Information
-
Patent Grant
-
6371777
-
Patent Number
6,371,777
-
Date Filed
Thursday, February 10, 200025 years ago
-
Date Issued
Tuesday, April 16, 200223 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Sircus; Brian
- Hyeon; Hae Moon
Agents
-
CPC
-
US Classifications
Field of Search
US
- 439 155
- 439 923
- 439 680
- 439 247
- 439 248
- 439 152
-
International Classifications
-
Abstract
A quickly separable and disconnectable electrical connector device (10) comprises a pin section (14) having a socket receptacle (40) and a socket section (16). A mounting flange (18) is mounted about the socket receptacle and is coupled to a supporting structure (26) on the socket section. A force member configured as a ring (32) surrounds the pin engageable end of socket receptacle (40) and is adapted to abut the pin section. An adjustable spring (28) on the socket receptacle urges force member (32) against pin section (14), and is located adjacent to one side of flange (18) for reducing the force required to separate the pin and socket sections from one another and thereby for aiding separation therebetween.
Description
TECHNICAL FIELD OF THE INVENTION
The invention relates to pin and socket connector devices for providing a temporary, easily severed, multi-channeled data connection between two objects, such as a satellite and a launch vehicle.
BACKGROUND OF THE INVENTION
In the aerospace industry it is often necessary to provide an electrical data and/or power connection between two structures that can be easily and quickly separated from each other at the proper time (e.g., upon the launch of a satellite or stage separation of a launch vehicle). This typically takes the form of a two-part connection assembly comprising a unit having pins and a unit having a like number of sockets. By way of an example, a satellite may require a 41-pin connection between stages of a launch vehicle (or to an adjoining satellite in a “stacked” configuration) until the moment of release. Such a connector must mate easily, stay in place and then release easily.
Typically in such units, the pin size is standardized to strict military specifications. Conversely, the military standards for sockets allow a wide variety in retention force. Therefore, for each connector to connector assembly, the individual sockets may exert differing amounts of drag against the pins during separation. For instance, in a common configuration in which the sockets average about 1.5 pounds of drag each, there is considerable variation between sockets from that average (perhaps between 4 and 18 ounces of force). Moreover, the force needed to uncouple the 41 sockets in the above example can easily vary between 164 and 738 ounces of force.
Because of the force required to disengage the connector assembly, springs are typically used to counterbalance some of that force. For instance, if a certain pin and socket combination required 78 pounds of force to disengage, a spring exerting 75 pounds of force might be included so that the actual separation force would be an acceptable 3 pounds. This has presented a problem with prior art devices, due to the above-noted variance in the sockets. One solution has been to package the “pin connector” and the “socket connector” as a matched pair, with an adjustment spring on the pin connector. In such devices, the spring tension is factory-adjusted to compensate for the particular socket connector being employed. This has the disadvantage of creating an otherwise-standardized set of pins that mates only with a particular set of sockets.
Another problem with prior art units is that they are prone to misalignment upon initial mating (e.g., when mounting the satellite to the launch vehicle). Because the two connector units are often rigidly attached to their respective parts (one to the launch vehicle, one to the satellite) it is difficult to maneuver the smaller device (the satellite in this example) so that the pins and sockets precisely mesh. Thus it is advantageous to have one of the connectors capable of limited movement to match the orientation of the other connector. One solution that has been employed is the use of spring-loaded adjustable screws which movably mount the connector to the structure. Unfortunately, this has been found to result in a number of problems. First, the user must take great pains to mount the device and properly tighten the screws (too tight and the spring is so compressed that there is no “play”. Second, it takes up valuable space in applications where space is scarce (the additional area necessary for the springs increases geometrically with the number of adjustable connectors). Thirdly, to avoid electromagnetic interference, a backshaft is often necessary. Unfortunately, to give the user access to adjust the springs of the spring-loaded screws, a backshaft is not practical.
A further problem with the prior art is that if the pins are rotated even slightly relative to the sockets, the device will either not mate properly or the pin ends may be bent, causing device failure.
What is needed is a pin and socket connector device in which the pin section can be used with a number of socket sections, that allows for some misalignment upon mating, and prevents damage due to rotation of one part relative to another prior to mating, without the above noted problems.
SUMMARY OF THE INVENTION
In a first embodiment, the present invention provides a quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source. A pin section is electrically connectable to the first signal source at the first station. A socket section is electrically connectable to the second signal source at the second station. The pin section includes a housing which supports a plurality of pins held within a pin receiving body or pin shaft. The socket section includes a housing which supports a plurality of sockets pins held within a socket receiving body or socket shaft. The sockets are adapted to receive the pins in an electrically conductive relationship. A force member, preferably embodied as a ring integral with the socket section housing, surrounds the pin engaging end of the socket shaft (socket receiving body) for applying an ejection force against the pin section. An adjustable spring on the socket shaft urges the force member or ring against the pin section. When the pin section is urged against the socket section with a force sufficient to overcome the adjustable spring, the pins are inserted to the sockets to complete the electrical connection therebetween, and the force needed to separate the pin section from the socket section is reduced by the force of the adjustable spring bearing against the pin section.
In a second embodiment, the pin shaft or pin receiving body further comprises at least one raised key and the socket shaft or socket receiving body further comprises at least one charnfer for receiving at least the one raised key, to prevent misalignment of the socket section with the pin section. A force member surrounds the pin engaging end of the socket shaft and is disposed to abut against the pin section.
In a third embodiment, the socket shaft extends through an aperture in a mounting flange which is coupled to the second station. An alignment spring, located on the socket shaft, bears against the mounting flange. The aperture is sized to be larger than the socket shaft to allow movement of the socket shaft, as restrained by the alignment spring.
In other embodiments, the adjustable spring is a compression spring which bears against the force member at one end, and an adjustment means at the other end of the adjustable spring varies the force exerted by the adjustment spring against the force member. The socket shaft further comprises a threaded portion and the adjustment means is a threaded nut wherein the adjustment means engages the threaded portion of the socket shaft and the adjustable spring may be adjusted by rotating the adjustment means about the socket shaft. A socket shaft passes through a flange extending out from both sides, and the alignment spring is located adjacent to the pin side of the mounting flange, and an adjustable spring on the socket shaft urges the force member against the pin section. Here, the adjustable spring is located adjacent to the pin or socket side of the flange and the adjustable spring and the alignment spring are coaxial.
These and other features and advantages of this invention will become further apparent from the detailed description and accompanying figures that follow. In the figures and description, numerals indicate the various features of the invention, like numerals referring to like features throughout both the drawings and the description.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is an isometric view of the In Flight Disconnect connector constructed according to the present invention.
FIG. 1
a
is a view taken along line
1
a
—
1
a
of FIG.
1
.
FIG. 2
is an isometric view of the socket section (
16
) of the present invention.
FIG. 3
is a top plan view of the socket section (
16
) of the present invention.
FIG. 4
, is an isometric view of the pin section (
14
) of the present invention.
FIG. 5
is a top plan view of the pin section (
14
) of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
FIG. 1
shows a mated connector
10
constructed according to the present invention. The mated connector
10
includes a pin section
14
and a socket section
16
.
In typical aerospace applications, either the pin section
14
or the socket section
16
may be connected to a lunch vehicle structure (not shown), with the other section connected to a release object (not shown). In the preferred embodiment shown, the socket section
16
is connected to the lunch vehicle structure. Pin section
14
is coupled to a first station, having a first signal source, by a cable assembly
14
a
. Socket section
16
is coupled to a second station, having a second signal source, by a cable assembly
16
a.
The socket section
16
(see also
FIG. 2
) includes a mounting flange
18
for mounting the socket section
16
to a structure such as a lunch vehicle or release object. The mounting flange
18
may be attached in any number of ways, such as welding or bolting; however it has been found that four attachment screws, such as attachment screw
22
, provides satisfactory results. In a preferred embodiment, four attachment apertures
24
are also provided to receive the four attachment screws
22
. The socket section
16
has a central plug housing
26
which passes through a central aperture (not shown) in the mounting flange
18
.
The socket section
16
has an adjustable spring
28
which provides a force pulling against the drag created by the mating of the pin section
14
and the socket section
16
, as discussed below. The adjustable spring
28
is a compression spring, in a preferred embodiment rated at 60-70 pounds, which is resisted on one end by a front mating ring or force member
32
, and on the other end by an adjustment ring
34
. The front mating ring
32
is capable of moving laterally along the central plug housing
26
, over a distance of about {fraction (3/16)} inch in a preferred embodiment. This lateral movement is allowed and restrained by one or more pins, such as pin
38
in the front mating ring
32
, which rides in a lateral groove (not shown) in the central plug housing
26
beginning about ⅛ inch from the front mating ring end of the central plug housing
26
and extending towards the mounting flange
18
for a distance of about {fraction (3/16)} inch. In a preferred embodiment, three pins evenly spaced around the front mating ring
32
and three corresponding grooves in the central plug housing
26
are provided. As depicted in
FIG. 1
, housing
26
is provided with external threads
33
.
The adjustment ring
34
has a threaded interior
36
(not shown) which are threaded along corresponding threads
33
in the central plug housing
26
. In other embodiments, the adjustment ring
34
may not be threaded, but rather use a cam, detent, set screws, or other means with a locking mechanism to adjust and set the tension on the adjustment spring
28
. In a preferred embodiment, the adjustable spring
28
may be compressed or released by turning the adjustment ring
34
. A locking pin
42
is provided for locking the adjustment ring
34
in place, once it is threaded to the desired position (i.e., compressing the adjustable spring
28
so that the desired amount of force is exerted against the front mating ring or force member
32
).
The socket section
16
also has an alignment spring
44
, for compensating for misalignment of the socket section
16
and pin section
14
during mating. In a preferred embodiment, the alignment spring
44
is a compression spring rated at about 60 pounds, which is resisted at one end by the mounting flange
18
and at the other end by the adjustment ring
34
. Although in this preferred embodiment the alignment spring
44
is shown on the same side of the mounting flange
18
as the adjustment spring
28
, in other embodiments the alignment spring
44
may be on the opposite side of the mounting flange
18
. In a preferred embodiment, the diameter of the aperture (not shown) in the mounting flange
18
is slightly larger than that of the central plug housing
26
, such that a slight amount of “play”=
0
may be encountered. The alignment spring
44
as well as the adjustment spring
28
provide additional force when mounting the pin section
14
into the socket section
16
. For instance, in an embodiment suitable for aerospace applications, the central plug housing
26
has a diameter between about ¾ and 2.0 inches, while the aperture has a diameter between about {fraction (13/16)} and 2{fraction (1/16)} inches. In such an embodiment, the mounting flange
18
will be attached to the structure, while the pin section
14
will be attached to the release load. Should any misalignment occur on mating, the socket section
16
will have some “play” in that it can swivel about the aperture in the mounting flange
18
enough to accommodate minor misalignment.
FIG. 3
shows the socket section
16
schematically depicted, showing the attachment apertures
24
, mounting flange
18
, front mating ring
32
, and central plug housing
26
also shown in
FIGS. 1 & 2
. The socket section
16
has a socket shaft or socket retaining body
40
, a socket surface
46
, which is essentially a raised platform
52
having a plurality of socket apertures
48
which each contain an individual electrical contact (not shown). The central plug housing
26
forms a wall surrounding the raised platform
52
with approximately {fraction (1/82)} inch of space between the socket surface
46
and the central plug housing
26
. In a preferred embodiment, the central plug housing
26
extends approximately ¾ inch above the mounting flange
18
, while the socket surface
46
extends only approximately ¼ inch above the mounting flange
18
. The space thus formed is designed to receive the pin section
14
(see FIGS.
4
-
5
). The central plug housing
26
defines one or more chamfers, such as master chamfer
54
-
a
and chamfers
54
-
b
,
54
-
c
, and
54
-
d
and
54
-
e
. To insure proper mating orientation, master chamfer
54
-
a
is larger than chamfers
54
-
b
,
54
-
c
, and
54
-
d
and
54
-
e
. As discussed below, these will receive mating keys from the pin section
14
.
The pin section
14
includes a pin mounting flange
62
for mounting the pin section
14
to a structure such as a launch vehicle or release object (in a preferred embodiment, the pin section
14
will be mounted to a release object). The pin mounting flange
62
may be attached in any number of ways such as welding or bolting; however it has been found that four attachment screws (not shown) provide satisfactory results. Thus in a preferred embodiment, four attachment apertures
64
are provided through which bolts (not shown) may be used to attach the pin section
14
to a structure. The pin section
14
has a pin central shaft or pin receiving body
66
which passes through a central aperture (not shown) in the pin mounting flange
62
. Standoffs, such as standoffs
68
, are mounted to the pin mounting flange
62
and provide reactive surfaces for the front mating ring or force member
32
of the socket section
16
. In a preferred embodiment, the pin central shaft
66
extends about one inch from the pin mounting flange
62
, and the standoffs
68
extend about ⅛ inch from the pin mounting flange
62
.
The pin central shaft
66
includes one or more keys (in a preferred embodiment, five keys are provided), such as master key
72
-
a
and keys
72
-
b
,
72
-
c
,
72
-
d
, &
72
-
e
. The keys are all of approximately the same size, except for master key
72
-
a
which is larger than the others. To prevent misalignment in mating, master key
72
-
a
will fit into master chamfer
54
-
a
making certain that the orientation of the pin section
14
and the socket section
16
are correct relative to each other. In alternative embodiments (not shown), the keys may be positioned on the central plug housing
26
and the chamfers on the pin central shaft
66
.
The pin section
14
also has a plurality of pins
74
, the number of which will match the number of sockets in the socket surface
46
. In an embodiment suitable for aerospace use, 41 pins and sockets is one of many standard pin and socket configurations.
In operation, the user or manufacturer will first adjust the pressure on adjustable spring
28
for the standard military pin specification by turning the adjustment ring
34
until the needed counter-force is achieved. The pin section
14
and socket section
16
will then be attached and wired to their respective structures. Then the socket section
16
may be installed in a launch or release object, with the ability to receive and mate with any pin section meeting the same release force specifications. The launch structure and release object may now be mated. Any minor misalignment will be compensated for by the “play” allowed by the alignment spring
44
. Rotational alignment will be insured by the master key
72
-
a
and keys
72
-
b
,
72
-
c
and
72
-
d
mating with master chamfer
54
-
a
and chamfers
54
-
b
,
54
-
c
, and
54
-
d
, respectively. Friction of the pins within the sockets will hold the mated connector
10
in the mated condition until release. For example, in a standard aerospace application, a
41
pin connection will exert about 20 pounds of drag. The adjustable spring
28
will be set for about 15 pounds of force, reducing the required separation force to about 5 pounds.
Having now described the invention in accordance with the requirements of the patent statutes, those skilled in the art will understand how to make changes and modifications in the present invention to meet their specific requirements or conditions. Such changes and modifications may be made without departing from the scope and spirit of the invention as set forth in the following claims.
Claims
- 1. A quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source, said connector device comprising:a pin section electrically connectable to said first signal source and having: a pin shaft having a socket engageable end and a first station end, said first station end being connectable to said first station; a plurality of pins, located within said pin shaft, said pins being accessible from said socket engageable end and electrically connectable to said first signal source; a socket section electrically connectable to said second signal source and having: a socket shaft having a pin engageable end and a second station end, said second station end being connectable to said second station; a plurality of sockets, located within said socket shaft, said sockets being accessible from said pin engageable end and electrically connectable to said second signal source, and said sockets being configured to enable reception of said pins in an electrically conductive relationship; a force member surrounding the pin engageable end of the socket shaft for applying ejection force against the pin section; and an adjustable spring on said socket shaft urging said force member against said pin section; wherein, when said pin section is urged against said socket section with force sufficient to overcome said adjustable spring, the pins are inserted to the sockets completing the electrical connection therebetween, and the force needed to separate the pin section from the socket section is reduced by the force of said adjustable spring bearing against said pin section.
- 2. A quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source, said connector device comprising:a pin section electrically connectable to said first signal source and having: a pin shaft having a socket engageable end and a first station end, said first station end being connectable to said first station; a plurality of pins, located within said pin shaft, said pins being accessible from said socket engageable end and electrically connectable to said first signal source; a socket section electrically connectable to said second signal source and having: a socket shaft having a pin engageable end and a second station end, said second station end being connectable to said second station; a plurality of sockets, located within said socket shaft, said sockets being accessible from said pin engageable end and electrically connectable to said second signal source, and said sockets being configured to enable reception of said pins in an electrically conductive relationship; a force member surrounding the pin engageable end of the socket shaft for applying ejection force against the pin section; and an adjustable spring on said socket shaft urging said force member against said pin section, said adjustable spring comprising a compression spring bearing against said force member at one end; an adjustment means at the other end of said adjustable spring for varying the force exerted by said adjustment spring against said force member; wherein, when said pin section is urged against said socket section with force sufficient to overcome said adjustable spring, the pins are inserted to the sockets completing the electrical connection therebetween, and the force needed to separate the pin section from the socket section is reduced by the force of said adjustable spring bearing against said pin section.
- 3. The quickly separable and disconnectable electrical connector device of claim 2 wherein said socket shaft further comprises a threaded portion and said adjustment means comprises a threaded nut, wherein said adjustment means engages said threaded portion of said socket shaft and said adjustable spring may be adjusted by rotating said adjustment means about said socket shaft.
- 4. A quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source, said connector device comprising:a pin section electrically connectable to said first signal source and having: a pin shaft having a socket engageable end and a first station end, said first station end being connectable to said first station; a plurality of pins, located within said pin shaft, said pins being accessible from said socket engageable end and electrically connectable to said first signal source; a socket section electrically connectable to said second signal source and having: a socket shaft having a pin engageable end and a second station end, said second station end being connectable to said second station; a plurality of sockets, located within said socket shaft, said sockets being accessible from said pin engageable end and electrically connected to said second signal source, and said sockets being configured to enable reception of said pins in an electrically conductive relationship; a mounting flange disposed about said socket shaft and coupled to a supporting structure; a force member surrounding said pin engageable end of said socket shaft for abutting said pin section; an adjustable spring on said socket shaft urging said force member against said pin section, said adjustable spring being located adjacent to one side of said flange for reducing the force required to separate said pin and socket sections from one another and thereby for aiding separation therebetween; and said pin shaft further comprises at least one raised key and said socket shaft further comprises at least one chamfer for receiving said at least one raised key, to prevent misalignment of said socket section with said pin section.
- 5. A quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source, said connector device comprising:a pin section electrically connected to said first signal source and having: a pin shaft having a socket engageable end and a first station end, said first station end connectable to said first station; a plurality of pins, located within said pin shaft, said pins being accessible from said socket engageable end and electrically connectable to said first signal source; a socket section electrically connectable to said second signal source and having: a socket shaft having a pin engageable end and a second station end, said second station end being connectable to said second station; a plurality of sockets, located within said socket shaft, said sockets being accessible from said pin engageable end and electrically connectable to said second signal source, and said sockets being configured to enable reception of said pins in an electrically conductive relationship; a mounting flange disposed about said socket shaft and coupled to a supporting structure; a force member surrounding said pin engageable end of said socket shaft for abutting said pin section; an adjustable spring on said socket shaft urging said force member against said pin section, said adjustable spring being located adjacent to one side of said flange for reducing the force required to separate said pin and socket sections from one another and thereby for aiding separation therebetween; and said socket shaft further comprises at least one raised key and said pin shaft further comprises at least one chamfer for receiving said at least one raised key, to prevent misalignment of said socket section with said pin section.
- 6. The quickly separable and disconnectable electrical connector device of claim 5 wherein said at least one raised key comprises at least two raised keys and said at least one chamfer comprises at least two chamfers corresponding to said at least two raised keys.
- 7. A quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source, said connector device comprising:a pin section electrically connected to said first signal source and having: a pin shaft having a socket engageable end and a first station end, said first station end connectable to said first station; a plurality of pins, located within said pin shaft, said pins being accessible from said socket engageable end and electrically connectable to said first signal source; a socket section electrically connectable to said second signal source and having: a socket shaft having a pin engageable end and a second station end, said second station end being connectable to said second station; a plurality of sockets, located within said socket shaft, said sockets being accessible from said pin engageable end and electrically connectable to said second signal source, and said sockets being configured to enable reception of said pins in an electrically conductive relationship; a mounting flange disposed about said socket shaft and coupled to a supporting structure; a force member surrounding the pin engageable end of the socket shaft for abutting the pin section; an adjustable spring on said socket shaft urging said force member against said pin section, said adjustable spring being located adjacent to the pin side of said flange for aiding separation between said pin and socket sections; and said socket shaft further comprises at least two raised keys and said pin shaft further comprises at least two chamfers which correspond to and are disposed to receive said at least two raised keys, to prevent misalignment of said socket section with said pin section, wherein one of said raised keys is differently sized from the remaining raised keys, one of said chamfers is differently sized from the remaining chamfers, and said differently sized chamfer is configured to enable reception of said differently sized raised key.
- 8. A quickly separable and disconnectable electrical connector device for transmitting a plurality of electrical signals between a first station having a first signal source and a second station having a second signal source, said connector device comprising:a pin section electrically connected to said first signal source and having: a pin shaft having a socket engageable end and a first station engageable end, said first station engageable end being connectable to said first station; a plurality of pins, located within said pin shaft, said pins being accessible from said socket engageable end and electrically connectable to said first signal source; a socket section electrically connected to said second signal source and having: a socket shaft having a pin engageable end and a second station engageable end, said second station engageable end being connectable to said second station; and a plurality of sockets, located within said socket shaft, said sockets being accessible from said pin engageable end and electrically connectable to said second signal source, and said sockets being configured to enable reception of said pins in an electrically conductive relationship; said socket section further comprising: a mounting flange defining an aperture surrounding the socket shaft and having a means for mounting said mounting flange to said second station, said socket shaft passing though said aperture; and an alignment spring located on said socket shaft and bearing against said mounting flange; wherein the aperture is larger than the socket shaft to allow movement of the support shaft as restrained by the alignment spring.
- 9. The quickly separable and disconnectable electrical connector device of claim 8 wherein the mounting flange has two sides, a pin side and a second station side, with the socket shaft passing through the flange and extending out from both sides, and the alignment spring being located adjacent to the pin side of the mounting flange, said socket section further comprising:a force member surrounding the pin engageable end of the socket shaft for abutting the pin section; and an adjustable spring on said socket shaft urging the force member against said pin section, the adjustable spring being located adjacent to the pin side of the flange; wherein the adjustable spring and the alignment spring are coaxial.
- 10. The quickly separable and disconnectable electrical connector device of claim 8 wherein the mounting flange has two sides, a pin side and a second station side, with the socket shaft passing through the flange and extending out from both sides, and the alignment spring being located adjacent to the second station side of the mounting flange, said socket section further comprising:a force member surrounding the pin engageable end of the socket shaft for abutting the pin section; and an adjustable spring on said socket shaft urging the force member against said pin section, the adjustable spring being located adjacent to the pin side of the flange; wherein the adjustable spring and the alignment spring are coaxial.
- 11. The quickly separable and disconnectable electrical connector device of claim 4 wherein said at least one raised key comprises at least two raised keys and said at least one chamfer comprises at least two chamfers corresponding to said at least two raised keys.
- 12. A quickly separable and disconnectable electrical connector device comprising:a pin section including a plurality of pin contacts located within a pin receptacle having a socket engageable end; a socket section including a plurality of socket contacts located within a socket receptacle and configured to enable reception of said pin contacts in an electrically conductive relationship therebetween; a mounting flange mounted about said socket receptacle and coupled to a supporting structure; a force member surrounding said pin engageable end of said socket receptacle and adapted to abut said pin section; an adjustable spring on said socket receptacle urging said force member against said pin section, said adjustable spring being located adjacent to one side of said flange for reducing the force required to separate said pin and socket sections from one another and thereby for aiding separation therebetween.
US Referenced Citations (9)