The present application is a national stage of International Application No. PCT/CN2018/099011 filed on Aug. 6, 2018, the disclosure of which is hereby incorporated by reference in its entirety.
The present disclosure involves the field of communication technology, and specifically relates to a flight path configuration method, a flight path configuration apparatus, an electronic device, and a computer-readable storage medium.
In the related art, when a flight path is configured for an unmanned aerial vehicle, flight path information needs to be sent to the unmanned aerial vehicle through a dedicated link, for example, through a WiFi connection with the unmanned aerial vehicle or relayed by a satellite.
The current manner of configuring a flight path for the unmanned aerial vehicle requires to establish a dedicated link, and the configuration process is relatively cumbersome.
In view of this, embodiments of the present disclosure propose a flight path configuration method, a flight path configuration apparatus, an electronic device, and a computer-readable storage medium.
According to a first aspect of the embodiments of the present disclosure, there is provided a flight path configuration method, including:
Optionally, the acquiring flight path information of an unmanned aerial vehicle includes:
Optionally, the determining a tracking area where the unmanned aerial vehicle is located includes:
Optionally, the preset signaling includes at least one of:
According to a second aspect of the embodiments of the present disclosure, there is provided a flight path configuration method, including:
Optionally, the method further includes:
Optionally, the preset signaling includes at least one of:
According to a third aspect of the embodiments of the present disclosure, there is provided a flight path configuration method, including:
Optionally, the method further includes:
Optionally, the preset signaling includes at least one of:
According to a fourth aspect of the embodiments of the present disclosure, there is provided a flight path configuration apparatus, including:
Optionally, the path acquiring module is configured to acquire the flight path information from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is used to configure the flight path information for the unmanned aerial vehicle.
Optionally, the area determining module includes:
Optionally, the preset signaling includes at least one of:
According to a fifth aspect of the embodiments of the present disclosure, there is provided a flight path configuration apparatus, including:
Optionally, the apparatus further includes:
Optionally, the preset signaling includes at least one of:
According to a sixth aspect of the embodiments of the present disclosure, there is provided a flight path configuration method, including:
Optionally, the apparatus further includes:
Optionally, the preset signaling includes at least one of:
According to a seventh aspect of the embodiments of the present disclosure, there is provided an electronic device, including:
According to an eighth aspect of the embodiments of the present disclosure, there is provided a computer-readable storage medium with computer programs stored thereon, wherein the program implements steps in the method according to any one of the above embodiments when executed by a processor.
According to embodiments of the present disclosure, as for an unmanned aerial vehicle in an idle state, since no communication connection is established between the unmanned aerial vehicle and a base station, flight path information from a core network cannot be directly sent to the unmanned aerial vehicle through the base station. Therefore, a tracking area where the unmanned aerial vehicle is located can be determined first, and then a first paging signaling containing the flight path information can be sent to the base station in the tracking area, and the base station is instructed to send the flight path information to the unmanned aerial vehicle through a preset signaling through the first paging signaling, so that the flight path information can be sent from the core network to the unmanned aerial vehicle in the idle state, and thus the unmanned aerial vehicle configures the flight path based on the flight path information. Compared with related technologies, the configuration of the flight path can be completed based on the operator's network, without establishing a dedicated link, and the configuration process is relatively simple.
In order to more clearly explain the technical solutions in the embodiments of the present application, the following will briefly introduce the drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present application. For those of ordinary skill in the art, other drawings may be obtained based on these drawings without creative labor.
The technical solutions in the embodiments of this application will be clearly and completely described below in conjunction with the drawings in the embodiments of this application. Obviously, the described embodiments are only a part of the embodiments of this application, not all embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of this application.
As shown in
In step S11, flight path information of an unmanned aerial vehicle is acquired, wherein the unmanned aerial vehicle is in an idle state.
In one embodiment, the flight path information can be configured by an unmanned aerial vehicle management system. The unmanned aerial vehicle management system can be, for example, UTM (UAS Traffic Management). The full name of UAS is Unmanned Aircraft System. The unmanned aerial vehicle management system can run on a terminal, and a communication connection may exist between the core network and the terminal, and then the flight path information of the unmanned aerial vehicle can be obtained from the terminal.
In one embodiment, the unmanned aerial vehicle is in the idle state, which means a state that a communication connection between the unmanned aerial vehicle and the base station is disconnected. Since a communication connection exists between the base station and the core network, the core network can determine whether the communication connection between the unmanned aerial vehicle and the base station is disconnected. For example, when there is data transmission between the unmanned aerial vehicle and the base station, it can be determined that there is a communication connection between the unmanned aerial vehicle and the base station. When there is no data transmission between the unmanned aerial vehicle and the base station, it can be determined that a communication connection between the unmanned aerial vehicle and the base station is disconnected, that is, the unmanned aerial vehicle is in an idle state.
In step S12, a tracking area where the unmanned aerial vehicle is located is determined, wherein at least one base station is located in the tracking area.
In one embodiment, one or more base stations can be set in the tracking area (TA). When the tracking area of the unmanned aerial vehicle changes, update request information for the tracking area can be generated and sent to the core network through the base station, and then the core network can determine the tracking area where the unmanned aerial vehicle is located.
In step S13, a first paging signaling is sent to the base station, wherein the first paging signaling contains the flight path information, and the first paging signaling is used to instruct the base station to send the flight path information to the unmanned aerial vehicle through a preset signaling.
In one embodiment, as for an unmanned aerial vehicle in an idle state, since no communication connection is established between the unmanned aerial vehicle and a base station, flight path information from a core network cannot be directly sent to the unmanned aerial vehicle through the base station. Therefore, a tracking area where the unmanned aerial vehicle is located can be determined first, and then a first paging signaling containing the flight path information can be sent to the base station in the tracking area, and the base station is instructed to send the flight path information to the unmanned aerial vehicle through a preset signaling through the first paging signaling, so that the flight path information can be sent from the core network to the unmanned aerial vehicle in the idle state, for the unmanned aerial vehicle to configure the flight path based on the flight path information. Compared with related technologies, the configuration of the flight path can be completed based on the operator's network, without establishing a dedicated link, and the configuration process is relatively simple.
In an embodiment, the format of the first paging signaling may be as shown in Table 1.
The core network may send the first paging signaling to the base station through the S1 interface, and the Flight Path Information in the first paging signaling is the flight path information.
In step S111, the flight path information is acquired from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is used to configure the flight path information for the unmanned aerial vehicle.
In one embodiment, the flight path information can be configured by an unmanned aerial vehicle management system. The unmanned aerial vehicle management system can run on a terminal, and a communication connection may exist between the core network and the terminal, and then the flight path information of the unmanned aerial vehicle can be acquired from the terminal.
The terminal that runs the unmanned aerial vehicle management system can be a server, a remote control and other devices.
In one embodiment, the tracking area where the unmanned aerial vehicle is located can change during movement of the unmanned aerial vehicle. When the tracking area where the unmanned aerial vehicle is located changes, the update request information for the tracking area can be generated and sent to the core network through the base station, for the core network to determine the tracking area where the unmanned aerial vehicle is located.
Optionally, the preset signaling includes at least one of:
In an embodiment, the core network may instruct the base station to send the flight path information to the unmanned aerial vehicle through the second paging signaling through the first paging signaling. In this case, the base station may broadcast the second paging signaling, and the identification information of the unmanned aerial vehicle may be included in the second paging signaling, so that when the unmanned aerial vehicle monitors the second paging signaling, it can be determined that the content in the second paging signaling needs to be acquired based on the identification information, for example, the flight path information carried by the second paging signaling is acquired. In this case, even if no communication connection is established between the unmanned aerial vehicle and the base station, the flight path information can still be obtained from the second paging signaling.
In one embodiment, the core network may instruct the base station to send the flight path information to the unmanned aerial vehicle through the Radio Resource Control (RRC) signaling or Media Access Control Control Element (MAC CE) through the first paging signaling. In this case, the base station can establish a communication connection with the unmanned aerial vehicle first, and when there is a communication connection with the unmanned aerial vehicle, the RRC signaling or MAC CE carrying the flight path information is sent to the unmanned aerial vehicle, such that the flight path information is sent to the unmanned aerial vehicle.
As shown in
In one embodiment, as for an unmanned aerial vehicle in an idle state, since no communication connection is established between the unmanned aerial vehicle and a base station, flight path information from a core network cannot be directly sent to the unmanned aerial vehicle through the base station. Therefore, a tracking area where the unmanned aerial vehicle is located can be determined first, and then a first paging signaling containing the flight path information can be sent to the base station in the tracking area, and the base station is instructed to send the flight path information to the unmanned aerial vehicle through a preset signaling through the first paging signaling.
After receiving the first paging signaling, the base station may generate the preset signaling according to the first paging signaling, and the preset signaling includes the flight path information, and then preset signaling is sent to the unmanned aerial vehicle, so that the flight path information can be sent from the core network to the unmanned aerial vehicle in the idle state, for the unmanned aerial vehicle to configure the flight path based on the flight path information. Compared with related technologies, the configuration of the flight path can be completed based on the operator's network, without establishing a dedicated link, and the configuration process is relatively simple.
In one embodiment, the tracking area where the unmanned aerial vehicle is located can change during movement of the unmanned aerial vehicle. When the tracking area where the unmanned aerial vehicle is located changes, the update request information for the tracking area can be generated and sent to the core network through the base station, for the core network to determine the tracking area where the unmanned aerial vehicle is located.
It should be noted that step S24 and step S25 can be executed before step S21 as shown in
Optionally, the preset signaling includes at least one of:
In an embodiment, the base station may broadcast the second paging signaling, and the identification information of the unmanned aerial vehicle may be included in the second paging signaling, so that when the unmanned aerial vehicle monitors the second paging signaling, it can be determined that the content in the second paging signaling needs to be acquired based on the identification information, for example, the flight path information carried by the second paging signaling is acquired. In this case, even if no communication connection is established between the unmanned aerial vehicle and the base station, the flight path information can still be obtained from the second paging signaling.
In one embodiment, the base station can establish a communication connection with the unmanned aerial vehicle first, and when there is a communication connection with the unmanned aerial vehicle, the RRC signaling or MAC CE carrying the flight path information is sent to the unmanned aerial vehicle, such that the flight path information is sent to the unmanned aerial vehicle from the core network.
As shown in
In one embodiment, as for an unmanned aerial vehicle in an idle state, since no communication connection is established between the unmanned aerial vehicle and a base station, flight path information from a core network cannot be directly sent to the unmanned aerial vehicle through the base station. Therefore, a tracking area where the unmanned aerial vehicle is located can be determined first, and then a first paging signaling containing the flight path information can be sent to the base station in the tracking area, and the base station is instructed to send the flight path information to the unmanned aerial vehicle through a preset signaling through the first paging signaling.
After receiving the first paging signaling, the base station may generate the preset signaling which contains the flight path information according to the first paging signaling, and then may acquire the flight path information from the preset signaling when the unmanned aerial vehicle receives the preset signaling, and configures the flight path based on the flight path information. Compared with related technologies, the configuration of the flight path can be completed based on the operator's network, without establishing a dedicated link, and the configuration process is relatively simple.
In one embodiment, the tracking area where the unmanned aerial vehicle is located can change during movement of the unmanned aerial vehicle. When the tracking area where the unmanned aerial vehicle is located changes, the update request information for the tracking area can be generated and sent to the core network through the base station, for the core network to determine the tracking area where the unmanned aerial vehicle is located.
It should be noted that step S33 and step S34 can be executed before step S31 as shown in
Optionally, the preset signaling includes at least one of:
In one embodiment, the base station may broadcast the second paging signaling, and the second paging signaling may include the identification information of the unmanned aerial vehicle. The unmanned aerial vehicle may monitor the base station. When the second paging signaling is monitored, it can be determined that the content in the second paging signaling needs to be acquired based on the identification information, for example, the flight path information carried by the second paging signaling is acquired. In this case, even if no communication connection is established between the unmanned aerial vehicle and the base station, the flight path information can still be obtained from the second paging signaling.
In one embodiment, the unmanned aerial vehicle may establish a communication connection with the base station first, and when there is a communication connection with the base station, the RRC signaling or MAC CE carrying the flight path information may be received from the base station, so that the flight path information may be acquired from the core network.
As shown in
After the base station receives the first paging signaling, the preset signaling may be generated according to the first paging signaling. The preset signaling includes flight path information, and the base station sends the preset signaling to the unmanned aerial vehicle. For example, when no communication connection is established with the unmanned aerial vehicle, the preset signaling can be sent by broadcasting, and after the communication connection is established with the unmanned aerial vehicle, the preset signaling can be sent to the unmanned aerial vehicle directedly.
After receiving the preset signaling, the unmanned aerial vehicle can obtain the flight path information since the preset signaling contains the flight path information, and then configure the flight path according to the flight path information, and fly according to the configured flight path.
Corresponding to the foregoing embodiments of the flight path configuration method, the present disclosure further provides embodiments of the flight path configuration apparatus.
As shown in
Optionally, the path acquiring module is configured to acquire the flight path information from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is used to configure the flight path information for the unmanned aerial vehicle.
Optionally, the preset signaling includes at least one of:
As shown in
Optionally, the preset signaling includes at least one of:
As shown in
Optionally, the preset signaling includes at least one of:
Regarding the apparatus in the foregoing embodiment, the specific manner in which each module performs operations has been described in detail in the related method embodiment, which will not be elaborated herein.
For the apparatus embodiments, since they basically correspond to the method embodiments, the description for related parts may refer to the description of the method embodiments. The apparatus embodiments described above are merely illustrative. The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objective of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
An embodiment of the present disclosure also proposes an electronic device, including:
The embodiment of the present disclosure also proposes a computer-readable storage medium with computer programs stored thereon, wherein the program implements steps in the method according to any of the foregoing embodiments when executed by a processor.
As shown in
Referring to
The processing component 1602 typically controls the overall operations of the apparatus 1600, such as the operations associated with display, telephone calls, data communications, camera operations, and recording operations. The processing component 1602 can include one or more processors 1620 to execute instructions to perform all or part of the steps in the above-described methods. Moreover, the processing component 1602 can include one or more modules to facilitate the interaction between the processing component 1602 and other components. For example, the processing component 1602 can include a multimedia module to facilitate the interaction between the multimedia component 1608 and the processing component 1602.
The memory 1604 is configured to store various types of data to support the operation of the apparatus 1600. Examples of such data include instructions for any application or method operated on the apparatus 1600, such as the contact data, the phone book data, messages, pictures, videos, and the like. The memory 1604 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as a static random-access memory (SRAM), an electrically erasable programmable read-only memory (EEPROM), an erasable programmable read-only memory (EPROM), a programmable read-only memory (PROM), a read-only memory (ROM), a magnetic memory, a flash memory, a magnetic or optical disk.
The power component 1606 provides power to various components of the apparatus 1600. The power component 1606 can include a power management system, one or more power sources, and other components associated with the generation, management, and distribution of power in the apparatus 1600.
The multimedia component 1608 includes a screen providing an output interface between the apparatus 1600 and the user. In some embodiments, the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes the touch panel, the screen can be implemented as a touch screen to receive input signals from the user. The touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensors may not only sense a boundary of a touch or swipe action, but also sense a period of time and a pressure associated with the touch or swipe action. In some embodiments, the multimedia component 1608 includes a front camera and/or a rear camera. When the apparatus 1600 is in an operation mode, such as a photographing mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each of the front camera and the rear camera may be a fixed optical lens system or have focus and optical zoom capability.
The audio component 1610 is configured to output and/or input an audio signal. For example, the audio component 1610 includes a microphone (MIC) configured to receive an external audio signal when the apparatus 1600 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. The received audio signal may be further stored in the memory 1604 or sent via the communication component 1616. In some embodiments, the audio component 1610 also includes a speaker for outputting the audio signal.
The I/O interface 1612 provides an interface between the processing component 1602 and peripheral interface modules, such as a keyboard, a click wheel, buttons, and the like. These buttons may include, but not limited to, a home button, a volume button, a starting button, and a locking button.
The sensor component 1614 includes one or more sensors for providing state assessments of various aspects of the apparatus 1600. For example, the sensor component 1614 can detect an open/closed state of the apparatus 1600, relative positioning of components, such as the display and the keypad of the apparatus 1600. The sensor component 1614 can also detect a change in position of one component of the apparatus 1600 or the apparatus 1600, the presence or absence of user contact with the apparatus 1600, an orientation, or an acceleration/deceleration of the apparatus 1600, and a change in temperature of the apparatus 1600. The sensor component 1614 can also include a proximity sensor configured to detect the presence of nearby objects without any physical contact. The sensor component 1614 can also include a light sensor, such as a CMOS or CCD image sensor, configured to use in imaging applications. In some embodiments, the sensor component 1614 can also include an accelerometer sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
The communication component 1616 is configured to facilitate wired or wireless communication between the apparatus 1600 and other devices. The apparatus 1600 can access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G or a combination thereof. In an exemplary embodiment, the communication component 1616 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel. In an exemplary embodiment, the communication component 1616 also includes a near field communication (NFC) module to facilitate short-range communications. For example, the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
In an exemplary embodiment, the apparatus 1600 may be implemented with one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components, to perform the flight path configuration methods of any one of the above embodiments.
In an exemplary embodiment, there is also provided a non-transitory computer-readable storage medium including instructions, such as memory 1604 including instructions executable by the processor 1620 of the apparatus 1600 to perform the above methods. For example, the non-transitory computer readable storage medium may be a ROM, a random-access memory (RAM), a CD-ROM, a magnetic tape, a floppy disc, and an optical data storage device, or the like.
Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure disclosed herein. The present application is intended to cover any variations, uses, or adaptations of the present disclosure, which are in accordance with the general principles of the present disclosure and include common general knowledge or conventional technical means in the art that are not disclosed in the present disclosure. The specification and embodiments are illustrative only, and the real scope and spirit of the present disclosure is defined by the appended claims.
It should be understood that the present disclosure is not limited to the precise structures that have been described above and shown in the drawings, and various modifications and changes can be made without departing from the scope thereof. The scope of the present disclosure is limited only by the appended claims.
It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is any such actual relationship or sequence between these entities or operations. The terms “include”, “contain” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes other elements not explicitly listed, or also include elements inherent to such processes, methods, articles, or devices. If there are no more restrictions, the element defined by the sentence “including a . . . ” does not exclude the existence of other same elements in the process, method, article, or device that includes the element.
The method and apparatus provided by the embodiments of the present disclosure are described in detail above. Specific examples are used in this article to illustrate the principles and implementation of the present disclosure. The description of the above embodiments is only used to help understand the method and core idea of the present disclosure. Meanwhile, for those of ordinary skill in the art, according to the idea of the present disclosure, there will be changes in the specific implementation and the scope of application. In summary, the content of this specification should not be construed as limitation to the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/099011 | 8/6/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/029025 | 2/13/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060077255 | Cheng | Apr 2006 | A1 |
20160321503 | Zhou | Nov 2016 | A1 |
20170257842 | Hessler et al. | Sep 2017 | A1 |
20180247544 | Mustafic | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
104158607 | Nov 2014 | CN |
106717081 | May 2017 | CN |
107017940 | Aug 2017 | CN |
107300927 | Oct 2017 | CN |
107922050 | Apr 2018 | CN |
108064360 | May 2018 | CN |
108064453 | May 2018 | CN |
108064465 | May 2018 | CN |
108370556 | Aug 2018 | CN |
2278732 | Jan 2011 | EP |
101668640 | Oct 2016 | KR |
101837979 | Mar 2018 | KR |
2016141542 | Sep 2016 | WO |
2018053691 | Mar 2018 | WO |
Entry |
---|
CN 1st Office Action in Application No. 201880001649.1, mailed on Jul. 31, 2020. |
International Search Report in Application No. PCT/CN2018/099011, mailed on May 10, 2019. |
Europe Extended European Search Report in Application No. 18928994.5, mailed on Mar. 11, 2022. |
India office action in application No. 202127008957, mailed on Jun. 19, 2024. |
Number | Date | Country | |
---|---|---|---|
20210295713 A1 | Sep 2021 | US |