This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2005-142947, filed on May 16, 2005, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to a liquid crystal display, and, more particularly, to a liquid crystal display driven in a frame inversion mode, which constrains flickers associated with the frame inversion drive.
2. Description of the Related Art
A liquid crystal display is provided with a liquid crystal layer between a common electrode and pixel electrodes disposed on a matrix, applies a voltage corresponding to an image signal between both electrodes to change a transmission factor of the liquid crystal layer, and transmits light from a back light through the liquid crystal layer to perform gradation display. In this case, in order to prevent burn-in of a liquid crystal panel and deterioration of a liquid crystal material due to movement of ion components in the liquid crystal material toward one electrode through its long-time driving, the liquid crystal layer is driven by alternately inverting the polarity of the voltage applied to the liquid crystal layer. A mode inverting the polarity for each frame is referred to as a frame inversion mode, and a mode inverting the polarity for each line is referred to as a line inversion mode.
On the other hand, it is proposed to use a ferroelectric material as the liquid crystal material to enhance a response speed of the liquid crystal material to the applied voltage. For example, this is described in Japanese Patent Application Laid-Open Publication No. 2004-219938. In such a liquid crystal display, writing is performed by applying a voltage with only one polarity to the liquid crystal material; the back light is turned on in the state of holding the voltage after the writing; and subsequently, an inversion voltage is applied for erasing. Color display can be achieved through a field sequential color mode by displaying a RGB frame image in a time-sharing manner using RGB LED devices as the back-light light source without using a color filter.
In a conventional frame inversion mode, the polarity is inverted for each frame in the voltage applied between the pixel electrode and the common electrode. In this case, due to a field through voltage caused by driving a gate line, variations are generated in the voltage applied between the electrodes, which fluctuates the luminance values of the frames, and it is problematic that flickers become visible. A source voltage is applied to the pixel electrode while driving the gate line to H-level and by making a transistor, i.e., a switch element between a source line and the pixel electrode conductive, however, when the gate line is returned to L-level, the capacity coupling due to the capacity between the gate and source of the transistor fluctuates (reduces) the voltage of the pixel electrode connected to the source of the transistor. This is the field through voltage.
Due to the field through voltage, in a frame driven to the positive polarity, the voltage of the pixel electrode is reduced so as to reduce the voltage between the pixel electrode and the common electrode, and in a frame driven to the negative polarity, the voltage of the pixel electrode is reduced so as to increase the voltage between the pixel electrode and the common electrode. Therefore, the voltage of the common electrode must be adjusted such that the same inter-electrode voltages are generated in the frames of both polarities.
However, partially because variations exist in the field through voltage of each panel, the adjustment of the common electrode voltage to the appropriate level has limitations. Therefore, the flicker problem is left unsolved in the case of the frame inversion mode.
It is therefore the object of the present invention to provide a liquid crystal display that can constrain flickers.
In order to achieve the above object, according to a first aspect of the present invention there is provided a liquid crystal display having a plurality of pixel electrodes disposed on a matrix, a common electrode provided oppositely to the pixel electrodes, a liquid crystal layer provided between the pixel electrodes and the common electrode, and a back light that supplies light transmitting through the liquid crystal layer, the liquid crystal display comprising a control circuit that applies a drive voltage corresponding to image data between the pixel electrodes and the common electrode such that the polarity of the drive voltage is inverted for each predetermined period, wherein, within a frame period, the control circuit applies a drive voltage of a first polarity in a first period, applies a drive voltage of a second polarity opposite to the first polarity, which is the same voltage as the drive voltage of the first polarity, in a second period after the first period, and controls such that the back light is turned off in the first period and turned on in the second period.
According to the first aspect, since the back light is turned on in the second period when the drive voltage of the same polarity is applied between the electrodes in each frame, flickers caused by the field through voltage, etc. can be constrained. Since the liquid crystal layer is already driven in first period and the movement of the liquid crystal layer is established, the driving is achieved in the second period without response delay of the crystal layer and, therefore, it is suitable for the highly accurate gradation display to turn on the back light in the second period.
To achieve the above object, according to a second aspect of the present invention there is provided a liquid crystal display having a plurality of pixel electrodes disposed on a matrix, a common electrode provided oppositely to the pixel electrodes, a liquid crystal layer provided between the pixel electrodes and the common electrode, and a back light that supplies light transmitting through the liquid crystal layer, the liquid crystal display comprising a control circuit that performs drive between the pixel electrodes and the common electrode sequentially with drive voltages of a plurality of colors within a frame period, wherein, when performing the driving between the electrodes with the drive voltage of each color, the control circuit applies a drive voltage of a first polarity in a first period, applies a drive voltage of a second polarity opposite to the first polarity, which is the same voltage as the drive voltage of the first polarity, in a second period after the first period, and controls such that the back light is turned off in the first period and turned on in the second period.
According to the second aspect, in the field sequential color display mode that sequentially drives the liquid crystal layer with the drive voltages for a plurality of colors to enable the color display, the drive voltage of the first polarity is applied in the first period of the drive period of each color; the drive voltage of the reverse polarity is applied in the subsequent second period; the back light is turned on in the second period and turned off in the first period; and therefore, the drive voltage during turning on the back light is the same in each frame, which can constrain the generation of the flickers due to the inverse drive of the crystal layer.
In the first and second inventions, a preferred aspect includes a plurality of gate lines, a plurality of source lines intersecting therewith, and a switch provided between the source line and the pixel electrode and controlled by the gate line, and in the second period, the plurality of gate lines are scanned sequentially to apply the drive voltage to the pixel electrode from the source line. Since the writing is performed in the second period, although a state of applying the drive voltage of the first polarity and a state of applying the drive voltage of the second polarity are illuminated by the backlight at the pixel electrode of the gate line of the lower end portion, the same state is always illuminated among frames and therefore, the flickers are constrained. Flickers are constrained by inversely driving a liquid crystal layer.
The above and other objects, aspects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Description will hereinafter be made of embodiments of the present invention with reference to drawings. However, the technical scope of the present invention is not limited to these embodiments and covers contents described in claims and equivalents thereof.
The control circuit 20 inputs display data Data and a synchronizing signal Sync and controls driving of a source driver 22 and a gate driver 24. The gate driver 24 drives the gate lines L1 to L768 sequentially depending on a gate drive signal to make the transistor TFT of each pixel conductive. On the other hand, the source driver 22 applies a source voltage corresponding to image data PD to each source line D1 to D1024 depending on the image data PD and a source drive signal SD in synchronization with the drive of the gate lines. The control circuit 20 performs the drive control by a voltage Vcom of the common electrode and the lighting control by a voltage VBL of the back light 3. In this way, a drive voltage is applied between each pixel electrode and the common electrode correspondingly to the image data.
In a second frame period FL 2 subsequent to the first frame period FL1, the gate driver 24 sequentially drives and scans the gate lines in the same way and, at the same time, the source driver 22 applies a negative-polarity source voltage to each source line and the common electrode is driven with a negative-polarity voltage Vcom. In this way, each pixel electrode PX is driven sequentially with the negative-polarity voltage (a dotted line of
In the conventional frame inversion mode, the back light is continuously turned on. Therefore, in the first frame period FL1, the gradation display is performed in the state of driving the liquid crystal molecules with the positive polarity and, in the second frame period FL2, the gradation display is performed in the state of driving the liquid crystal molecules with the negative polarity. Therefore, when the same gradation display is continued for a plurality of frames, the positive-polarity frame and the negative-polarity frame may have different gradation values, which cause flickers.
As shown in
In the first embodiment of
In this way, in the first embodiment, instead of the frame inversion drive that inverts the polarity of the drive voltage for each frame, the polarity of the drive voltage is inverted within the frame period. That is, the pixels are driven with a first polarity in the first half of frame periods FL1, FL2; the pixels are driven by the same voltage with a second polarity that is an inverse polarity of the first polarity in the second half of frame periods FL1, FL2; and the back light is turned on only in the period of driving with the second polarity. The negative-polarity drive may be performed in the first half period T1 of the frame period and the positive-polarity drive may be performed in the second half period T2. In this case, the back light is controlled to be turned on in the positive-polarity drive period T2. If sufficient time can be utilized and sufficient luminance can be obtained, the back light may be turned on during the second period T2 except the gate line scanning period.
In the case of the field sequential mode, since the polarity of the applied voltage is inverted for each frame when using the frame inversion mode, if the same gradation is displayed continuously, the displayed gradation value is fluctuated because the polarity is varied in each frame, which causes flickers.
In the frame period FL1, the gate electrodes are scanned to change all the pixels from the drive state of the negative-polarity voltage of B to the drive state of the positive-polarity voltage of R in the first half of an initial period R, and the gate electrodes are scanned again to change all the pixels to the drive state of the negative-polarity voltage of R in the second half of the initial period R. Accordingly, the voltage Vcom of the common electrode is switched between the positive polarity and the negative polarity. The back light is turned off in the first half of the period R and the back light is turned on in the second half of the period R. Therefore, the R-plane image is displayed in the second half of the period R. In the second half, the back light is turned on when some pixels scanned first are in the drive state of the negative-polarity voltage, and the back light is turned on when some pixels scanned last are in the drive state of the positive-polarity voltage; and the back light is turned on when the rest of the pixels are in the mixed drive state of the positive-polarity and negative-polarity voltages.
Although the polarity of voltage applied to the liquid crystal molecules of each pixel is inverted by the pixel electrode drive and the common electrode drive associated with the gate line scanning in the second half of the period R, since the liquid crystal molecules have been already driven in the first half by the same voltage that is simply inverted in the polarity, the liquid crystal molecules are not moved and only the electric charge thereof is inverted. Therefore, the liquid crystal molecules have no delay motion due to the polarity inversion.
In the next period G of the frame period FL1, as is the case with the period R, the gate electrodes are scanned to change all the pixels from the drive state of the negative-polarity voltage of R to the drive state of the positive-polarity voltage of G in the first half, and the gate electrodes are scanned again to change all the pixels to the drive state of the negative-polarity voltage of G in the second half of the period G. Accordingly, the voltage Vcom of the common electrode is switched between the positive polarity and the negative polarity. The back light is turned off in the first half of the period G and the back light is turned on in the second half of the period G. Therefore, the G-plane image is displayed in the second half of the period G. A subsequent period B is the same as the above description.
In the next frame period FL2, the gate lines, the source lines, the pixel electrodes, and the common electrode are driven and the RGB back lights are turned on as is the case with the frame period FL1. That is, the frame inversion mode is not employed; the same voltage polarity is applied to the pixels in the periods R, G, and B within each frame period; and in the example of
As shown in the gate electrode VG of
In the second embodiment, since the voltage applied states of different colors are mixed in the first half of each period R, G, and B, the back lights are turned off in the first half, and since the voltage applied state of the same color is maintained in the second half (although the polarity is different), the back light of that color is turned on in the second half. The proportion of the lighting of the back light is the same as the conventional example of
As described above, in the field sequential mode, the generation of flickers can be constrained while preventing the deterioration of the liquid crystal material by performing the polarity inversion drive in the drive period of each color.
According to the present invention there can be provided a liquid crystal display that constrain the generation of flickers associated with the voltage drive in both positive and negative polarities.
Number | Date | Country | Kind |
---|---|---|---|
2005-142947 | May 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6674421 | Mori et al. | Jan 2004 | B2 |
6873311 | Yoshihara et al. | Mar 2005 | B2 |
7221344 | Shimomaki | May 2007 | B2 |
7427974 | Asao et al. | Sep 2008 | B2 |
20050190138 | Jung | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
2000180820 | Jun 2000 | JP |
2004-219938 | Aug 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20060256069 A1 | Nov 2006 | US |