the actuating member is in the second position, to cause the slit to open and to allow fluid communication between the first and second chambers.
The actuating member may also have a handle attached to the ring portion, and a cylindrical portion attached coaxially to the ring portion, wherein the cylindrical portion may be shaped and adapted for sliding engagement with a rigid port of a medical device chamber.
Thus, the opposing sides act as cams which force open the slit of the barrier such that fluid can flow through the valve when the actuating member is in its second position, and the opposing sides force closed the slit of the barrier such that fluid cannot flow through the valve when the actuating member is in the first position.
Also, a method of controlling fluid communication into a blood treatment chamber is provided, in which the method comprises: attaching a medical valve including the flexible, slit barrier and an actuating member to a blood treatment chamber; attaching a fluid flow connector to the medical valve; and rotating the actuating member to compress the slit barrier and open the slit such that fluid can flow through the medical valve. This is accomplished by radial compression of the slit barrier in a direction longitudinal of the direction of extension of the slit.
Additionally, by this invention the valve includes a tubular, flexible fitting made entirely of elastomer, having a frustoconical lumen like a luer if desired, but alternatively with a cylindrical lumen or a countertapered lumen, and optionally a threaded end or lugs for connection with a male luer lock connector or the like. This threaded end can thus be molded in place as part of the flexible fitting as described herein. Alternatively, the flexible fitting may occupy other known positions for a female luer connector in other contexts and types of apparatus, in which the flexible fitting is a molded component as part of other components such as T-connector, chambers, or the like, in which a cylindrical or tapered end lumen and a threaded member or lugs can be provided in a generally conventional manner except that the material used is elastomeric. Also, a typically perforated, flexible flow barrier may occupy the lumen of the flexible fitting.
Referring to
The previous components (i.e. hemodialyzer 12 and venous chamber 14) are provided for illustrative purposes as a means to describe an exemplary environment in which valve 26 operates. A number of other components and a number of different blood treatment configurations can utilize valve 26 without departing from the principles set forth herein. Specifically, a “blood treatment chamber” may comprise blood flow tubing or any enlargement in the flow path thereof.
Referring to
Fitting 36 is made from a flexible material, such as polyurethane and comprises flexible barrier 50. An exemplary material for fitting 36 is Laripur 8025, made by Coim SpA, a European company. Fitting 36 in one example has a first, upper, tubular end portion 38 and a second, lower, tubular end portion 39. First end portion 38 in one example includes a female connector 40 with a threaded portion 42 at its mouth 41 for engagement with a threaded portion of a male connector. In one example, female connector 40 could have a tapered lumen shaped and adapted to receive a male luer lock connector.
Referring still to
Referring to
Flexible barrier 50 itself may, in its undistorted configuration, be circular in cross sectional shape and of a diameter which is greater than the dimension between flat walls 58, and less than the dimension between arcuate walls 62, permitting it to achieve the distorted shapes imposed upon it by actuating member 28 in the respective positions of
Referring to
Referring to
In the above embodiment, the actuating member 28 provides radial pressure to flexible barrier 50 to force slit 52 into an open position, or a closed one, depending upon the rotational position of actuating member 28. As stated, a polyurethane material may be used as one example. Other examples of materials which are suitable are other, known, solvent bondable elastomers which can thus be easily connected to tubing at the respective end portions 39, 41 of fitting 36. However, solvent bondable materials typically do not have a high elastic memory, so actuating member 28 is proportioned to provide radial pressure for both opening and closing of slit 52.
In other embodiments, the elastomeric material used for tubular, flexible fitting 36 can be a high elastic memory thermoplastic or thermoset elastomer, such as many silicone or isoprene elastomers. With such a high memory material, actuating member 28 could positively open a normal, closed slit with radial pressure as in this invention, but in another position the actuator would allow the materials memory to reclose the slit, using the natural and spontaneous elastic memory of the material. This might be accomplished to through the use of a flexible barrier 50 which is of rectangular cross section and of less width in one transverse dimension than in the other transverse dimension.
Alternatively, with such a material having high elastic memory, actuating member 28 could positively close with radial pressure naturally open slit, but in another position, it would allow the memory of the elastomer to spontaneously reopen the slit by the absence of radial closing pressure.
Typically, such high elastic memory elastomers are not effectively solvent bondable, so, typically, other means for attaching tubing to such elastomer fittings would generally be needed.
Typically, fitting 36, in some embodiments comprises an unitarily molded part including first upper tubular end portion 38, and second, lower, tubular end portion 39, plus flexible sealing barrier 50. Slit 52 can then be molded into this unitary part, for example being molded in an open position that is subsequently closed when fitted into actuating member 28.
As another alternative, such a fitting 36 has a slit that closes by its own accord utilizing the elastic memory of fitting 36. In this situation, actuating member might not be needed, and with such a self-sealing slit, the valve could be opened by applying radially inward, opposed finger pressure outside of the valve along the axis of the slit.
Referring to
While particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of applicants' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
This application is a continuation of U.S. Ser. No. 11/270,105, filed Nov. 9, 2005, entitled “Flexible Valve for Blood Treatment Set.
Number | Date | Country | |
---|---|---|---|
Parent | 11270105 | Nov 2005 | US |
Child | 12053691 | US |