Flexible storage tanks (sometimes referred to as flexitanks) are large bladders used to transport liquids or flowable materials, including highly viscous materials. The bladders are typically constructed of one or more layers or plies of a flexible material (such as two layers of polyethylene (PE) materials, 4-40 mills in thickness), forming an interior water proof (or “fluid proof”) portion in which fluids are stored for transport in inter model containers. Flexible means the material can be folded upon itself without fracturing. An example of a prior art flexitank is shown in U.S. Pat. No. 4,468,812. Flexitanks have several advantages—maximum use of space (as opposed, for instance, to drum transport), ease of loading and unloading. They can be made from food-grade materials, and do not have to be cleaned after use, as they are disposable.
A filled bladder is supported by a metal transport container, such as a standard 20 foot sea or railcar transport container, generally referred to as a Sealand Container or a modular transport container. A bulkhead usually is installed in the transport container to keep a filled flexitank from exerting pressure on the container's doors. A typical size for an unfilled flexitank, for use in a 20′ long Sealand container is 23.2 feet long by 12.8 feet wide. For reference, assuming a bladder having a length that is greater than its width, the long dimensioned length will be termed “sides” or S while the shorter dimensioned width will be termed “ends” or E. A bladder also has a top portion “T” and a bottom portion “B”, referenced in orientation of a filled flexitank (e.g., the bottom portion B is in contact with and supported by the transport container floor.)
The flexitank includes at least one sealable opening into the interior, generally sealed with a valve. The valve is used to fill and discharge the bag. The flexitank may have additional sealable openings as needed for particular applications (such as a vent). The valve may be on the top of the bag, or on the end of the bag, and is positioned on the bag for ease of access for filling and discharging of the flexitank.
To fill a flexitank, the empty bladder is positioned in the interior of a transport container. The bottom (and possibly a portion of the sides) of the container may be lined, for instance, with corrugated paper, boards or other material to protect the flexitank from abrasion induced damage. A fill line is coupled to the valve on the flexitank. If a bulkhead is used, the valve should be accessible through the bulkhead. Product is then pumped into the flexitank, and the flow is metered. Once the desired capacity is reached (usually the rated capacity of the flexitank, for instance, 5000 gallons), the valve is closed and the fill line or hose is removed. A filled flexitank has a known circumference.
During transport, product inside the bladder interior will shift in response to external conditions. In particular, on an ocean going vessel, wave action will translate to fluid movement within the bladder, and the fluids within the flexitank also exhibit wave action. Because the bladder is constructed of pliable elastomeric materials, the exterior of the bladder will stretch and deform in response to fluid movement. This can result in elongation of the bladder, change in circumference, and possible damage to the flexitank and to the transport container.
To reduce stresses on a flexitank, additional layers of material can be added, such as incorporating a non-woven geotextile polypropylene in the construction of the flexitank. See U.S. Pat. No. 6,626,312, hereby incorporated by reference. Another suggested modification has been to strap the bladder itself to the transport container, such as shown in U.S. Pat. No. 6,626,312.
The inventor herein has found that constructing the flexitank 1 (see
One embodiment of the invention is shown in
The second layer or ply is used to form an outer bladder 30, and is also preferably tube formed (thereby again eliminating a seam along the side), either the same length or slightly larger than the innermost bladder. One end is generally sealed, and the innermost bladder 40 inserted into the tube forming the second layer. Again, an opening is cut in the second layer or ply, aligned with the opening in the first layer, and the valve sleeve, in place in the first layer 40, is extended through the second layer 30. The remaining unsealed end in the second ply or layer is then sealed shut, creating the outer bladder 30, with the resulting structure being nested bladders, or a “bladder in a bladder,” with the only connection between the two bladders being preferably the valve sleeve positioned through the openings in each ply. Preferably, this second outermost bladder 30 is formed with a 2-4 inch tab of material extending beyond the seam seal line at the two ends of the formed bag.
Finally two sheets of non-woven material (again, preferably with an exterior facing non-absorbent layer), a bottom layer and a top layer, are joined together along the two opposing sides (such as with a sewn or welded seam), forming a tube with seams along the sides. Preferably, the seam is formed with an exterior fabric tab (2-4 inches) that extends beyond the seam. See detail in
The two remaining open ends of the non-woven exterior shell are closed (e.g., sewn or welded closed), preferably sandwiching the tab ends formed in the second layer 30 between the tab ends formed in non-woven exterior fabric. The non-woven tab is preferably formed to be located near the horizontal midline of filled bladder (or lower). In this fashion, the innermost bladder bag is free to move, but the outermost bladder (and intermediary bladders, if more than two layers are used) is coupled to the outer fabric material (at least at one end, preferably at two ends of the outer bladder). If a single bladder layer is used (e.g., only a single bladder bag, the “outer”), preferably it is coupled to the tabs. Other methods can be used to form the external non-woven shell, such as folding a sufficiently long piece of fabric into a “U” shape, and sealing the three remaining ends. Additionally, the flexitank bladder bag may have additional layers, dependent on the application for the flexitank, for instance a Mylar layer (biaxially-oriented polyethylene terephthalate) may be used to prevent UV penetration to the contents stored in the flexitank, thereby forming a three nested bladder bag. An Ethylene Vinyl Alcohol (EVOH) layer maybe be incorporated into a PE layer used for a bladder, as is common in the industry. Additionally, each ply may be coated with a film of desired properties.
In one embodiment, a series of straps 7 can be attached to the extending tabs of the non-woven material that runs along the sides of the flexitank, the straps running from side to side of the flexitank. The straps 7 should be of a sufficient length to allow the strap to lay tightly across the flexitank top, from one side to the other, of a filled bladder. For this reason, the length of the straps are generally similar to the length across the top of the bladder, from tab to tab, based on an unfilled bladder. In this fashion, as the bladder is filled, the straps, will not stretch as much as the bladder or non-woven shell, and begin to constrain the surface of the flexitank adjacent the straps for additional expansion. Preferably, the straps attach to the non-woven outer shell only along the side tabs formed in the non-woven outer shell and are not directly attached to the top portion of the exterior shell in this embodiment, as attaching to the exterior shell across the top portion is labor intensive. Direct attachment means that the strap is attached, such as by a sewn attachment or welding, the material the strap is “attached” to, as opposed to a couple or an indirect attachment. Straps may also be used to join one end of the flexitank to the other (e.g., across the top of the flexitank, from end to end). Instead of attaching the straps directly to the tabs, the tabs may have a series of loops of “belt loops” attached to the tabs, and a strap may be coupled to the belt loop by threading the strap through the belt loops and cinching the strap down tightly when the flexitank is filled (thus allowing for different fill levels of the flexitank). Preferred straps are 2 inch (or larger) woven polyester webbing material rated at around 12,000 lbs. breaking strength. Other material may be used, for instance, nylon, but nylon is more elastic than polyester and is not preferred.
The straps 7 restrain the ability of the flexitank to deform in response to internal fluid movement. When the straps 7 are positioned across the top surface of the flexitank, the straps act as an exterior baffle, restricting the possible internal fluid wave action and thereby reducing deformation of the flexitank. A suitable number of straps 7 across the top of the flexitank can be used, depending on the length of the flexitank. For instance, seven straps, (center strap, and every two feet thereafter along the flexitank's sides) have been found sufficient for a 23′ long flexitank.
In another embodiment, the straps can be directly attached to the non-woven material on the bottom portion of the flexitank. In this embodiment, a tab portion is not preferred in the non-woven shell. During transport of a filled flexitank, bladder deformation on the sides and top of the bag is resisted by the straps, and almost no stress is placed on the direct attachment point of the strap to the shell on the bottom of the flexitank, as the bottom of the bag is not subject to the same deformation as the top portion (the deformation of the bottom is restrained by the direct contact with the container floor). Instead of a series of individual straps, a netting of straps (e.g., a series of intersecting straps forming an open weave “fabric” may be used (e.g., distance between intersections of straps is large compared with the strap width—for instance, for two inch straps, intersections may occur (such as, at right angles) every one or two feet). A netting may be used in any embodiment, but is not preferred due to the added expense. The edge of the netting may have a strap perimeter for attachment to the tab portion of the non-woven shell, if present.
Another embodiment is where the straps are not directly attached (such as through a sewn or welded seam) to the flexitank, but the straps form (are formable into) in a closed circle (or a closable circle) sized to accommodate an unfilled flexitank. See
Testing has found that the side-to-side straps greatly reduce bladder deformation, and hence, possible bladder rupture. Indeed, use of straps on any configuration flexitank, even one without a non-woven exterior (such as a flexitank with a woven polymeric material outer shell, or a flexitank comprised of only several plies of PE), should reduce bladder deformation. However, it is preferred that, when using straps across the top of the flexitank only, that the flexitank have a non-woven exterior fabric shell, as the non-woven fabric is better adapted to resist tearing when subject to forces that will be present if the straps are directly attached to the non-woven fabric when the bag is undergoing deformation.
One preferred valve sleeve 60 is shown in
Another embodiment of the valve sleeve is shown in
In this fashion, all fabric layers are sandwiched between the two flanges and the non-woven layer 5 is not exposed to any fluids stored in the flexitank, thereby preventing wicking action through the valve sleeve to the outer fabric. A closable valve (such as a ball valve), is then sealing attached to the upstanding sleeve 63, completing the assembled flexitank (not shown).
As described, the straps 7 in this design are not attached between the bladder and the container wall, as shown in the U.S. Pat. No. 6,626,312. The strap-container wall attachment described in the '312 patent restrains movement of the bladder with respect to the container, placing unneeded stress on the bladders (at the point of strap attachment) not present in the present design. The use of straps in this embodiment is to restrain deformation of the bag exterior, in particular, deformation along the top of the flexitank. The straps restrain movement of the bag surface, thereby damping internal wave action of fluids in the interior of the bag.
This application is a continuation application of PCT/US12/37496 entitled “Flexitank Design” filed on May 11, 2012, which claims priority to U.S. Provisional patent No. 61/484,757 filed on May 11, 2011, both of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4468812 | Grosvenor | Aug 1984 | A |
4801042 | Hamada et al. | Jan 1989 | A |
4875596 | Lohse | Oct 1989 | A |
5193710 | Podd, Sr. et al. | Mar 1993 | A |
5542563 | Matias | Aug 1996 | A |
5595315 | Podd et al. | Jan 1997 | A |
5657896 | Matias | Aug 1997 | A |
6186713 | Bonerb | Feb 2001 | B1 |
6250488 | Narahara et al. | Jun 2001 | B1 |
6579009 | Schinasi | Jun 2003 | B1 |
6626312 | Maturana | Sep 2003 | B2 |
6662962 | Neto | Dec 2003 | B2 |
7073676 | Town | Jul 2006 | B1 |
7717296 | Guthrie | May 2010 | B1 |
7967161 | Townsend | Jun 2011 | B2 |
7992739 | Garcia | Aug 2011 | B2 |
8083412 | Mino et al. | Dec 2011 | B2 |
8562212 | Strickland et al. | Oct 2013 | B1 |
8690021 | Asraf | Apr 2014 | B2 |
8777050 | Joshi et al. | Jul 2014 | B1 |
8894281 | Town et al. | Nov 2014 | B2 |
8894282 | Town et al. | Nov 2014 | B2 |
20030197009 | Mino | Oct 2003 | A1 |
20050040163 | Siegers et al. | Feb 2005 | A1 |
20060175324 | Podd | Aug 2006 | A1 |
20060186117 | Podd | Aug 2006 | A1 |
20070102428 | Eamcharoenying | May 2007 | A1 |
20070267410 | Mino et al. | Nov 2007 | A1 |
20090304308 | Townsend et al. | Dec 2009 | A1 |
20100122981 | Sims | May 2010 | A1 |
Number | Date | Country |
---|---|---|
9701498 | Jan 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20140133951 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61484757 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2012/037496 | May 2012 | US |
Child | 14073930 | US |