Field of the Invention
The disclosure generally relates to a flip-flop circuit, and more specifically, to a flip-flop circuit with a data-driven clock.
Description of the Related Art
A flip-flop is a circuit that has two stable states and can be used to store state information. The flip-flop can be made to change state by signals applied to one or more control inputs and will have one or two outputs. This is the basic storage element in sequential logic.
For example, a D flip-flop is commonly used for a variety of circuits in this art. The D flip-flop captures the value of the D-input at a definite portion of the clock cycle (such as a rising/falling edge of the clock). That captured value becomes the Q output. At other times, the output Q does not change. The D flip-flop can be viewed as a memory cell, a zero-order hold, or a delay line.
However, the main drawback of the D flip-flop is the high power consumption, which is a result of the continuous input clock signal of the D flip-flop. Accordingly, there is a need to design a new flip-flop circuit for solving the problem of the prior art.
In a preferred embodiment, the disclosure is directed to a flip-flop circuit including a D flip-flop and a gating controller. The D flip-flop generates an output signal according to a data signal and a gated clock signal. The gating controller receives an original clock signal. The gating controller further compares the output signal with the data signal. If the output signal is the same as the data signal, the gating controller will maintain the gated clock signal at a constant logic level. If the output signal is different from the data signal, the gating controller will use the original clock signal as the gated clock signal.
In some embodiments, the constant logic level is a high logic level or a low logic level.
In some embodiments, the gating controller includes a comparing circuit and a dual clock-phase latch.
In some embodiments, the comparing circuit includes a first inverter, a first transistor, a second transistor, a third transistor, and a fourth transistor. The first inverter has an input terminal for receiving the data signal, and an output terminal coupled to a first node. The first transistor has a control terminal for receiving the data signal, a first terminal for receiving an inverted output signal, and a second terminal coupled to a second node. The second transistor has a control terminal coupled to the first node, a first terminal for receiving the inverted output signal, and a second terminal coupled to the second node. The third transistor has a control terminal coupled to the first node, a first terminal for receiving the output signal, and a second terminal coupled the second node. The fourth transistor has a control terminal for receiving the data signal, a first terminal for receiving the output signal, and a second terminal coupled to the second node.
In some embodiments, the first transistor and the third transistor are PMOS transistors (P-type Metal Oxide Semiconductor Field Effect Transistors), and the second transistor and the fourth transistor are NMOS transistors (N-type Metal Oxide Semiconductor Field Effect Transistors).
In some embodiments, the dual clock-phase latch includes a second inverter, a third inverter, a fifth transistor, and a sixth transistor. The second inverter has an input terminal for receiving the original clock signal, and an output terminal coupled to a third node. The third inverter has an input terminal coupled to the third node, and an output terminal coupled to a fourth node. The fifth transistor has a control terminal coupled to the fourth node, a first terminal coupled to the second node, and a second terminal coupled to a fifth node. The sixth transistor has a control terminal coupled to the third node, a first terminal coupled to the second node, and a second terminal coupled to the fifth node.
In some embodiments, the fifth transistor is a PMOS transistor, and the sixth transistor is an NMOS transistor.
In some embodiments, the dual clock-phase latch further includes a fourth transistor, a seventh transistor, an eighth transistor, a ninth transistor, and a tenth transistor. The fourth inverter has an input terminal coupled to the fifth node, and an output terminal coupled to a sixth node. The seventh transistor has a control terminal coupled to sixth node, a first terminal coupled to a supply voltage, and a second terminal coupled to a seventh node. The eighth transistor has a control terminal coupled to the third node, a first terminal coupled to the seventh node, and a second terminal coupled to the fifth node. The ninth transistor has a control terminal coupled to the fourth node, a first terminal coupled to the fifth node, and a second terminal coupled to an eighth node. The tenth transistor has a control terminal coupled to the sixth node, a first terminal coupled to the eighth node, and a second terminal coupled to a ground voltage.
In some embodiments, the seventh transistor and the eighth transistor are PMOS transistors, and the ninth transistor and the tenth transistor are NMOS transistors.
In some embodiments, the dual clock-phase latch further includes an eleventh transistor, a twelfth transistor, a thirteenth transistor, a fourteenth transistor, a fifteenth transistor, a sixteenth transistor, and a fifth inverter. The eleventh transistor has a control terminal coupled to the fourth node, a first terminal coupled to the supply voltage, and a second terminal coupled to a ninth node. The twelfth transistor has a control terminal for receiving a test enable signal, a first terminal coupled to the supply voltage, and a second terminal coupled to a tenth node. The thirteenth transistor has a control terminal coupled to the sixth node, a first terminal coupled to the tenth node, and a second terminal coupled to the ninth node. The fourteenth transistor has a control terminal coupled to the fourth node, a first terminal coupled to the ninth node, and a second terminal coupled to an eleventh node. The fifteenth transistor has a control terminal coupled to the sixth node, a first terminal coupled to the eleventh node, and a second terminal coupled to the ground voltage. The sixteenth transistor has a control terminal for receiving the test enable signal, a first terminal coupled to the eleventh node, and a second terminal coupled to the ground voltage. The fifth inverter has an input terminal coupled to the ninth node, and an output terminal for outputting the gated clock signal.
In some embodiments, the eleventh transistor, the twelfth transistor, and the thirteenth transistor are PMOS transistors, and the fourteenth transistor, the fifteenth transistor, and the sixteenth transistor are NMOS transistors.
In some embodiments, the gating controller includes a comparing circuit and a single clock-phase latch.
In some embodiments, the single clock-phase latch includes a fifth transistor, a sixth transistor, a seventh transistor, and an eighth transistor. The fifth transistor has a control terminal coupled to a third node, a first terminal coupled to a supply voltage, and a second terminal coupled to a fourth node. The sixth transistor has a control terminal for receiving the original clock signal, a first terminal coupled to the supply voltage, and a second terminal coupled to a fifth node. The seventh transistor has a control terminal coupled to the second node, a first terminal coupled to the fifth node, and a second terminal coupled to a sixth node. The eighth transistor has a control terminal for receiving a test enable signal, a first terminal coupled to the sixth node, and a second terminal coupled to the fourth node.
In some embodiments, the fifth transistor, the sixth transistor, the seventh transistor, and the eighth transistor are PMOS transistors.
In some embodiments, the single clock-phase latch further includes a ninth transistor, a tenth transistor, an eleventh transistor, and a twelfth transistor. The ninth transistor has a control terminal coupled to the third node, a first terminal coupled to the fourth node, and a second terminal coupled to a seventh node. The tenth transistor has a control terminal coupled to the second node, a first terminal coupled to the seventh node, and a second terminal coupled to a ground voltage. The eleventh transistor has a control terminal for receiving the test enable signal, a first terminal coupled to the seventh node, and a second terminal coupled to the ground voltage. The twelfth transistor has a control terminal for receiving the original clock signal, a first terminal coupled to the seventh node, and a second terminal coupled to the ground voltage.
In some embodiments, the ninth transistor, the tenth transistor, the eleventh transistor, and the twelfth transistor are NMOS transistors.
In some embodiments, the single clock-phase latch further includes a thirteenth transistor, a fourteenth transistor, a fifteenth transistor, a sixteenth transistor, and a second inverter. The thirteenth transistor has a control terminal coupled to the fourth node, a first terminal coupled to the supply voltage, and a second terminal coupled to the third node. The fourteenth transistor has a control terminal for receiving the original clock signal, a first terminal coupled to the supply voltage, and a second terminal coupled to the third node. The fifteenth transistor has a control terminal coupled to the fourth node, a first terminal coupled to the third node, and a second terminal coupled to an eighth node. The sixteenth transistor has a control terminal for receiving the original clock signal, a first terminal coupled to the eighth node, and a second terminal coupled to the ground voltage. The second inverter has an input terminal coupled to the third node, and an output terminal for outputting the gated clock signal.
In some embodiments, the thirteenth transistor and the fourteenth transistor are PMOS transistors, and fifteenth transistor and the sixteenth transistor are NMOS transistors.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
In order to illustrate the purposes, features and advantages of the invention, the embodiments and figures of the invention are disclosed in detail as follows.
If the output signal SOUT is the same as the data signal DATA (e.g., the output signal SOUT has a low logic level and the data signal DATA also has a low logic level, or the output signal SOUT has a high logic level and the data signal DATA also has a high logic level), the gating controller 120 will maintain the gated clock signal CLKG at a constant logic level. For example, the constant logic level may be a high logic level (i.e., a logic level “1”) or a low logic level (i.e., a logic level “0”). If the output signal SOUT is different from the data signal DATA (e.g., the output signal SOUT has a low logic level but the data signal DATA has a high logic level, or the output signal SOUT has a high logic level but the data signal DATA has a low logic level), the gating controller 120 will pass the original clock signal CLKO and use it as the gated clock signal CLKG for driving the D flip-flop 110. That is, only when the output signal SOUT from the D flip-flop 110 is going to be changed, the gating controller 120 applies the original clock signal CLKO as the gated clock signal CLKG to the D flip-flop 110. Such a data-driven clock design can effectively reduce the fixed power consumption of the flip-flop circuit 100.
A variety of circuit structures of the flip-flop circuit 100 will be introduced in the following embodiments. These embodiments and figures are just exemplary for the reader to easily understand the invention, and they are not considered as restrictions of the invention.
In the embodiment of
In some embodiments, the dual clock-phase latch 224 of the gating controller 220 further includes a fourth inverter 334, a seventh transistor M7, an eighth transistor M8, a ninth transistor M9, and a tenth transistor M10. The seventh transistor M7 and the eighth transistor M8 may be PMOS transistors, and the ninth transistor M9 and the tenth transistor M10 may be NMOS transistors. The fourth inverter 334 has an input terminal coupled to the fifth node N5, and an output terminal coupled to a sixth node N6. The seventh transistor M7 has a control terminal coupled to sixth node N6, a first terminal coupled to a supply voltage VDD, and a second terminal coupled to a seventh node N7. The eighth transistor M8 has a control terminal coupled to the third node N3, a first terminal coupled to the seventh node N7, and a second terminal coupled to the fifth node N5. The ninth transistor M9 has a control terminal coupled to the fourth node N4, a first terminal coupled to the fifth node N5, and a second terminal coupled to an eighth node N8. The tenth transistor M10 has a control terminal coupled to the sixth node N6, a first terminal coupled to the eighth node N8, and a second terminal coupled to a ground voltage VSS.
In some embodiments, the dual clock-phase latch 224 of the gating controller 220 further includes an eleventh transistor M11, a twelfth transistor M12, a thirteenth transistor M13, a fourteenth transistor M14, a fifteenth transistor M15, a sixteenth transistor M16, and a fifth inverter 335. The eleventh transistor M11, the twelfth transistor M12, and the thirteenth transistor M13 may be PMOS transistors, and the fourteenth transistor M14, the fifteenth transistor M15, and the sixteenth transistor M16 may be NMOS transistors. The eleventh transistor M11 has a control terminal coupled to the fourth node N4, a first terminal coupled to the supply voltage VDD, and a second terminal coupled to a ninth node N9. The twelfth transistor M12 has a control terminal for receiving a test enable signal ST, a first terminal coupled to the supply voltage VDD, and a second terminal coupled to a tenth node N10. The thirteenth transistor M13 has a control terminal coupled to the sixth node N6, a first terminal coupled to the tenth node N10, and a second terminal coupled to the ninth node N9. The fourteenth transistor M14 has a control terminal coupled to the fourth node N4, a first terminal coupled to the ninth node N9, and a second terminal coupled to an eleventh node N11. The fifteenth transistor M15 has a control terminal coupled to the sixth node N6, a first terminal coupled to the eleventh node N11, and a second terminal coupled to the ground voltage VSS. The sixteenth transistor M16 has a control terminal for receiving the test enable signal ST, a first terminal coupled to the eleventh node N11, and a second terminal coupled to the ground voltage VSS. The fifth inverter 335 has an input terminal coupled to the ninth node N9, and an output terminal for outputting the gated clock signal CLKG.
The test enable signal ST is arranged for controlling the dual clock-phase latch 224 to enter a normal work mode or a test mode. For example, if the test enable signal ST has a low logic level, the dual clock-phase latch 224 can operate in the normal work mode and the D flip-flop 110 can receive the data signal DATA normally; and if the test enable signal ST has a high logic level, the dual clock-phase latch 224 can operate in the test mode and the D flip-flop 110 can receive a test data signal instead, such that the functions of the flip-flop circuit 100 can be under test. In alternative embodiments, the above design is adjusted, such that the dual clock-phase latch 224 operates in the test mode when the test enable signal ST has a low logic level, and operates in the normal work mode when the test enable signal ST has a high logic level.
According to practical measurements, the flip-flop circuit 100 including the comparing circuit 222 and the dual clock-phase latch 224 of
In the embodiment of
In some embodiments, the single clock-phase latch 226 of the gating controller 420 further includes a ninth transistor M9, a tenth transistor M10, an eleventh transistor M11, and a twelfth transistor M12. The ninth transistor M9, the tenth transistor M10, the eleventh transistor M11, and the twelfth transistor M12 may be NMOS transistors. The ninth transistor M9 has a control terminal coupled to the third node N3, a first terminal coupled to the fourth node N4, and a second terminal coupled to a seventh node N7. The tenth transistor M10 has a control terminal coupled to the second node N2, a first terminal coupled to the seventh node N7, and a second terminal coupled to a ground voltage VSS. The eleventh transistor M11 has a control terminal for receiving the test enable signal ST, a first terminal coupled to the seventh node N7, and a second terminal coupled to the ground voltage VSS. The twelfth transistor M12 has a control terminal for receiving the original clock signal CLKO, a first terminal coupled to the seventh node N7, and a second terminal coupled to the ground voltage VSS.
In some embodiments, the single clock-phase latch 226 of the gating controller 420 further includes a thirteenth transistor M13, a fourteenth transistor M14, a fifteenth transistor M15, a sixteenth transistor M16, and a second inverter 332. The thirteenth transistor M13 and the fourteenth transistor M14 may be PMOS transistors, and fifteenth transistor M15 and the sixteenth transistor M16 may be NMOS transistors. The thirteenth transistor M13 has a control terminal coupled to the fourth node N4, a first terminal coupled to the supply voltage VDD, and a second terminal coupled to the third node N3. The fourteenth transistor M14 has a control terminal for receiving the original clock signal CLKO, a first terminal coupled to the supply voltage VDD, and a second terminal coupled to the third node N3. The fifteenth transistor M15 has a control terminal coupled to the fourth node N4, a first terminal coupled to the third node N3, and a second terminal coupled to an eighth node N8. The sixteenth transistor M16 has a control terminal for receiving the original clock signal CLKO, a first terminal coupled to the eighth node N8, and a second terminal coupled to the ground voltage VSS. The second inverter 332 has an input terminal coupled to the third node N3, and an output terminal for outputting the gated clock signal CLKG.
The test enable signal ST is arranged for controlling the single clock-phase latch 226 to enter a normal work mode or a test mode. For example, if the test enable signal ST has a low logic level, the single clock-phase latch 226 can operate in the normal work mode and the D flip-flop 110 can receive the data signal DATA normally; and if the test enable signal ST has a high logic level, the single clock-phase latch 226 can operate in the test mode and the D flip-flop 110 can receive a test data signal instead, such that the functions of the flip-flop circuit 100 can be under test. In alternative embodiments, the above design is adjusted, such that the single clock-phase latch 226 operates in the test mode when the test enable signal ST has a low logic level, and operates in the normal work mode when the test enable signal ST has a high logic level.
According to practical measurements, the flip-flop circuit 100 including the comparing circuit 222 and the single clock-phase latch 226 of
In some embodiments, the gating controller 420 of
The embodiments of
The invention proposes a novel flip-flop circuit with a data-driven clock. In comparison to the conventional design, the invention has at least the following advantages: (1) reducing the total power consumption, (2) being applicable to more-bit flip-flops, (3) not occupying large area on the chip, and (4) suppressing the output glitch of the gated clock signal. Therefore, the flip-flop circuit of the invention is suitable for application in a variety of low-power mobile communication devices.
The above parameters are just exemplary, rather than limitations of the invention. One of ordinary skill may adjust these settings according to different requirements. It should be understood that the proposed flip-flop circuit is not limited to the configurations of
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term) to distinguish the claim elements.
While the invention has been described by way of example and in terms of the preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application claims the benefit of U.S. Provisional Application No. 62/249,677, filed on Nov. 2, 2015, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62249677 | Nov 2015 | US |