The present invention relates generally to electro-acoustic transducers and, more particularly, to flextensional transducers and methods of using flextensional transducers.
Flextensional transducers are known for their traditional use as high-power, low-frequency ultrasound sources in underwater acoustic applications. Among other end uses, they have been adapted for use as low-power, low-frequency transducers for medical ultrasonic applications. Flextensional transducers currently used in such medical ultrasonic applications generally include a solid piezoelectric ceramic disk arranged between a pair of metal endcaps. When the ceramic disk is energized with a current of alternating polarity, the ceramic disk expands and contracts radially in a sinusoidal manner. This radial expansion and contraction is mechanically transferred to the endcaps, causing the endcaps to flex outwardly or inwardly so as to amplify the mechanical motion generated by the ceramic disk. In turn, the rapid sinusoidal flexing of the endcaps generates ultrasonic sound waves that are emitted outwardly from each of the endcaps.
Flextensional transducers are structurally symmetric in both axial and radial directions of the ceramic disk, and thus radiate sound waves equally in two opposed directions, outwardly from each endcap. This results in waste of sound energy in applications where radiation is required to be emitted in only one direction. Furthermore, such transducers have been encapsulated in epoxy or polymers in order to create arrays of elements to increase the total area for radiation of sound energy. Such encapsulated transducers are “floating” within the encapsulation and not mounted or otherwise secured to a support structure. This mounting arrangement may result in excessive vibration of, and stress on, conductive wiring connected to the transducer.
Improved flextensional transducers and methods of using flextensional transducers are needed.
An exemplary embodiment of a flextensional transducer includes a piezoelectric element and at least one endcap coupled with the piezoelectric element. The endcap has an outer portion formed of a first material and an inner portion formed of a second material different from the first material. The flextensional transducer may be operable to emit sound energy.
Another exemplary embodiment of a flextensional transducer includes a piezoelectric element, as well as a first endcap and a second endcap that are each coupled with the piezoelectric element. The first endcap has a first maximum outer diameter, and the second endcap has a second maximum outer diameter that is less than the first maximum outer diameter. The flextensional transducer may be operable to emit sound energy.
Another exemplary embodiment of a flextensional transducer includes a piezoelectric element, and a first endcap coupled with the piezoelectric element. A portion of the flextensional transducer is coupled with a support structure and is at least partially restrained against movement relative to the support structure. The flextensional transducer may be operable to emit sound energy.
Yet another exemplary embodiment of a flextensional transducer includes a curved piezoelectric element, and an endcap coupled with the curved piezoelectric element. The flextensional transducer may be operable to emit sound energy.
In an exemplary embodiment, a method of emitting sound energy with a flextensional transducer includes energizing a piezoelectric element with an alternating current signal so that the piezoelectric element generates mechanical energy and transferring the mechanical energy from the piezoelectric element to at least one endcap coupled with the piezoelectric element. In response to the mechanical energy transfer, an inner portion of the at least one endcap is allowed to flex with a greater displacement in an axial direction than an outer portion of the at least one endcap. The sound energy is emitted from the at least one endcap as a result of the flexing of the at least one endcap.
In another exemplary embodiment, a method of emitting sound energy with a flextensional transducer includes energizing an annular piezoelectric element with an alternating current signal so that the annular piezoelectric element generates mechanical energy, transferring a portion of the mechanical energy from the annular piezoelectric element to a first endcap coupled therewith at a location proximate an outer circumference of the annular piezoelectric element, and transferring a portion of the mechanical energy from the annular piezoelectric element to a second endcap coupled therewith at a location proximate an inner circumference of the annular piezoelectric element. In response to the transferred mechanical energy, the first endcap and the second endcap are allowed to flex relative to the piezoelectric element. The sound energy is emitted from the first endcap and the second endcap as a result of the flexing of the first and second endcaps.
In another exemplary embodiment, a method of emitting sound energy with a flextensional transducer coupled with a support structure includes energizing a piezoelectric element with an alternating current signal so that the piezoelectric element generates mechanical energy, and transferring the mechanical energy from the piezoelectric element to an endcap coupled with the piezoelectric element. In response to the transferred mechanical energy, the endcap is allowed to flex relative to the piezoelectric element. The sound energy is emitted from the endcap as a result of the flexing of the endcap while at least partially restraining movement of a portion of the flextensional transducer relative to the support structure.
In yet another exemplary embodiment of a method of emitting sound energy with a flextensional transducer includes energizing a curved piezoelectric element with an alternating current signal so that the curved piezoelectric element expands and contracts in a direction relative to a focal point defined by the curvature of the curved piezoelectric element to generate mechanical energy, and transferring the mechanical energy from the curved piezoelectric element to an endcap coupled with the curved piezoelectric element. In response to the transferred mechanical energy, the endcap is allowed to flex relative to the curved piezoelectric element, and the sound energy is emitted from the endcap as a result of the flexing of the endcap.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with a general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the invention.
With reference to
The piezoelectric element 12 is provided with electrodes 17 and 19, which may be disposed on the opposed surfaces 12a, 12b of the piezoelectric element 12. The electrodes 17, 19 may be composed of a conductor, such as silver (Ag), that is applied as a coating onto the opposed surfaces 12a, 12b. In particular, the electrode 17 may be applied to cover the entirety of surface 12a and electrode 19 may be applied to cover the entirety of surface 12b, such that the entirety of piezoelectric element 12 may be energized by the electrodes 17, 19, as described below.
The endcaps 14, 16 may be circularly or radially symmetric (e.g., round) relative to the central axis in the plane parallel to the surfaces 12a, 12b, and may have an outer diameter equal to the outer diameter of the piezoelectric element 12. In an embodiment, each of the endcaps 14, 16 may be formed with a truncated-conical, or cymbal-like, shape. Endcap 14 may comprise a plurality of sections that include an inner section 14a, an outer section 14b, and an intermediate section 14c spanning between and connecting the inner section 14a and outer section 14b. The inner section 14a may be planar and centrally located relative to the outer section 14b, the outer section 14b may be planar, and the intermediate section 14c may be angled or inclined relative to planes containing the inner and outer surfaces of sections 14a, 14b. Similarly, endcap 16 may comprise a plurality of sections that include an inner section 16a, an outer section 16b, and an intermediate section 16c spanning between and connecting the inner section 16a and outer section 16b. The inner section 16a may be planar and centrally located relative to the outer section 16b, the outer section 16b may be planar, and the intermediate section 16c may be angled or inclined relative to planes containing the inner and outer surfaces of sections 16a, 16b.
The opposite inner and outer surfaces of the inner sections 14a, 16a and outer sections 14b, 16b may contained in planes that are parallel to the respective planes containing surfaces 12a, 12b of the piezoelectric element 12. The inner and outer surfaces of the inner section 14a and the inner and outer surfaces of the outer section 14b of endcap 14 may be contained in planes that are parallel to the planes containing the respective inner and outer surfaces of the inner section 16a and outer section 16b of endcap 16. In an embodiment, the endcaps 14, 16 may have a uniform thickness that is location independent across the surface area, and may have equal surface areas. In an alternative embodiment, one or both of the inner sections 14, 16a may be thinner near its center than at its respective edges proximate intermediate sections 14c, 16c. In an alternative embodiment, one or both of the inner sections 14, 16a may be thicker near its center than at its respective edges proximate intermediate sections 14c, 16c. In an alternative embodiment, one or both of the inner sections 14, 16a may be slightly curved or bowed inwardly or outwardly (i.e., convex or concave) with a given curvature.
The endcaps 14 and 16 may have inner surfaces that are attached to the respective confronting surfaces 12a, 12b of the piezoelectric element 12. In one embodiment, the endcaps 14, 16 may have a direct attachment to the respective surfaces 12a, 12b of the piezoelectric element 12 and the electrodes 17, 19 provided thereon. As such, the endcaps 14, 16, in contact with the respective electrodes 17, 19 on the surfaces 12a, 12b, may operate as electrical contacts. Alternatively, the electrodes 17, 19 may be omitted from the area of the surfaces 12a, 12b of the piezoelectric element 12 that is attached to the endcaps 14, 16, and the electrical contacts may be established with the electrodes 17, 19 in an alternative fashion. In an embodiment, the outer section 14b of endcap 14 and the outer section 16b of endcap 16 may be respectively attached to the opposed surfaces 12a, 12b of the piezoelectric 12 at locations near the outer diameter of the piezoelectric element 12. The attachment between the endcaps 14, 16 and the piezoelectric element 12 may be created with any suitable adhesive material, such as epoxy or an electrically-conductive epoxy.
The endcap 14 may be oriented in space to be generally concave with respect to the plane containing the surface 12a of the piezoelectric element 12. The inner section 14a of endcap 14 may be spaced from the nearby surface 12a of the piezoelectric element 12 to establish a non-contacting relationship for section 14a. A cavity 18a is disposed between an inner surface of the endcap 14 and the adjacent opposed surface 12a of the piezoelectric element 12. The endcap 16 may be oriented in space to be generally concave with respect to the plane containing the surface 12b of the piezoelectric element 12. The inner section 16a of endcap 16 may likewise be spaced from the nearby surface 12b of the piezoelectric element 12 to establish a non-contacting relationship for section 16a. A cavity 18b is disposed between an inner surface of the endcap 14, 16 and the adjacent opposed surface 12b of the piezoelectric element 12. The cavities 18a, 18b may be filled with air or another gas at atmospheric pressure. The inclination of the intermediate sections 14c, 16c permits the inner sections 14a, 16a to be spaced away from the surfaces 12a, 12b and to thereby be in the respective non-contacting relationships.
In use, the piezoelectric element 12 responds to an applied electric field from an alternating current signal generated by a controlled power supply and applied as a voltage to the electrodes 17, 19 by reversibly changing its dimensions with a frequency equal to the frequency of the alternating current. As shown in
As shown in
The rapid and cyclic radial expansion and contraction of the piezoelectric element 12 over a relatively small range of motion in response to the application of the alternating current signal supplied to the electrodes 17, 19 results in rapid alternating deformation or flexing in respective axial directions of the endcaps 14, 16. The rapid alternating deformation or flexing may be described as a sinusoidal motion. The rapid alternating flexing of the endcaps 14, 16 acts to emit or radiate acoustic or ultrasonic sound energy from endcap 14 outwardly in an axial direction and from endcap 16 outwardly in an axial direction, preferably from one or the other toward a target object (not shown).
The radiated sound energy, which is the product of the conversion of electrical energy to mechanical energy by the piezoelectric element 12, may be allowed to interact with the tissue of a patient and/or a substance on a tissue surface in order to provide a therapeutic effect and/or diagnostic effect. A coupling medium may be provided between one or the other of the endcaps 14, 16 and the tissue surface that promotes the efficient transfer of the radiated sound energy.
In one embodiment, the outer section 14b and the intermediate section 14c may be formed integrally as one piece so as to define an outer portion 20 of the endcap 14, and the outer section 16b and the intermediate section 16c may be formed integrally as one piece so as to define an outer portion 21 of the endcap 16. The outer portion 20 may be annular and may radially surround the inner section 14a, and the outer portion 21 may be annular and may radially surround the inner section 16a.
The endcaps 14, 16 may be composite structures that are comprised of sections of materials characterized by different mechanical properties, such as a combination of a metal section and a polymer section. To that end, the inner section 14a of endcap 14 may include an insert 22 and the inner section 16b of endcap 16 may include an insert 23. Additionally, as shown, each insert 22, 23 may be formed with a chamfer at its outer diameter to enable effective mating and bonding with a corresponding chamfered surface at the inner diameter of the corresponding radially outer portion 20, 21. The inserts 22, 23 may be composed of a material that is different in its mechanical properties (e.g., more flexible than) from the material composing the corresponding outer portion 20, 21. In one embodiment, the inserts 22, 23 may be comprised of a polymer, such as polyurethane or polycarbonate. The outer portions 20, 21 may be formed of any suitable metal such as brass, aluminum, or stainless steel, and may be easily manufactured by, for example, punching sheet metal. If formed from a metal, the outer portions 20, 21 may provide for a robust endcap structure and a strong mechanical coupling between the endcaps 14, 16 and the piezoelectric element 12. In alternative embodiments, the endcaps 14, 16 may be formed without inserts 22, 23, and may be comprised in their entirety from a polymer and metal-free, or comprised in their entirety from a metal and polymer-free.
With continued reference to
The flextensional transducer 10 comprised of the assembly of the endcaps 14, 16 and the piezoelectric element 12 operates as a mechanical amplifier having a resonance frequency with the piezoelectric element 12 functioning as an actuator. This resonance frequency of the flextensional transducer 10 may be tuned by adjusting various design parameters of its individual components, including the piezoelectric element 12, the inserts 22, 23, and/or the outer portions 20, 21 of the endcaps 14, 16. For example, design parameters corresponding to the inserts 22, 23 may include material type, which dictates material properties such as stiffness and/or density, and physical dimensions such as diameter or thickness. Design parameters corresponding to the outer portions 20, 21 may include material type and physical configuration, including dimensions and shape. For example, physical configuration factors may include area of contact between the outer portion 20, 21 and the piezoelectric element 12, endcap height (i.e., in an axial direction normal to surfaces 12a, 12b), endcap thickness, and angle of slope of the intermediate section 14c, 16c. Design parameters corresponding to the piezoelectric element 12 may include material type and physical dimensions. In this regard, and as described in greater detail below, the resonance frequency of a piezoelectric element having a solid disk shape is generally proportional to its radiating surface area, which may be adjusted in size to effectively tune the resonance frequency of the piezoelectric element, and thus the resonance frequency of the assembled transducer. The transducer 10 may be tuned with the aid of simulation tools such as COMSOL Multiphysics® software. Sample simulations are described in greater detail in the Examples hereinbelow.
With reference to
The endcaps 14, 16 may be attached to the connecting ring 24 by an adhesive bond or by mechanical fasteners, which may include bolts or screws, rather than being attached to the piezoelectric element 12. In one embodiment, the endcaps 14, 16 may be directly attached to the connecting ring 24 and lack any attachment to the piezoelectric element 12. When an alternating current is applied to the electrodes 17, 19, the ring 24 expands and contracts radially along with the piezoelectric element 12 and transfers this motion (i.e., the expansion and contraction) to the endcaps 14, 16.
The use of connecting ring 24 may allow for a more mechanically robust coupling of the endcaps 14, 16 with the piezoelectric element 12. In particular, the attachment between the endcaps 14, 16 and the ring 24 may be more resilient than an adhesive bonding of the endcaps 14, 16 directly to the piezoelectric element 12, which might otherwise fail prematurely under shear stresses experienced during rapid alternating expansions and contractions of the piezoelectric element 12 when in use. The connecting ring 24 or a similar structure, including the dual connecting ring 40 described below, may be incorporated as appropriate into any of the embodiments of the flextensional transducers described herein.
With reference to
The resonance frequencies of the flextensional transducers described herein having disk-shaped piezoelectric elements may be tuned, even if only nominally, by adjusting the size of the radiating area of the corresponding piezoelectric element. For example, with reference to transducer 110, such tuning of the transducer may be achieved by adjusting the outer diameter of the piezoelectric element 12 so as to increase or decrease the areas of surfaces 12a and 12b. With reference to transducers including annular piezoelectric element 112, such as transducer 110, tuning of the transducer may be achieved by adjusting the inner and outer diameters of the piezoelectric element 112, and more specifically, increasing or decreasing the difference between these two diameters to as to vary the areas of annular surfaces 112a and 112b.
A light source 28 may be positioned adjacent or otherwise proximate one of the endcaps 14, 16 and aimed such that light may be transmitted through the flextensional transducer 110 in an axial direction and onto a target object, such as the skin or tissue of a medical patient, positioned adjacent the opposite endcap 14, 16. For example, as shown in
The addition of the aperture 26, in combination with the inserts 22, 23 of the endcaps 14, 16, promotes the transmission of light from the light source 28 through the flextensional transducer 110, as diagrammatically shown in
With any described embodiment herein having a transparent or translucent central insert, the transducer may operate to expose the target object to both ultrasound and light stimulation either simultaneously or in a rapidly alternating pattern, which may include pulsations. For tissue, the light exposure may cause a therapeutic treatment and/or may elicit a photoacoustic response from the tissue such that the resultant ultrasound wave is detectable using the transducer as a receiver.
Exposure to both optical and ultrasound energy may be advantageous in the treatment of various conditions of the skin and dermis, including acne, surgical and non-surgical wounds, melanomas, and other conditions and diseases. The simultaneous or successive application of ultrasound and therapeutic light treatment to the same tissue volume may be achieved without the use of a separate faceplate.
Simultaneous, sequential, or overlapping exposure to light and ultrasound stimulation using the flextensional transducers described herein may also be advantageous in the treatment of biofilms. The emitted ultrasound (i.e., ultrasonic energy) may cause an activation of bacteria (which increases the susceptibility of the bacteria to antibiotics), a degradation of the biofilm coating (which also increases the susceptibility of the bacteria to antibiotics), and an antibacterial effect if the light has the proper wavelength (typically in the blue to ultraviolet range, either broadband or narrowband). Ultrasound alone may exhibit an effect on biofilms, and may be advantageous particularly when the biofilm is located at a depth beyond that treatable by light. This effect may occur where there is scattering and absorption by overlying tissues or structures, such as breast implants or other implants, catheters, heart valves, and orthopedic devices for the hip, shoulder, or other body portions.
With reference to
When the annular piezoelectric element 112 is energized, it expands radially outward at its outer diameter and radially inward at its inner diameter, as shown diagrammatically by the single-headed arrows in
The flextensional transducer 120 may further include a coupling element 30a centrally disposed in the aperture 26. The coupling element 30 mechanically couples the large endcap 14 with the small endcap 122 and thereby increases the ultrasound energy directed to, or a force exerted on, a target object positioned adjacent the large endcap 14. In the representative embodiment, the coupling element 30 mechanically couples the insert 22 of large endcap 14 with the insert 123 of small endcap 122. The coupling element 30a may have a hollow construction with a trapezoidal-shaped cross-section defining a small end 32 abutting an internal surface of the small endcap 122 and a large end 34 abutting an internal surface of the large endcap 14. The inner diameter of the coupling element 30a tapers in a direction from the large end 34 to the small end 32. Additionally, the coupling element 30a, as well as the alternative coupling elements described below, may be formed of any suitable material, such as a polymer.
With reference to
With reference to
When the piezoelectric element 112 is energized and expands in its radial directions, as shown by the single-headed arrows in
With reference to
In alternative embodiments to
With reference to
The inner and outer rings 42, 44 of the dual connecting ring system 40 may be connected to the piezoelectric element 112 using the same methods described above with respect to connecting ring 24 of transducer 100. For example, the inner ring 42 may first be cooled so that it contracts radially, and may then be placed within the inner circumference of the piezoelectric element 112 and permitted to expand to form a friction connection therewith. The outer ring 44 may then be heated so that it thermally expands radially, and may then be placed around the outer circumference of the piezoelectric element 112 and permitted to cool and contract to form a friction connection therewith. As described above with respect to transducer 100, the endcaps 14, 122 may be coupled to the outer and inner rings 42, 44, respectively, by an adhesive bond or by mechanical fastening. The dual connecting ring system 40 may provide benefits similar to those described above with respect to connecting ring 24.
With reference to
With reference to
With reference to
With reference to
With reference to
The stationary support structures 50a, 50b, and 50c described herein in connection with various embodiments may be composed of any suitable material, such as a metal, a polymer, or a composite material, for example. Additionally, the stationary support structures 50a, 50b, 50c may be sufficiently massive to overcome the reaction mass of the corresponding piezoelectric element 112, 212 during movement thereof, and thereby remain stationary during operation of the transducer.
With reference to
With reference to
The resonance frequency characteristics of the transducer 230 shown in
As shown in
With reference to
The support structure 50b may include a passageway 56 through which conductive wire 58 may be passed for electrically connecting to the electrode 19 disposed externally to inner cavity 18a. The central aperture 60 may be formed with a diameter of sufficient size so that conductive wire 59 may be passed therethrough for electrically connecting to the electrode 17 disposed within the inner cavity 18a, without substantially interfering with the transmission of light through the aperture 60. The conductive wires 58, 59 may be coupled with an ultrasound generator circuit (e.g., waveform generator, amplifier) and a controller that are configured to control the operation of the transducer 240.
With reference to
The transducer 250 may include a single endcap 80 having a central inner section 80a and an angled outer section 80b. The endcap 80 may be formed with a material composition and method of manufacture similar to those described above with respect to endcaps 14, 16. While the endcap 80 is shown in this embodiment as a single integral piece formed entirely of a single material, in alternative embodiments the endcap 80 may be formed of multiple materials and may include transparent or translucent insert 22, as described below. The angled outer section 80b may be attached to the same radially inner surface of the connecting ring 70 as the piezoelectric element 212, such that an inner cavity 18a is defined collectively by the endcap 80, the connecting ring 70, and a convex curved surface of the piezoelectric element 212. Accordingly, the connecting ring 70 may be formed with a sufficient axial thickness such that the radially inner surface of the ring 70 may attach to the endcap 80 and the piezoelectric element 212 at locations that are axially spaced from one another.
When the curved piezoelectric element 212 is energized, its curved, bowl-like shape operates to couple both radial expansion motion and flexing motion of the piezoelectric element 212 to the endcap 80. Specifically, the radial expansion or extension motion of the piezoelectric element 212 is shown in
With reference to
With reference to
A central aperture 60 extends axially through the anchor portion 52c and opens to the inner cavity 18a. Additionally, the endcap 80 may include a transparent or translucent insert 22. A light source 28 may be positioned at a location adjacent to or within the central aperture 60 such that light may be transmitted through the support structure 50c and transducer 270 and onto a target object located adjacent an outer surface of the insert 22 of the endcap 80. In this manner, as described above, the target object may be exposed to both light and ultrasound stimulation simultaneously or intermittently.
The flextensional transducers 250 and 270 shown and described above in connection with
With reference to
The curvature of the bowl-shaped piezoelectric elements 212, 312, 412, and 512 visible in
With reference to
The controller 626 may include at least one processor 628, a memory 630, an input/output (I/O) interface 632, and a user interface 634 operatively coupled to the processor 628 of controller 626 in a known manner to allow a system operator to interact with the controller 626. The processor 628 may include one or more devices selected from microprocessors, micro-controllers, digital signal processors, microcomputers, central processing units, field programmable gate arrays, programmable logic devices, state machines, logic circuits, analog circuits, digital circuits, or any other devices that manipulate signals (analog or digital) based on operational instructions that are stored in the memory 630. Memory 630 may be a single memory device or a plurality of memory devices including but not limited to read-only memory (ROM), random access memory (RAM), volatile memory, non-volatile memory, static random access memory (SRAM), dynamic random access memory (DRAM), flash memory, cache memory, or any other device capable of storing digital information. Memory 630 may also include a mass storage device (not shown) such as a hard drive, optical drive, tape drive, non-volatile solid state device or any other device capable of storing digital information.
Processor 628 may operate under the control of an operating system that resides in memory 630. The operating system may manage controller resources so that instructions of computer program code embodied in one or more computer software applications residing in memory 630 may be executed by the processor 628. The processor 628 may execute the applications directly, in which case the operating system may be omitted.
The I/O interface 632 operatively couples the processor 628 to other components of the system 610, including the power supply 624 and circuitry 640 controlling the operation of the treatment head 612. The I/O interface 632 may include signal processing circuits that condition incoming and outgoing signals so that the signals are compatible with both the processor 628 and the components to which the processor 628 is coupled. To this end, the I/O interface 632 may include analog to digital (A/D) and/or digital to analog (D/A) converters, voltage level and/or frequency shifting circuits, optical isolation and/or driver circuits, and/or any other analog or digital circuitry suitable for coupling the processor 628 to the other components of the system 610.
The handpiece 616 and the flextensional transducer 618 may be operatively coupled by a cable to the power supply 624 and the controller 626. The power supply 624 may be configured to supply signals comprising an alternating-current voltage at a frequency that drives the flextensional transducer 618 at its resonant ultrasonic frequency. For example, the power supply 624 may supply an alternating current signal to the electrodes of the flextensional transducer 618 and thereby apply the electric field that drives the associated piezoelectric element 12 of the flextensional transducer 618 to vibrate so that the flextensional transducer 618 generates an acoustic signal. The power supply 624 may include a drive circuit configured to generate the alternating-current voltage to be inputted into the transducer 618 and a frequency controller configured to control a frequency of the alternating-current voltage. As described above, in one embodiment, the cartridge 616 may include a plurality of flextensional transducers 618 operating at similar or dissimilar resonant frequencies. In an embodiment where the cartridge 616 includes a plurality of transducers 618 operating at dissimilar resonant frequencies, the treatment system 610 may include a corresponding plurality of frequency controllers, each being assigned to a respective transducer 618 operating at a unique resonant frequency.
As described above, the performance characteristics of a flextensional transducer, such as its resonant frequencies, may be tuned by adjusting its physical configuration and the materials forming its components. Described below are a series of examples based on simulations performed using COMSOL Multiphysics® version 4.4, which is a software platform designed for modeling and simulating physics-based problems using finite element analysis. Also described below is simulation data demonstrating the relationship between transducer configuration (e.g., those configurations shown in the figures) and resonance frequency.
For Examples 1-44 described below, the following design parameters were held constant between all simulations: piezoelectric element thickness of 1 mm; endcap thickness of 0.25 mm; and endcap height of 0.5 mm (e.g., in
As used in the description of simulation data provided below, the term “maximum endcap displacement” refers to a maximum displacement of an endcap (e.g., at or near a inner section 14a, 16a, 80a, or 122a of endcaps 14, 16, 80, and 122, respectively) in an axial direction perpendicular to a plane defined by the piezoelectric element to which the endcap is attached.
In Examples 1-22 described below, each of the corresponding flextensional transducer configurations was modeled with a piezoelectric element having an outer diameter of 25.4 mm, or 1 inch.
In Example 1, a flextensional transducer having a construction similar to that of transducer 10 in
In Example 2, a flextensional transducer having a construction similar to that of transducer 100 in
In Example 3, a flextensional transducer having a construction similar to that of transducer 110 in
In Example 4, a flextensional transducer having a construction similar to that of transducer 120 in
In Example 5, a flextensional transducer having a construction similar to that of transducer 130 in
In Example 6, a flextensional transducer having a construction similar to that of transducer 140 in
In Example 7, a flextensional transducer having a construction similar to that of transducer 150 in
In Example 8, a flextensional transducer having a construction similar to that of transducer 160 in
In Example 9, a flextensional transducer having a construction similar to that of transducer 170 in
In Example 10, a flextensional transducer having a construction similar to that of transducer 180 in
In Example 11, a flextensional transducer having a construction similar to that of transducer 180 in
In Example 12, a flextensional transducer having a construction similar to that of transducer 190 in
In Example 13, a flextensional transducer having a construction similar to that of transducer 190 in
In Example 14, a flextensional transducer having a construction similar to that of transducer 200 in
In Example 15, a flextensional transducer having a construction similar to that of transducer 210 in
In Example 16, a flextensional transducer having a construction similar to that of transducer 220 in
In Example 17, a flextensional transducer having a construction similar to that of transducer 230 in
In Example 18, a flextensional transducer having a construction similar to that of transducer 240 in
In Example 19, a flextensional transducer having a construction similar to that of transducer 250 in
In Example 20, a flextensional transducer having a construction similar to that of transducer 260 in
In Example 21, a flextensional transducer having a construction similar to that of transducer 270 in
In Example 22, a flextensional transducer having a construction similar to that of transducer 280 in
In sample Examples 23-44 described below, each of the corresponding flextensional transducer configurations was modeled and simulated so as to yield a first resonance frequency of approximately 40 kHz±5%. Output data noted below for each transducer configuration includes a maximum endcap displacement and a piezoelectric element outer diameter corresponding to the respective transducer configuration at the stated first resonance frequency.
In Example 23, a flextensional transducer having a construction similar to that of transducer 10 in
In Example 24, a flextensional transducer having a construction similar to that of transducer 100 in
In Example 25, a flextensional transducer having a construction similar to that of transducer 110 in
In Example 26, a flextensional transducer having a construction similar to that of transducer 120 in
In Example 27, a flextensional transducer having a construction similar to that of transducer 130 in
In Example 28, a flextensional transducer having a construction similar to that of transducer 140 in
In Example 29, a flextensional transducer having a construction similar to that of transducer 150 in
In Example 30, a flextensional transducer having a construction similar to that of transducer 160 in
In Example 31, a flextensional transducer having a construction similar to that of transducer 170 in
In Example 32, a flextensional transducer having a construction similar to that of transducer 180 in
In Example 33, a flextensional transducer having a construction similar to that of transducer 180 in
In Example 34, a flextensional transducer having a construction similar to that of transducer 190 in
In Example 35, a flextensional transducer having a construction similar to that of transducer 190 in
In Example 36, a flextensional transducer having a construction similar to that of transducer 200 in
In Example 37, a flextensional transducer having a construction similar to that of transducer 210 in
In Example 38, a flextensional transducer having a construction similar to that of transducer 220 in
In Example 39, a flextensional transducer having a construction similar to that of transducer 230 in
In Example 40, a flextensional transducer having a construction similar to that of transducer 240 in
In Example 41, a flextensional transducer having a construction similar to that of transducer 250 in
In Example 42, a flextensional transducer having a construction similar to that of transducer 260 in
In Example 43, a flextensional transducer having a construction similar to that of transducer 270 in
In Example 44, a flextensional transducer having a construction similar to that of transducer 280 in
With the benefit of software simulation data such as that produced by Examples 1-44, described above, persons of ordinary skill in the art may design a flextensional transducer having a construction similar to that of any one of, or a combination of, the embodiments shown and described herein, and having performance characteristics that are optimal for a desired application.
For example, for an application where a flextensional transducer having a piezoelectric element with an outer diameter of 25.4 mm is preferred, and where the application requires maximum possible endcap deflection, the data of Examples 1-22 may be interpreted to indicate that the configuration of transducer 100 shown in
As another example, for an application where a flextensional transducer having a piezoelectric element with an outer diameter of 25.4 mm is preferred, and where the application requires maximum possible endcap deflection and a transducer having a compact configuration, the data of Examples 1-22 may be interpreted to indicate that the configuration of transducer 190 shown in
In another example, for an application where a flextensional transducer having a first resonance frequency of approximately 40 kHz is preferred, and where the application requires maximum possible endcap deflection, the data of Examples 23-44 may be interpreted to indicate that the configuration of transducer 180 shown in
In another example, for an application where a flextensional transducer having a first resonance frequency of approximately 40 kHz is preferred, and where the application requires maximum possible endcap deflection and a transducer having a compact configuration, the data of Examples 23-44 may be interpreted to indicate that the configuration of transducer 190 shown in
The data of Examples 1-44 described above may be interpreted in various additional ways by persons having ordinary skill in the art for purposes of designing a flextensional transducer having optimal performance characteristics for a desired application.
It will be understood that when an element is described herein as being “connected,” “coupled,” or “attached” to or with another element, it can be directly connected, coupled, or attached to the other element or, instead, one or more intervening elements may be present. In contrast, when an element is described as being “directly connected,” “directly coupled,” or “directly attached” to or with another element, there are no intervening elements present. When an element is described as being “indirectly connected,” “indirectly coupled,” or “indirectly attached” to or with another element, there is at least one intervening element present.
While the present invention has been illustrated by the description of specific embodiments thereof, and while the embodiments have been described in considerable detail, it is not intended to restrict or in any way limit the scope of the appended claims to such detail. The various features discussed herein may be used alone or in any combination. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope or spirit of the general inventive concept.
Number | Date | Country | |
---|---|---|---|
61921735 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14585508 | Dec 2014 | US |
Child | 15919517 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15919517 | Mar 2018 | US |
Child | 17464977 | US |