Flexographic printing apparatus

Information

  • Patent Grant
  • 6314879
  • Patent Number
    6,314,879
  • Date Filed
    Wednesday, May 12, 1999
    25 years ago
  • Date Issued
    Tuesday, November 13, 2001
    23 years ago
Abstract
A flexographic printing apparatus for printing a moving web is provided with a rotatable ink roller, a roller support that rotatably supports the ink roller, an ink source associated with the ink roller which provides ink for the ink roller, a rotatable printing roller associated with the ink roller, and a printing plate disposed on the printing roller that makes physical contact with the ink roller so that ink is transferred from the ink roller to the printing plate as the ink roller and the printing roller rotate. The printing apparatus also has a rotatable backing roller disposed adjacent the printing roller so that the moving web on which ink is to be applied passes between the backing roller and the printing plate as the backing roller and the printing roller rotate so that a printed image is applied to the web. The apparatus also has a charge applicator that causes an electric charge to be applied to the semi-conductive printing plate.
Description




BACKGROUND OF THE INVENTION




The present invention is directed to a flexographic printing apparatus, and more particularly to a flexographic printing apparatus having an electric charging unit to enhance print quality.




A conventional flexographic printing press is typically provided with a plurality of printing stations, each of which prints a moving web with an image in a respective color. Each of the printing stations is provided with a rotating cylindrical ink roller, also referred to as an “anilox” roller, having a regular pattern of minute recesses or ink cells formed therein. Ink is applied to the ink roller by submerging at least a portion of the ink roller in an ink reservoir, or by applying ink to a portion of the ink roller via an ink applicator.




A flexographic press has a rotating cylindrical printing roller disposed adjacent the ink roller. The printing roller has a printing plate mounted thereon. The printing plate may be held in place on the printing roller by an adhesive layer, such as adhesive tape, disposed between the printing plate and the printing roller. The printing plate is composed of a photosensitive material that is subjected to a photo-etching process to form raised portions on the printing plate which correspond to a desired image to be printed. The printing roller is disposed adjacent the ink roller so that ink is transferred from the ink cells in the ink roller to the raised areas on the printing plate.




U.S. Pat. No. 4,697,514 to George, et al. discloses a gravure printing apparatus having a gravure cylinder that is disposed partially within an ink reservoir, a backing roller disposed adjacent the gravure cylinder, and an apparatus for applying a voltage to the backing roller. As shown in

FIG. 7

of the George, et al. patent and described in connection therewith, the application of the voltage to the backing roller causes ink within the ink cells to rise above the surface of the gravure cylinder in order to enhance the ink transfer from the gravure cylinder to a paper web being printed.




SUMMARY OF THE INVENTION




In one aspect, the invention is directed to a flexographic printing apparatus for printing a moving web. The printing apparatus has a rotatable ink roller, a roller support that rotatably supports the ink roller, an ink source associated with the ink roller which provides ink for the ink roller, a rotatable printing roller associated with the ink roller, and a printing plate disposed on the printing roller that makes physical contact with the ink roller so that ink is transferred from the ink roller to the printing plate as the ink roller and the printing roller rotate.




The printing apparatus also has a rotatable backing roller disposed adjacent the printing roller so that the moving web on which ink is to be applied passes between the backing roller and the printing plate as the backing roller and the printing roller rotate so that a printed image is applied to the web. The apparatus also has a charge applicator that causes an electric charge to be applied to the printing plate.




The printing plate may be composed of a semi-conductive printing layer having an image-forming surface. The semi-conductive printing layer may have a resistivity in the range between about 50 thousand ohms per cubic centimeter and about 1.5 megohms per cubic centimeter. The printing layer may be a photo-sensitive polymer doped with conductive particles, and may have a resistivity in the range between about 100 thousand ohms per cubic centimeter and about one megohm per cubic centimeter. The charge applicator may be provided in the form of an elongate charge bar having a plurality of charging electrodes spaced from the printing roller. Alternatively, the charge applicator may make direct physical contact with a portion of the printing plate or the roller on which the printing plate is supported.




The printing apparatus may also have an insulating layer disposed between a semi-conductive printing layer and the printing roller. The insulating layer may have a resistivity of greater than about two megohms per cubic centimeter. The insulating layer may be provided in the form of an adhesive layer disposed between the printing layer and the printing roller.




The printing apparatus may also have a conductive layer disposed adjacent the semi-conductive printing layer, the conductive layer having a resistivity lower than about 50 thousand ohms per cubic centimeter, and a high voltage may be applied directly to the conductive layer in order to impart an electric charge to the semi-conductive printing layer.




The invention is also directed to a printing structure for a flexographic printing apparatus having a rotatable ink roller, a roller support that rotatably supports the ink roller, an ink source associated with the ink roller which provides ink to be applied to the ink roller, a rotatable printing roller associated with the ink roller, and a rotatable backing roller disposed adjacent the printing roller.




The printing structure has a semi-conductive printing layer adapted to be disposed on a printing roller. The semi-conductive printing layer is composed of a photo-sensitive polymer material having a resistivity in the range between about 50 thousand ohms per cubic centimeter and about 1.5 megohms per cubic centimeter. The semi-conductive printing layer has an image-forming surface having a plurality of raised areas corresponding to an image to be printed.




The semi-conductive printing layer may have a thickness of less than about one-fourth of an inch, and the semi-conductive printing layer may have a resistivity in the range between about 100 thousand ohms per cubic centimeter and about one megohm per cubic centimeter. The resistivity of the semi-conductive printing layer may be due to the presence of conductive particles therein. The printing structure may have an insulating layer disposed adjacent the semi-conductive printing layer, with the insulating layer having a resistivity of greater than about 100 megohms per cubic centimeter. The printing structure may also have a conductive layer disposed adjacent the semi-conductive printing layer, with the conductive layer having a resistivity lower than about 50 thousand ohms per cubic centimeter.




The features and advantages of the invention will be apparent to those of ordinary skill in the art in view of the detailed description of the preferred embodiment, which is made with reference to the drawings, a brief description of which is provided below.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view of one embodiment of a flexographic printing apparatus in accordance with the invention;





FIG. 2

is a side view of a portion of an embodiment of a printing plate used in the flexographic printing apparatus;





FIG. 3

is a side view of a portion of an ink roller of the flexographic printing apparatus;





FIG. 4

illustrates a portion of a charge bar disposed adjacent a portion of a printing roller;





FIG. 5

illustrates a brush that is applying an electric charge to a portion of the printing roller;





FIG. 6

illustrates a first embodiment of a printing roller usable with the flexographic printing apparatus of

FIG. 1

;





FIG. 7

illustrates a second embodiment of a printing roller usable with the flexographic printing apparatus of

FIG. 1

;





FIG. 8

illustrates a third embodiment of a printing roller usable with the flexographic printing apparatus of

FIG. 1

;





FIG. 9

illustrates a fourth embodiment of a printing roller usable with the flexographic printing apparatus of

FIG. 1

; and





FIG. 10

is a side view of a portion of an alternative embodiment of a printing plate used in the flexographic printing apparatus.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

illustrates an embodiment of a flexographic printing apparatus


10


in accordance with the invention. Referring to

FIG. 1

, the printing apparatus


10


has a cylindrical ink roller


12


and an ink applicator


14


that applies ink to the ink roller


12


. The ink applicator


14


may be, for example, a chambered doctor blade or other conventional ink applying device. The ink roller


12


is rotatably supported by a support frame


16


so that the ink roller


12


is in contact with a cylindrical printing roller


18


. The support frame


16


rotatably supports the printing roller


18


adjacent a cylindrical backing roller


20


. An elongate web


22


, composed of paper for example, to which ink is to be applied passes through the nip between the printing roller


18


and the backing roller


20


. The web


22


may be supported or directed by a plurality of support rollers


24


. A charge bar


26


may be disposed adjacent the printing roller


18


for applying an electric charge to the printing roller


18


, as described in more detail below. The printing apparatus


10


may also include a conventional dryer (not shown) for drying the ink after it is applied to the web


22


and a conventional cooling apparatus (not shown), such as that disclosed in U.S. Pat. No. 5,881,647, which is incorporated by reference herein, for cooling the web


22


after it passes through the dryer.





FIG. 2

illustrates a portion of one embodiment of a printing plate


30


(shown much larger than actual size) that is disposed on the exterior of the printing roller


18


. The printing plate


30


has numerous small raised portions


32


which transfer ink from the ink roller


12


to the web


22


. The raised portions


32


are non-uniform in shape and correspond to a desired image to be printed on the web


22


. The raised portions


32


on the printing plate


30


may be formed via a photo-sensitive etching process in which portions of the printing plate


30


are selectively exposed to radiation, with the unexposed portions being subsequently removed via an etching agent, thus leaving the raised portions


32


. The total thickness of the printing plate


30


could be approximately one-eighth to one-sixteenth of an inch, for example. Other methods of forming the raised portions


32


of the printing plate


30


could be utilized.




The printing plate


30


may be composed of a semi-conductive material having a resistivity in the range between about 50 thousand ohms per cubic centimeter and about 1.5 megohms per cubic centimeter, or in the range between about 100 thousand ohms per cubic centimeter and about one megohm per cubic centimeter. That resistivity allows the printing plate


30


to retain an electric charge as provided by the charge bar


26


or another charge-application device.




The printing plate


30


may be composed of a photo-sensitive polymer material. Photo-sensitive polymer material is commercially available in either solid or liquid form. The printing plate


30


could be made by melting photo-sensitive material in solid form and then doping the resulting liquid material, to achieve a specific resistivity or range of resistivities, by dispersing conductive particles within the liquid so that the particles are in suspension in the liquid. Any type of conductive particles, such as carbon powder, powdered metals, various salts, etc., could be used. Some types of salts would be dissolve in the liquid. As an alternative to doping the polymer material with a conductive agent, a photo-sensitive polymer material with semi-conductive properties could be utilized. The liquid polymer material may then be extruded through a die to form a sheet of material, which may then be cooled with a chilled roller to form a solid sheet.




The solid sheet may then be photographically exposed to light or radiation through a negative of the image which is to be printed. After such exposure, the sheet is washed with, or otherwise exposed to, an etching agent, so that the areas on the sheet which were photographically exposed are removed, leaving the raised portions


32


.




When the printing plate


30


is made from a photo-sensitive polymer material that is in liquid form, the liquid material can be formed into a solid sheet via a mold (after suitable doping if necessary), after which the sheet is photographically etched as described above.




The fabrication methods described above result in a printing layer


30


, including raised portions


32


, composed entirely of semi-conductive polymer material, as shown in FIG.


2


.





FIG. 3

is a cross-sectional view of a portion of the ink roller


12


. Referring to

FIG. 3

, the outer surface of the ink roller


12


has numerous, minute recesses or wells


34


formed therein in which ink may be deposited. The ink wells


34


, which are identical in shape and spacing, pick up ink from the ink reservoir


14


for transfer to the raised portions


32


on the printing plate


30


with which the ink roller


12


makes contact.





FIG. 4

illustrates the charge bar


26


in more detail. Referring to

FIG. 4

, the charge bar


26


has a plurality of pointed electrodes


36


, which may be evenly spaced adjacent the entire length of the printing roller


18


. The pointed electrodes


36


may be spaced from the outer surface of the printing roller


18


by about one-half of an inch, for example. The pointed electrodes


36


are conductively interconnected so that each is connected to a high (positive or negative) voltage, such as a voltage in the range of between about 10,000 and 30,000 volts. The proximity of that high voltage causes an electric charge to be induced in the semi-conductive printing plate


30


, which enhances the transfer of ink from the raised portions


32


of the printing plate


30


to the web


22


. A specific example of a charge bar that could be utilized is disclosed in U.S. Pat. No. 5,881,647 entitled “Printing Press With Electrostatic Cooling,” which is incorporated by reference herein.




During operation of the printing apparatus


10


, the rotation of the ink roller


12


causes the ink cells


34


to be periodically filled with ink. The ink in the ink cells


34


in the ink roller


12


is transferred to the raised portions


32


of the printing plate


30


on the printing roller


18


at the point at which the two rollers


12


,


18


make physical contact. The ink is then transferred from the raised portions


32


to the web


22


at the nip between the printing roller


18


and the backing roller


20


.





FIG. 6

illustrates one embodiment of a printing roller


18




a


that may be utilized in the printing apparatus


10


. The printing roller


18




a


has a central core


40


, which may be composed of metal, over which the printing plate


30


is disposed via an adhesive layer


42


, such as a layer of double-backed adhesive tape. The ends of the printing plate


30


may be disposed adjacent each other at a seam


44


. The adhesive layer


42


acts as an insulating layer to prevent significant amounts of electric charge from passing from the printing plate


30


to the central core


40


. Alternatively, the printing plate


30


may be held in place on the printing roller


18


magnetically.





FIG. 7

illustrates a second embodiment of a printing roller


18




b


that may be utilized in the printing apparatus


10


. The printing roller


18




b


is generally the same as the printing roller


18




a


described above in connection with

FIG. 6

, except that an extra insulating layer


50


is disposed between the adhesive layer


42


and the printing plate


30


. The insulating layer


50


may be used to ensure that there is no significant leakage of electric charge from the semi-conductive printing plate


30


to the central core


40


. Such charge leakage could occur, for example, where the adhesive layer


42


is in the form of adhesive tape and where the adhesive tape does not completely cover the central core


40


. The insulating layer


50


may have a resistivity greater than about two megohms per cubic centimeter. The thickness of the insulating layer


50


could be approximately one-sixteenth of an inch.




The insulating layer


50


could be glued or otherwise bonded to the printing plate


30


. For example, the printing plate


30


and the insulating layer


50


could be formed via a double-extrusion process in which both layers are simultaneously extruded, each layer being extruded from a separate liquid or semi-solid, to form a respective layer, with the two layers being disposed in contact with each other to bond them together prior to their complete solidification. After the two layers


30


,


50


are bonded together, the desired printing pattern would be imparted to the printing plate


30


, such as by a conventional photo-sensitive etching process.





FIG. 8

illustrates a third embodiment of a printing roller


18




c


that may be utilized in the printing apparatus


10


. The printing roller


18




c


is provided with a seamless semi-conductive printing plate


60


(which may have any of the resistivity ranges noted herein and which may be composed of a photo-sensitive polymer material), which is disposed on the exterior of a seamless insulating sleeve


62


, which may be composed of fiberglass, for example.





FIG. 9

illustrates a fourth embodiment of a printing roller


18




d


that may be used in the printing apparatus


10


. The printing roller


18




d


is generally the same as the printing roller


18




b


described above in connection with

FIG. 7

, except that a conductive layer


70


is disposed between the printing plate


30


and the insulating layer


50


. The conductive layer


70


could be provided, for example, in the form of a thin, metal layer plated onto or otherwise provided on the outer surface of the insulating layer


50


or the inner surface of the printing plate


30


.




The purpose of the conductive layer


70


is to allow an electric charge to be applied to the printing roller


18


, via direct physical contact, so that a lower voltage can be used to apply the charge.

FIG. 5

illustrates one manner in which an electric charge could be directly applied to a portion of the printing roller


18




d.


Referring to

FIG. 5

, the electric charge could be applied via a conductive brush


72


that makes contact with a conductive surface


74


integrally formed or otherwise conductively connected to the conductive layer


70


. Since direct contact is made, the conductive brush


72


could be connected to a voltage source providing a voltage in the range of one thousand to three thousand volts, for example, instead of the higher voltage necessary for the charge bar


26


.





FIG. 10

illustrates an alternative embodiment of a printing plate


30




b


that could be used in each of the embodiments of

FIGS. 6-9

. Referring to

FIG. 10

, the printing plate


30




b


has a substrate layer


80


and a printing layer composed of raised portions


32




b,


with each raised portion


32




b


having a raised surface


32




c.


Together, the raised surfaces


32




c


of the raised portions


32




b


make up the desired image-forming surface. The raised portions


32




b


may be composed of photo-sensitive material. The substrate layer


80


may comprise an insulating layer having a resistivity in excess of about two megohms per cubic centimeter.




The printing plate


30




b


of

FIG. 10

may be manufactured by depositing or otherwise forming a layer of semi-conductive, photo-sensitive polymer material on top of an insulating substrate. The semi-conductive material may then be photo-etched, as described above, until all semi-conductive material except for the raised portions


32


is removed.




Numerous additional modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. This description is to be construed as illustrative only, and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and method may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which come within the scope of the appended claims is reserved.



Claims
  • 1. A flexographic printing apparatus for printing a moving web, said printing apparatus comprising:a rotatable ink roller; a roller support that rotatably supports said ink roller; an ink source associated with said ink roller, said ink source providing ink to be applied to said ink roller; a rotatable printing roller associated with said ink roller; a printing plate disposed on said printing roller, said printing plate being supported so that ink is transferred from said ink roller to said printing plate as said ink roller and said printing roller rotate, said printing plate comprising: a semi-conductive printing layer having an image-forming surface, said semi-conductive printing layer comprising a photo-sensitive polymer material; and a substrate layer on which said semi-conductive printing layer is formed, said substrate layer comprising an insulating material having a resistivity of greater than about two megohms per cubic centimeter, said semi-conductive printing layer comprising a plurality of portions of semi-conductive material formed on said substrate layer, said portions of said semi-conductive material being spaced apart and formed so that portions of said substrate layer are not covered by said portions of said semi-conductive material; a first insulating layer disposed on said printing roller, said first insulating layer being disposed between an outer surface of said printing roller and said printing plate; a second insulating layer disposed on said printing roller, said second insulating layer being disposed between said outer surface of said printing roller and said first insulating layer; a rotatable backing roller disposed adjacent said printing roller so that said moving web to which ink is to be applied passes between said backing roller and said printing plate as said backing roller and said printing roller rotate so that a printed image is applied to said web; and a charge applicator associated with said printing roller, said charge applicator causing an electric charge to be applied to said printing plate, said charge applicator comprising an elongate charge bar having a plurality of charging electrodes spaced from said printing plate, said charging electrodes being evenly spaced from each other in a direction parallel to a central axis of said printing roller, each of said charging electrodes being conductively connected to a voltage.
  • 2. A flexographic printing apparatus for printing a moving web, said printing apparatus comprising:a rotatable ink roller; a roller support that rotatably supports said ink roller; an ink source associated with said ink roller, said ink source providing ink to be applied to said ink roller; a rotatable printing roller associated with said ink roller; a printing plate disposed on said printing roller, said printing plate being supported so that ink is transferred from said ink roller to said printing plate as said ink roller and said printing roller rotate, said printing plate comprising: a semi-conductive printing layer having an image-forming surface, said semi-conductive printing layer comprising a photo-sensitive polymer material; and a substrate layer on which said semi-conductive printing layer is formed, said substrate layer comprising an insulating material having a resistivity of greater than about two megohms per cubic centimeter, said semi-conductive printing layer comprising a plurality of portions of semi-conductive material formed on said substrate layer, said portions of said semi-conductive material being spaced apart and formed so that portions of said substrate layer are not covered by said portions of said semi-conductive material; a first insulating layer disposed on said printing roller, said first insulating layer being disposed between an outer surface of said printing roller and said printing plate; a conductive layer disposed between said semi-conductive printing layer and said first insulating layer; a second insulating layer disposed on said printing roller, said second insulating layer being disposed beteen said outer surface of said printing roller and said first insulating layer; a rotatable backing roller disposed adjacent said printing roller so that said moving web to which ink is to be applied passes between said backing roller and said printing plate as said back roller and said printing roller rotate so that a printed image is applied to said web; and a direct-contact charge applicator that makes physical contact with said conductive layer, said direct-contact charge applicator being conductively connected to a voltage.
US Referenced Citations (21)
Number Name Date Kind
3370546 Muller Feb 1968
3477369 Adamson et al. Nov 1969
3554123 Lewallen Jan 1971
3619720 Coberley Nov 1971
3625146 Hutchison Dec 1971
3661081 Wright May 1972
4099462 Coberley et al. Jul 1978
4208965 Eichler et al. Jun 1980
4360850 Howard et al. Nov 1982
4539908 Spengler Sep 1985
4697514 George et al. Oct 1987
4909147 George et al. Mar 1990
4966555 Zagorski Oct 1990
5178071 Hyllberg Jan 1993
5243487 Klett Sep 1993
5399248 Ettelbruck et al. Mar 1995
5768990 Vrotacoe et al. Jun 1998
5797322 Lorig et al. Aug 1998
5829355 Spengler Nov 1998
5983799 Lane, III et al. Nov 1999
6000333 Davis Dec 1999
Foreign Referenced Citations (2)
Number Date Country
0761458 Mar 1997 EP
9803049 Jan 1989 WO
Non-Patent Literature Citations (2)
Entry
European Search Report dated May 9, 2000, 3 pages.
Hawley's Condensed Chemical Dictionary, 11th ed., Sax & Lewis, Sr. ISBN 0442280971, 1987.