This disclosure relates to wellbore drilling and workover equipment, and in particular a float valve, system, and method.
Float valves, or non-return valves, are downhole safety valves that create barriers to prevent unwanted flow of fluids up a drill string or other tubular string for drilling, workover, or other operations in a wellbore. The unwanted flow can be because of pressure changes or due to a well control event.
This disclosure describes a non-return float valve, system, and method for a drill string or other tubular string in a wellbore.
Certain aspects of the subject matter herein can be implemented as a well system. The well system includes a tubular string comprising a plurality of tubular segments and positioned in a wellbore drilled into a subterranean zone, and a landing sub connected to a bottom end of one of the plurality of tubular segments. The landing sub includes a landing sub central bore and a landing sub locking profile on an inner surface of the landing sub central bore. The well system also includes a valve assembly configured to be pumped down the tubular string by fluid flowing in a downhole direction through the tubular string and to land within the landing sub central bore. The valve assembly includes a main body with a valve central bore and a flapper configured to pivot between an open position and a closed position. In the closed positon the flapper seals against a flapper seat and blocks fluid from flowing in an uphole direction through the valve central bore. The valve assembly also includes a rupture disc positioned in the valve central bore and configured to rupture in response to an application of a predetermined fluid pressure and configured to block fluid from flowing through the valve central bore when in an unruptured state. The valve assembly also includes one or more valve body setting dogs positioned on an outer surface of the main body and configured to lock into the landing sub locking profile and thereby limit axial movement of the main body within the landing sub.
An aspect combinable with any of the other aspects can include the following features. The valve assembly is configured to, when the rupture disc is in the ruptured state, allow fluid to flow through the valve central bore in a downhole direction and to prevent the flow of fluid in the uphole direction.
An aspect combinable with any of the other aspects can include the following features. The tubular string is a drill string. The well system also includes a bottomhole assembly connected to the tubular string below the landing sub. The bottomhole assembly includes a drill bit and is configured to further drill the wellbore into the subterranean zone.
An aspect combinable with any of the other aspects can include the following features. The fluid is drilling fluid.
An aspect combinable with any of the other aspects can include the following features. The valve assembly also includes an internal locking profile on an inner surface of the valve central bore. The well system further includes a retrieval tool configured to be lowered into the tubular string and at least partially into the valve central bore, the retrieval tool comprising retrieval tool dogs configured to lock into the internal locking profile of the valve assembly and operable to pull the valve assembly in an uphole direction from the landing sub.
An aspect combinable with any of the other aspects can include the following features. The flapper is biased to the closed positon by a spring and the predetermined fluid pressure to rupture the rupture disc is greater than a fluid pressure required to push the flapper to the open position.
An aspect combinable with any of the other aspects can include the following features. The valve body setting dogs are biased outward by springs within the valve main body and wherein the predetermined fluid pressure to rupture the rupture disc is greater than a fluid pressure against the rupture disc that is required to push the valve assembly in a downhole direction into the landing sub such that the valve body setting dogs lock into the landing sub locking profile.
An aspect combinable with any of the other aspects can include the following features. The valve assembly is a secondary check valve assembly. The well system also includes a primary check valve assembly installed in the tubular string below the landing sub, the primary check valve assembly configured to allow the flow of fluids in the downhole direction and to prevent the flow of fluids in the uphole direction in the tubular string, and wherein the secondary check valve assembly is operable to prevent the flow of fluids in the uphole direction in the tubular string in the event of a failure of the primary check valve assembly.
Certain aspects of the subject matter herein can be implemented as a valve assembly. The valve assembly includes a main body with a valve central bore and is configured to be pumped down a tubular string and to land within a central landing sub bore of a landing sub connected to a bottom end of a tubular segment of the tubular string, which is positioned in a wellbore drilled into a subterranean zone. The valve assembly also includes a flapper configured to pivot between an open position and a closed position, wherein in the closed positon the flapper seals against a flapper seat and blocks fluid from flowing through the central valve bore in an uphole direction. The valve assembly also includes a rupture disc configured to rupture in response to an application of a predetermined fluid pressure applied through the valve central bore and configured to block fluid from flowing through the central valve bore when in an unruptured state. The valve assembly also includes one or more valve body setting dogs configured to lock into a locking profile on an inner surface of the landing sub.
An aspect combinable with any of the other aspects can include the following features. The valve assembly is configured to, when the rupture disc is in the ruptured state, allow fluid to flow through the valve central bore in a downhole direction and to prevent the flow of fluid in the uphole direction.
An aspect combinable with any of the other aspects can include the following features. The tubular string is a drill string.
An aspect combinable with any of the other aspects can include the following features. The fluid is drilling fluid.
An aspect combinable with any of the other aspects can include the following features. The valve assembly also includes an internal locking profile on an inner surface of the valve central bore and is configured to receive a retrieval tool configured to be lowered into the tubular string and at least partially into the valve central bore. The retrieval tool includes retrieval tool dogs configured to lock into the internal locking profile of the valve assembly and configured to pull the valve assembly from the landing sub.
An aspect combinable with any of the other aspects can include the following features. The flapper is biased to the closed positon by a spring and the predetermined fluid pressure to rupture the rupture disc is greater than a fluid pressure required to push the flapper to the open position.
An aspect combinable with any of the other aspects can include the following features. The valve body setting dogs are biased outward by springs within the valve main body and the predetermined fluid pressure to rupture the rupture disc is greater than a fluid pressure against the rupture disc that is required to push the valve assembly into the landing sub such that the valve body setting dogs lock into the landing sub locking profile.
Certain aspects of the subject matter herein can be implemented as a method. The method includes attaching a landing sub to a bottom end of one of a plurality of tubular segments of a tubular string, the landing sub comprising a landing sub central bore and a landing sub locking profile on an inner surface of the landing sub central bore. The method also includes lowering the tubular string into a wellbore drilled into a subterranean zone and pumping, by a flow of fluid through the tubular string, a valve assembly in a downhole direction through the tubular string until the valve assembly lands within the landing sub central bore and valve body setting dogs positioned on an outer surface of a main body of the valve assembly lock into the landing sub locking profile. The valve assembly includes a flapper configured to pivot between an open position and a closed position. In the closed positon the flapper seals against a flapper seat and blocks fluid from flowing in an uphole direction through the valve central bore. The valve assembly also includes a rupture disc positioned in the valve central bore and configured to rupture in response to an application of a predetermined fluid pressure and to block fluid from flowing through the valve central bore when in an unruptured state. The method also includes increasing a fluid pressure of the fluids in the tubular string until the rupture disc ruptures.
An aspect combinable with any of the other aspects can include the following features. The valve assembly is configured to, when the rupture disc is in the ruptured state, allow fluid to flow through the valve central bore in a downhole direction and to prevent the flow of fluid in the uphole direction.
An aspect combinable with any of the other aspects can include the following features. The method also includes pivoting, by flowing fluid in a downhole direction, the flapper to the open position, and flowing fluid in a downhole direction through the tubular string and through the valve assembly to a downhole end of the tubular string below the landing sub.
An aspect combinable with any of the other aspects can include the following features. The method also includes pivoting, in response to a flow of fluid in an uphole direction, the flapper to the closed position.
An aspect combinable with any of the other aspects can include the following features. The tubular string is a drill string. A bottomhole assembly is connected to a tubular segment below the landing sub. The bottomhole assembly includes a drill bit, and the method also includes further drilling the wellbore into the subterranean zone with the drill bit.
An aspect combinable with any of the other aspects can include the following features. The method also includes flowing drilling fluid in a downhole direction through the tubular string and through the valve assembly to the drill bit.
An aspect combinable with any of the other aspects can include the following features. The valve assembly also includes an internal locking profile on an inner surface of the valve central bore. The method also includes lowering a retrieval tool into the tubular string and at least partially into the valve central bore, the retrieval tool comprising retrieval tool dogs configured to lock into the internal locking profile of the valve assembly, and pulling, with the retrieval tool, the valve assembly in an uphole direction from the landing sub.
An aspect combinable with any of the other aspects can include the following features. The flapper is biased to the closed positon by a spring and the predetermined fluid pressure to rupture the rupture disc is greater than a fluid pressure required to push the flapper to the open position.
An aspect combinable with any of the other aspects can include the following features. The valve body setting dogs are biased outward by springs within the valve main body and wherein the predetermined fluid pressure to rupture the rupture disc is greater than a fluid pressure against the rupture disc that is required to push the valve assembly in a downhole direction into the landing sub such that the valve body setting dogs lock into the landing sub locking profile.
An aspect combinable with any of the other aspects can include the following features. The method also includes installing, before the tubular string is lowered into the wellbore into the subterranean zone, a primary check valve assembly in the tubular string below the landing sub. The primary check valve assembly is configured to allow the flow of fluids in the downhole direction and to prevent the flow of fluids in the uphole direction in the tubular string. The valve assembly pumped through the tubular string is a secondary check valve assembly operable to prevent the flow of fluids in the uphole direction in the tubular string in the event of a failure of the primary check valve assembly.
The details of one or more implementations of the subject matter of this disclosure are set forth in the accompanying drawings and the description. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
The present disclosure is directed to fluid flow control in downhole tubular strings. Particularly, the present disclosure is directed to a non-return float valve, system, and method for a drill string or other tubular string in a wellbore.
In drilling, completion, workover, or other wellbore operations, it is sometimes desirable to allow fluid to flow in a downhole direction through a tubular string but not in an uphole direction. For example, in drilling operations, drilling mud or other drilling fluid is pumped downhole to operate the bit and to wash cuttings away from the bit face and back up the annulus. Undesirable reverse flow in an uphole direction through the drill string might be encountered either due to a U-tube effect when the bulk density of the mud in the annulus is higher than that inside the drillpipe, or a well control event. Float valves (sometimes called non-return valves or check valves) are sometimes positioned in drill strings, workover strings, and other downhole tubular strings to allow fluid flow through the string in a downhole direction but prevent fluid flow in an uphole direction.
Float valves can be installed in a tubular string before insertion of the string in the wellbore, or, in some configurations, can be dropped into the tubular string and pumped down and landed into a landing sub configured to receive and lock the valve into place. In some embodiments of the present disclosure, a valve assembly includes a rupture disc which enables the valve assembly to be pumped downhole at greater speed and with greater force to properly lock into the landing sub than if no rupture disc was present. In some embodiments of the present invention, a flapper is used as the closure device to prevent flow in the uphole direction (once the valve assembly is landed and the rupture disc is ruptured), which allows for a larger flow area and thus a larger volume of fluid to be pumped downhole than other types of closure mechanisms such as poppet valves. In addition, because almost the entire cross-sectional flow area is open when the flapper is open, tools and other components can be passed through the central bore of the valve when in the open position, which may not be possible with other closure types. The rupture disc allows for a high fluid pressure and flow rate to be used to quickly pump the valve downhole and forcefully latch it into the landing sub; however, only a relatively low fluid pressure and flow rate in a downhole direction is required to keep the flapper open (after the valve assembly is landed and the rupture disc is ruptured).
Tubular string 106 further includes a landing sub 114 connected to a bottom end of one of the tubular segments 107. Landing sub 114 includes a landing sub central bore 116, the centerline axis of which is in alignment with the centerline axis of the rest of tubular string central bore 112. Landing sub 114 further includes a landing sub locking profile 116 on an inner surface of the landing sub central bore 116.
Referring to
Valve assembly 120 also includes a rupture disc 220 in valve central bore 204. Rupture disc 220 can comprise steel or other metallic material, frangible ceramic, polymer, or other suitable material. When in an unruptured state, rupture disc 220 blocks the flow of fluid through valve central bore 204. When in the rupture state, fluid can flow through the valve central bore 204 (if flapper 210 is in the open position). Rupture disc 220 can be configured to rupture in response to an application of a predetermined fluid pressure.
In some embodiments, the predetermined rupture pressure for rupture disc 220 is chosen such that it can withstand the fluid pressure from fluid 110 above valve assembly 120 as it is pumped down the hole. As shown in
After valve assembly 120 is latched into landing profile 116, the pressure of fluid 110 can be increased (such as via a surface pump or other mechanism) so as to cause rupture disc 220 to rupture, as shown in
In the illustrated embodiment, valve assembly 120 is retrievable and includes an inner retrieval profile 208. A retrieval tool such as retrieval tool 402 shown in
In some embodiments, valve assembly 120 can include a spring which biases flapper 210 to the closed position. In some embodiments, fluid pressure required to open flapper 210 (against the force of the spring) is less than the predetermined pressure to rupture disc 220. In such embodiments, a relatively high fluid pressure and flow rate in the downhole direction can be used to pump valve assembly 120 quickly down tubular 106 and forcefully latch it into landing sub 114, but during normal operations (after valve assembly is landed and latched and the rupture disc is ruptured) a relatively low fluid pressure and flow rate in the downhole direction would keep flapper 210 open.
In some embodiments, instead of dropping valve assembly 120 into tubular string after tubular string 106 is inserted in wellbore 102 as described above, valve assembly 120 can be installed in landing sub 114 before tubular string 106 is inserted in wellbore 102. In such embodiments, rupture disc 220 can be omitted from valve assembly 120.
In some embodiments, tubular string 106 can have a primary check valve installed below landing sub 114, before tubular string 106 is installed in wellbore 102. In such embodiments, valve assembly 120 can be used as a “backup” or secondary check valve that prevents upward flow of fluids in the event of a failure of the primary check valve. Valve assembly 120 an be pumped down and installed in landing sub 114 when conditions warrant such a secondary or backup device, and retrieved when conditions no longer warrant such a device. For example, for a drill string in a “wild cat” exploratory well, landing sub 114 can be installed above conventional bit sub float valve. When a high-risk zone is encountered in such a well, valve assembly 120 can be dropped into the drill string and latched into the landing sub to contain kicks when primary float valve in the string might fail to hold pressure. Once the well gets under control, valve assembly 120 can be retrieved from drill string. The primary check valve can be a flapper valve or other suitable non-return valve, and can be connected directly to a tubular segment or, like valve assembly 120, can be a pump-down device which lands in a landing sub that is connected to a tubular segment.
Proceeding to step 604, the tubular string is lowering into a wellbore drilled into a subterranean zone. At step 606, a non-return valve assembly such as valve assembly 120 described in reference to
Proceeding to step 608, the fluid pressure is increased until the rupture disc ruptures, thus causing the flapper to pivot to the open positon and allowing (at step 610) fluid flow in a downhole direction through the valve assembly. At step 612, in response to fluid flow in an uphole direction, the flapper pivots to the closed position, thus preventing further flow in the uphole direction.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any sub-combination. Moreover, although previously described features may be described as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
As used in this disclosure, the terms “a,” “an,” or “the” are used to include one or more than one unless the context clearly dictates otherwise. The term “or” is used to refer to a nonexclusive “or” unless otherwise indicated. The statement “at least one of A and B” has the same meaning as “A, B, or A and B.” In addition, it is to be understood that the phraseology or terminology employed in this disclosure, and not otherwise defined, is for the purpose of description only and not of limitation. Any use of section headings is intended to aid reading of the document and is not to be interpreted as limiting; information that is relevant to a section heading may occur within or outside of that particular section.
Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
Moreover, the separation or integration of various system modules and components in the previously described implementations should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described components and systems can generally be integrated together or packaged into multiple products.
Accordingly, the previously described example implementations do not define or constrain the present disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
880404 | Sanford | Feb 1908 | A |
1033655 | Baker | Jul 1912 | A |
1258273 | Titus et al. | Mar 1918 | A |
1392650 | Mcmillian | Oct 1921 | A |
1491066 | Patrick | Apr 1924 | A |
1580352 | Ercole | Apr 1926 | A |
1591264 | Baash | Jul 1926 | A |
1621947 | Moore | Mar 1927 | A |
1638494 | Lewis et al. | Aug 1927 | A |
1789993 | Switzer | Jan 1931 | A |
1896236 | Howard | Feb 1933 | A |
1896482 | Crowell | Feb 1933 | A |
1897297 | Brown | Feb 1933 | A |
1949498 | Frederick et al. | Mar 1934 | A |
2047774 | Greene | Jul 1936 | A |
2121002 | Baker | Jun 1938 | A |
2121051 | Ragan et al. | Jun 1938 | A |
2187487 | Burt | Jan 1940 | A |
2189697 | Baker | Feb 1940 | A |
2222233 | Mize | Nov 1940 | A |
2286075 | Evans | Jun 1942 | A |
2304793 | Bodine | Dec 1942 | A |
2316402 | Canon | Apr 1943 | A |
2327092 | Botkin | Aug 1943 | A |
2377249 | Lawrence | May 1945 | A |
2411260 | Glover et al. | Nov 1946 | A |
2481637 | Yancey | Sep 1949 | A |
2546978 | Collins et al. | Apr 1951 | A |
2638988 | Williams | May 1953 | A |
2663370 | Robert et al. | Dec 1953 | A |
2672199 | McKenna | Mar 1954 | A |
2701019 | Steed | Feb 1955 | A |
2707998 | Baker et al. | May 1955 | A |
2708973 | Twining | May 1955 | A |
2728599 | Moore | Dec 1955 | A |
2734581 | Bonner | Feb 1956 | A |
2745693 | Mcgill | May 1956 | A |
2751010 | Trahan | Jun 1956 | A |
2762438 | Naylor | Sep 1956 | A |
2778428 | Baker et al. | Jan 1957 | A |
2806532 | Baker et al. | Sep 1957 | A |
2881838 | Morse et al. | Apr 1959 | A |
2887162 | Le Bus et al. | May 1959 | A |
2912053 | Bruekelman | Nov 1959 | A |
2912273 | Chadderdon et al. | Nov 1959 | A |
2915127 | Abendroth | Dec 1959 | A |
2935020 | Howard et al. | May 1960 | A |
2947362 | Smith | Aug 1960 | A |
2965175 | Ransom | Dec 1960 | A |
2965177 | Le Bus et al. | Dec 1960 | A |
2965183 | Le Bus et al. | Dec 1960 | A |
3005506 | Le Bus et al. | Oct 1961 | A |
3023810 | Anderson | Mar 1962 | A |
3116799 | Lemons | Jan 1964 | A |
3147536 | Lamphere | Sep 1964 | A |
3191677 | Kinley | Jun 1965 | A |
3225828 | Wisenbaker et al. | Dec 1965 | A |
3308886 | Evans | Mar 1967 | A |
3352593 | Webb | Nov 1967 | A |
3369603 | Trantham | Feb 1968 | A |
3376934 | William | Apr 1968 | A |
3380528 | Durwood | Apr 1968 | A |
3381748 | Peters et al. | May 1968 | A |
3382925 | Jennings | May 1968 | A |
3409084 | Lawson, Jr. et al. | Nov 1968 | A |
3437136 | Young | Apr 1969 | A |
3554278 | Reistle | Jan 1971 | A |
3667721 | Vujasinovic | Jun 1972 | A |
3747674 | Murray | Jul 1973 | A |
3752230 | Bernat et al. | Aug 1973 | A |
3897038 | Le Rouax | Jul 1975 | A |
3915426 | Rouax | Oct 1975 | A |
3955622 | Jones | May 1976 | A |
4030354 | Scott | Jun 1977 | A |
4039237 | Cullen et al. | Aug 1977 | A |
4039798 | Lyhall et al. | Aug 1977 | A |
4042019 | Henning | Aug 1977 | A |
4059155 | Greer | Nov 1977 | A |
4099699 | Allen | Jul 1978 | A |
4190112 | Davis | Feb 1980 | A |
4215747 | Cox | Aug 1980 | A |
4227573 | Pearce et al. | Oct 1980 | A |
4254983 | Harris | Mar 1981 | A |
4276931 | Murray | Jul 1981 | A |
4285400 | Mullins | Aug 1981 | A |
4289200 | Fisher | Sep 1981 | A |
4291722 | Churchman | Sep 1981 | A |
4296822 | Ormsby | Oct 1981 | A |
4325534 | Roark et al. | Apr 1982 | A |
4349071 | Fish | Sep 1982 | A |
4391326 | Greenlee | Jul 1983 | A |
4407367 | Kydd | Oct 1983 | A |
4412130 | Winters | Oct 1983 | A |
4413642 | Smith et al. | Nov 1983 | A |
4422948 | Corley et al. | Dec 1983 | A |
4467996 | Baugh | Aug 1984 | A |
4478286 | Fineberg | Oct 1984 | A |
4515212 | Krugh | May 1985 | A |
4538684 | Sheffield | Sep 1985 | A |
4562888 | Collet | Jan 1986 | A |
4603578 | Stolz | Aug 1986 | A |
4611658 | Salerni et al. | Sep 1986 | A |
4616721 | Furse | Oct 1986 | A |
4696502 | Desai | Sep 1987 | A |
4791992 | Greenlee et al. | Dec 1988 | A |
4834184 | Streich et al. | May 1989 | A |
4836289 | Young | Jun 1989 | A |
4869321 | Hamilton | Sep 1989 | A |
4877085 | Pullig, Jr. | Oct 1989 | A |
4898240 | Wittrisch | Feb 1990 | A |
4898245 | Braddick | Feb 1990 | A |
4928762 | Mamke | May 1990 | A |
4953617 | Ross et al. | Sep 1990 | A |
4997225 | Denis | Mar 1991 | A |
5012863 | Springer | May 1991 | A |
5013005 | Nance | May 1991 | A |
5054833 | Bishop et al. | Oct 1991 | A |
5060737 | Mohn | Oct 1991 | A |
5117909 | Wilton et al. | Jun 1992 | A |
5129956 | Christopher et al. | Jul 1992 | A |
5176208 | Lalande et al. | Jan 1993 | A |
5178219 | Streich et al. | Jan 1993 | A |
5197547 | Morgan | Mar 1993 | A |
5203646 | Landsberger et al. | Apr 1993 | A |
5295541 | Ng et al. | Mar 1994 | A |
5330000 | Givens et al. | Jul 1994 | A |
5343946 | Morrill | Sep 1994 | A |
5348095 | Worrall | Sep 1994 | A |
5358048 | Brooks | Oct 1994 | A |
5392715 | Pelrine | Feb 1995 | A |
5456312 | Lynde et al. | Oct 1995 | A |
5468153 | Brown et al. | Nov 1995 | A |
5507346 | Gano et al. | Apr 1996 | A |
5580114 | Palmer | Dec 1996 | A |
5584342 | Swinford | Dec 1996 | A |
5605366 | Beeman | Feb 1997 | A |
5639135 | Beeman | Jun 1997 | A |
5667015 | Harestad et al. | Sep 1997 | A |
5673754 | Taylor | Oct 1997 | A |
5678635 | Dunlap et al. | Oct 1997 | A |
5685982 | Foster | Nov 1997 | A |
5697441 | Vercaemer et al. | Dec 1997 | A |
5698814 | Parsons | Dec 1997 | A |
5704426 | Rytlewski et al. | Jan 1998 | A |
5775420 | Mitchell et al. | Jul 1998 | A |
5806596 | Hardy et al. | Sep 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5842518 | Soybel et al. | Dec 1998 | A |
5875841 | Wright et al. | Mar 1999 | A |
5881816 | Wright | Mar 1999 | A |
5887668 | Haugen et al. | Mar 1999 | A |
5899796 | Kamiyama et al. | May 1999 | A |
5924489 | Hatcher | Jul 1999 | A |
5931443 | Corte, Sr. | Aug 1999 | A |
5944101 | Hearn | Aug 1999 | A |
5996712 | Boyd | Dec 1999 | A |
6070665 | Singleton et al. | Jun 2000 | A |
6112809 | Angle | Sep 2000 | A |
6130615 | Poteet | Oct 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6138764 | Scarsdale et al. | Oct 2000 | A |
6155428 | Bailey et al. | Dec 2000 | A |
6247542 | Kruspe et al. | Jun 2001 | B1 |
6276452 | Davis et al. | Aug 2001 | B1 |
6371204 | Singh et al. | Apr 2002 | B1 |
6378627 | Tubel et al. | Apr 2002 | B1 |
6491108 | Slup et al. | Dec 2002 | B1 |
6510900 | Dallas | Jan 2003 | B2 |
6510947 | Schulte et al. | Jan 2003 | B1 |
6595289 | Tumlin et al. | Jul 2003 | B2 |
6637511 | Linaker | Oct 2003 | B2 |
6679330 | Compton et al. | Jan 2004 | B1 |
6688386 | Cornelssen | Feb 2004 | B2 |
6698712 | Milberger et al. | Mar 2004 | B2 |
6729392 | DeBerry et al. | May 2004 | B2 |
6768106 | Gzara et al. | Jul 2004 | B2 |
6808023 | Smith et al. | Oct 2004 | B2 |
6811032 | Schulte et al. | Nov 2004 | B2 |
6854521 | Echols et al. | Feb 2005 | B2 |
6880639 | Rhodes et al. | Apr 2005 | B2 |
6899178 | Tubel | May 2005 | B2 |
6913084 | Boyd | Jul 2005 | B2 |
7049272 | Sinclair et al. | May 2006 | B2 |
7051810 | Halliburton | May 2006 | B2 |
7082994 | Frost, Jr. et al. | Aug 2006 | B2 |
7090019 | Barrow et al. | Aug 2006 | B2 |
7096950 | Howlett et al. | Aug 2006 | B2 |
7117941 | Gano | Oct 2006 | B1 |
7117956 | Grattan et al. | Oct 2006 | B2 |
7128146 | Baugh | Oct 2006 | B2 |
7150328 | Marketz et al. | Dec 2006 | B2 |
7174764 | Oosterling et al. | Feb 2007 | B2 |
7188674 | McGavern, III et al. | Mar 2007 | B2 |
7188675 | Reynolds | Mar 2007 | B2 |
7218235 | Rainey | May 2007 | B1 |
7231975 | Lavaure et al. | Jun 2007 | B2 |
7249633 | Ravensbergen et al. | Jul 2007 | B2 |
7267179 | Abel | Sep 2007 | B1 |
7275591 | Allen et al. | Oct 2007 | B2 |
7284611 | Reddy et al. | Oct 2007 | B2 |
7303010 | de Guzman et al. | Dec 2007 | B2 |
7334634 | Abel | Feb 2008 | B1 |
7363860 | Wilson | Apr 2008 | B2 |
7383889 | Ring | Jun 2008 | B2 |
7389817 | Almdahl | Jun 2008 | B2 |
7398832 | Brisco | Jul 2008 | B2 |
7405182 | Verrett | Jul 2008 | B2 |
7418860 | Austerlitz et al. | Sep 2008 | B2 |
7424909 | Roberts et al. | Sep 2008 | B2 |
7487837 | Bailey et al. | Feb 2009 | B2 |
7488705 | Reddy et al. | Feb 2009 | B2 |
7497260 | Telfer | Mar 2009 | B2 |
7533731 | Corre | May 2009 | B2 |
7591305 | Brookey et al. | Sep 2009 | B2 |
7600572 | Slup et al. | Oct 2009 | B2 |
7617876 | Patel et al. | Nov 2009 | B2 |
7621324 | Atencio | Nov 2009 | B2 |
7712527 | Roddy | May 2010 | B2 |
7735564 | Guerrero | Jun 2010 | B2 |
7762323 | Frazier | Jul 2010 | B2 |
7762330 | Saylor, III et al. | Jul 2010 | B2 |
7802621 | Richards et al. | Sep 2010 | B2 |
7878240 | Garcia | Feb 2011 | B2 |
7934552 | La Rovere | May 2011 | B2 |
7965175 | Yamano | Jun 2011 | B2 |
8002049 | Keese et al. | Aug 2011 | B2 |
8056621 | Ring et al. | Nov 2011 | B2 |
8069916 | Giroux et al. | Dec 2011 | B2 |
8157007 | Nicolas | Apr 2012 | B2 |
8201693 | Jan | Jun 2012 | B2 |
8210251 | Lynde et al. | Jul 2012 | B2 |
8376051 | McGrath et al. | Feb 2013 | B2 |
8424611 | Smith et al. | Apr 2013 | B2 |
8453724 | Zhou | Jun 2013 | B2 |
8496055 | Mootoo et al. | Jul 2013 | B2 |
8579024 | Mailand et al. | Nov 2013 | B2 |
8579037 | Jacob | Nov 2013 | B2 |
8596463 | Burkhard | Dec 2013 | B2 |
8662182 | Redlinger et al. | Mar 2014 | B2 |
8726983 | Khan | May 2014 | B2 |
8770276 | Nish et al. | Jul 2014 | B1 |
8899338 | Elsayed et al. | Dec 2014 | B2 |
8991489 | Redlinger et al. | Mar 2015 | B2 |
9079222 | Burnett et al. | Jul 2015 | B2 |
9109433 | DiFoggio et al. | Aug 2015 | B2 |
9133671 | Kellner | Sep 2015 | B2 |
9163469 | Broussard et al. | Oct 2015 | B2 |
9181782 | Berube et al. | Nov 2015 | B2 |
9200486 | Leveau et al. | Dec 2015 | B2 |
9212532 | Leuchtenberg et al. | Dec 2015 | B2 |
9234394 | Wheater et al. | Jan 2016 | B2 |
9353589 | Hekelaar | May 2016 | B2 |
9359861 | Burgos | Jun 2016 | B2 |
9410066 | Ghassemzadeh | Aug 2016 | B2 |
9416617 | Wiese et al. | Aug 2016 | B2 |
9441441 | Hickie | Sep 2016 | B1 |
9441451 | Jurgensmeier | Sep 2016 | B2 |
9528354 | Loiseau et al. | Dec 2016 | B2 |
9551200 | Read et al. | Jan 2017 | B2 |
9574417 | Laird et al. | Feb 2017 | B2 |
9617829 | Dale et al. | Apr 2017 | B2 |
9657213 | Murphy et al. | May 2017 | B2 |
9784073 | Bailey et al. | Oct 2017 | B2 |
9903192 | Entchev | Feb 2018 | B2 |
9976407 | Ash et al. | May 2018 | B2 |
10024154 | Gray et al. | Jul 2018 | B2 |
10087752 | Bedonet | Oct 2018 | B2 |
10161194 | Clemens et al. | Dec 2018 | B2 |
10198929 | Snyder | Feb 2019 | B2 |
10202817 | Arteaga | Feb 2019 | B2 |
10266698 | Cano et al. | Apr 2019 | B2 |
10280706 | Sharp, III | May 2019 | B1 |
10301898 | Orban | May 2019 | B2 |
10301989 | Imada | May 2019 | B2 |
10544640 | Hekelaar et al. | Jan 2020 | B2 |
10584546 | Ford | Mar 2020 | B1 |
10626698 | Al-Mousa et al. | Apr 2020 | B2 |
10787888 | Andersen | Sep 2020 | B2 |
10837254 | Al-Mousa et al. | Nov 2020 | B2 |
10954739 | Sehsah et al. | Mar 2021 | B2 |
10975654 | Neacsu et al. | Apr 2021 | B1 |
10982504 | Al-Mousa et al. | Apr 2021 | B2 |
11008824 | Al-Mousa et al. | May 2021 | B2 |
11035190 | Neascu et al. | Jun 2021 | B2 |
20020053428 | Maples | May 2002 | A1 |
20020060079 | Metcalfe | May 2002 | A1 |
20020129945 | Brewer et al. | Sep 2002 | A1 |
20020195252 | Maguire | Dec 2002 | A1 |
20030047312 | Bell | Mar 2003 | A1 |
20030098064 | Kohli et al. | May 2003 | A1 |
20030132224 | Spencer | Jul 2003 | A1 |
20030150608 | Smith | Aug 2003 | A1 |
20030221840 | Whitelaw | Dec 2003 | A1 |
20040031940 | Biester | Feb 2004 | A1 |
20040040707 | Dusterhoft et al. | Mar 2004 | A1 |
20040060700 | Vert | Apr 2004 | A1 |
20040065446 | Tran et al. | Apr 2004 | A1 |
20040074819 | Burnett | Apr 2004 | A1 |
20040095248 | Mandel | May 2004 | A1 |
20040168796 | Baugh et al. | Sep 2004 | A1 |
20040216891 | Maguire | Nov 2004 | A1 |
20050024231 | Fincher et al. | Feb 2005 | A1 |
20050056427 | Clemens et al. | Mar 2005 | A1 |
20050087585 | Copperthite et al. | Apr 2005 | A1 |
20050167097 | Sommers et al. | Aug 2005 | A1 |
20050263282 | Jeffrey et al. | Dec 2005 | A1 |
20060082462 | Crook | Apr 2006 | A1 |
20060102338 | Angman | May 2006 | A1 |
20060105896 | Smith et al. | May 2006 | A1 |
20060243453 | McKee | Nov 2006 | A1 |
20070114039 | Hobdy et al. | May 2007 | A1 |
20070137528 | Le Roy-Delage et al. | Jun 2007 | A1 |
20070181304 | Rankin et al. | Aug 2007 | A1 |
20070204999 | Cowie et al. | Sep 2007 | A1 |
20070256864 | Robichaux et al. | Nov 2007 | A1 |
20070256867 | DeGeare et al. | Nov 2007 | A1 |
20080007421 | Liu et al. | Jan 2008 | A1 |
20080066912 | Freyer et al. | Mar 2008 | A1 |
20080087439 | Dallas | Apr 2008 | A1 |
20080236841 | Howlett et al. | Oct 2008 | A1 |
20080251253 | Lumbye | Oct 2008 | A1 |
20080314591 | Hales et al. | Dec 2008 | A1 |
20090194290 | Parks et al. | Aug 2009 | A1 |
20090250220 | Stamoulis | Oct 2009 | A1 |
20090308656 | Chitwood | Dec 2009 | A1 |
20100051265 | Hurst | Mar 2010 | A1 |
20100193124 | Nicolas | Aug 2010 | A1 |
20100258289 | Lynde et al. | Oct 2010 | A1 |
20100263856 | Lynde et al. | Oct 2010 | A1 |
20100270018 | Howlett | Oct 2010 | A1 |
20110036570 | La Rovere et al. | Feb 2011 | A1 |
20110056681 | Khan | Mar 2011 | A1 |
20110067869 | Bour et al. | Mar 2011 | A1 |
20110168411 | Braddick | Jul 2011 | A1 |
20110203794 | Moffitt et al. | Aug 2011 | A1 |
20110259609 | Hessels et al. | Oct 2011 | A1 |
20110273291 | Adams | Nov 2011 | A1 |
20110278021 | Travis et al. | Nov 2011 | A1 |
20120012335 | White et al. | Jan 2012 | A1 |
20120024546 | Rondeau | Feb 2012 | A1 |
20120067447 | Ryan et al. | Mar 2012 | A1 |
20120085538 | Guerrero | Apr 2012 | A1 |
20120118571 | Zhou | May 2012 | A1 |
20120170406 | DiFoggio et al. | Jul 2012 | A1 |
20120205908 | Fischer et al. | Aug 2012 | A1 |
20120285684 | Crow et al. | Nov 2012 | A1 |
20130062055 | Tolman | Mar 2013 | A1 |
20130134704 | Klimack | May 2013 | A1 |
20130140022 | Leighton | Jun 2013 | A1 |
20130213654 | Dewey et al. | Aug 2013 | A1 |
20130240207 | Frazier | Sep 2013 | A1 |
20130269097 | Alammari | Oct 2013 | A1 |
20130296199 | Ghassemzadeh | Nov 2013 | A1 |
20130299194 | Bell | Nov 2013 | A1 |
20140090898 | Moriarty | Apr 2014 | A1 |
20140138091 | Fuhst | May 2014 | A1 |
20140158350 | Castillo et al. | Jun 2014 | A1 |
20140175689 | Mussig | Jun 2014 | A1 |
20140231068 | Isaksen | Aug 2014 | A1 |
20140251616 | O'Rourke et al. | Sep 2014 | A1 |
20150013994 | Bailey et al. | Jan 2015 | A1 |
20150096738 | Atencio | Apr 2015 | A1 |
20150152704 | Tunget | Jun 2015 | A1 |
20150275649 | Orban | Oct 2015 | A1 |
20160076327 | Glaser et al. | Mar 2016 | A1 |
20160084034 | Roane et al. | Mar 2016 | A1 |
20160130914 | Steele | May 2016 | A1 |
20160160106 | Jamison et al. | Jun 2016 | A1 |
20160237810 | Beaman et al. | Aug 2016 | A1 |
20160281458 | Greenlee | Sep 2016 | A1 |
20160305215 | Harris et al. | Oct 2016 | A1 |
20160340994 | Ferguson et al. | Nov 2016 | A1 |
20170044864 | Sabins et al. | Feb 2017 | A1 |
20170058628 | Wijk et al. | Mar 2017 | A1 |
20170067313 | Connell et al. | Mar 2017 | A1 |
20170089166 | Sullivan | Mar 2017 | A1 |
20180010418 | VanLue | Jan 2018 | A1 |
20180030809 | Harestad et al. | Feb 2018 | A1 |
20180058167 | Finol et al. | Mar 2018 | A1 |
20180112493 | Recchioni | Apr 2018 | A1 |
20180175545 | Engel et al. | Jun 2018 | A1 |
20180187498 | Soto et al. | Jul 2018 | A1 |
20180209565 | Lingnau | Jul 2018 | A1 |
20180245427 | Jimenez et al. | Aug 2018 | A1 |
20180252069 | Abdollah et al. | Sep 2018 | A1 |
20190024473 | Arefi | Jan 2019 | A1 |
20190049017 | McAdam et al. | Feb 2019 | A1 |
20190087548 | Bennett et al. | Mar 2019 | A1 |
20190186232 | Ingram | Jun 2019 | A1 |
20190203551 | Davis et al. | Jul 2019 | A1 |
20190284894 | Schmidt et al. | Sep 2019 | A1 |
20190284898 | Fagna et al. | Sep 2019 | A1 |
20190301258 | Li | Oct 2019 | A1 |
20190316424 | Robichaux et al. | Oct 2019 | A1 |
20190338615 | Landry | Nov 2019 | A1 |
20200032604 | Al-Ramadhan | Jan 2020 | A1 |
20200056446 | Al-Mousa et al. | Feb 2020 | A1 |
20200240225 | King et al. | Jul 2020 | A1 |
20210025259 | Al-Mousa et al. | Jan 2021 | A1 |
20210054696 | Golinowski et al. | Feb 2021 | A1 |
20210054706 | Al-Mousa et al. | Feb 2021 | A1 |
20210054708 | Al-Mousa et al. | Feb 2021 | A1 |
20210054710 | Neacsu et al. | Feb 2021 | A1 |
20210054716 | Al-Mousa et al. | Feb 2021 | A1 |
20210131212 | Al-Mousa et al. | May 2021 | A1 |
20210131215 | Al-Mousa et al. | May 2021 | A1 |
20210140267 | Al-Mousa et al. | May 2021 | A1 |
20210198965 | Al-Mousa et al. | Jul 2021 | A1 |
20210215013 | Neacsu et al. | Jul 2021 | A1 |
20210230960 | Al-Mousa | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
636642 | May 1993 | AU |
2007249417 | Nov 2007 | AU |
1329349 | May 1994 | CA |
2441138 | Mar 2004 | CA |
2624368 | Apr 2011 | CA |
2762217 | May 2015 | CA |
2802988 | Oct 2015 | CA |
2879985 | Apr 2016 | CA |
2734032 | Jun 2016 | CA |
203292820 | Nov 2013 | CN |
103785923 | Jun 2016 | CN |
104712320 | Dec 2016 | CN |
107060679 | Aug 2017 | CN |
107191152 | Sep 2017 | CN |
107227939 | Oct 2017 | CN |
108756851 | Nov 2018 | CN |
2545245 | Apr 2017 | DK |
2236742 | Aug 2017 | DK |
0792997 | Jan 1999 | EP |
2119867 | Nov 2009 | EP |
2737172 | Jun 2014 | EP |
2964874 | Jan 2016 | EP |
2545245 | Apr 2017 | EP |
2275961 | Mar 2011 | ES |
958734 | May 1964 | GB |
2021178 | Nov 1979 | GB |
2203602 | Oct 1988 | GB |
2392183 | Feb 2004 | GB |
2396634 | Jun 2004 | GB |
2414586 | Nov 2005 | GB |
2425138 | Oct 2006 | GB |
2427214 | Dec 2006 | GB |
2453279 | Jan 2009 | GB |
2492663 | Jan 2014 | GB |
2546996 | Aug 2017 | GB |
2001271982 | Oct 2001 | JP |
333538 | Jul 2013 | NO |
20170293 | Aug 2018 | NO |
5503 | Apr 1981 | OA |
2669969 | Oct 2018 | RU |
201603922 | Feb 2016 | TW |
201622853 | Jul 2016 | TW |
WO 1989012728 | Dec 1989 | WO |
WO 1996039570 | Dec 1996 | WO |
WO 2002090711 | Nov 2002 | WO |
WO 2004046497 | Jun 2004 | WO |
WO 2010132807 | Nov 2010 | WO |
WO 2012161854 | Nov 2012 | WO |
WO 2012164023 | Dec 2012 | WO |
WO 2013109248 | Jul 2013 | WO |
WO 2015112022 | Jul 2015 | WO |
WO 2016011085 | Jan 2016 | WO |
WO 2016040310 | Mar 2016 | WO |
WO 2016140807 | Sep 2016 | WO |
WO 2017043977 | Mar 2017 | WO |
WO 2018017104 | Jan 2018 | WO |
WO 2018164680 | Sep 2018 | WO |
WO 2019027830 | Feb 2019 | WO |
WO 2019132877 | Jul 2019 | WO |
WO 2019231679 | Dec 2019 | WO |
Entry |
---|
Al-Ansari et al., “Thermal Activated Resin to Avoid Pressure Build-Up in Casing-Casing Annulus (CCA),” SA-175425-MS, Society of Petroleum Engineers (SPE), presented at the SPE Offshore Europe Conference and Exhibition, Sep. 8-11, 2015, 11 pages. |
Al-Ibrahim et al., “Automated Cyclostratigraphic Analysis in Carbonate Mudrocks Using Borehole Images,” Article #41425, posted presented at the 2014 AAPG Annual Convention and Exhibition, Search and Discovery, Apr. 6-9, 2014, 4 pages. |
Bautista et al., “Probability-based Dynamic Time Warping for Gesture Recognition on RGB-D data,” WDIA 2012: Advances in Depth Image Analysis and Application, 126-135, International Workshop on Depth Image Analysis and Applications, Nov. 2012, 11 pages. |
Boriah et al., “Similarity Measures for Categorical Data: A Comparative Evaluation,” presented at the SIAM International Conference on Data Mining, SDM 2008, Apr. 24-26, 2008, 12 pages. |
Bruton et al., “Whipstock Options for Sidetracking,” Oilfield Review, Spring 2014, 26:1, 10 pages. |
Edwards et al., “Assessing Uncertainty in Stratigraphic Correlation: A Stochastic Method Based on Dynamic Time Warping,” RM13, Second EAGE Integrated Reservoir Modelling Conference, Nov. 16-19, 2014, 2 pages. |
Edwards, “Construction de modèles stratigraphiques à partir de données éparses,” Stratigraphie, Université de Lorraine, 2017, 133 pages, English abstract. |
Fischer, “The Lofer Cyclothems of the Alpine Triassic,” published in Merriam, Symposium on Cyclic Sedimentation: Kansas Geological Survey (KGS), Bulletin, 1964, 169: 107-149, 50 pages. |
Forum Energy Technologies “Drill Pipe Float Valves,” 2019, Catalog, 6 pages. |
Hernandez-Vela et al., “Probability-based Dynamic Time Warping and Bag-of-Visual- and-Depth-Words for human Gesture Recognition in RGB-D,” Pattern Recognition Letters, Dec. 2014, 50: 112-121, 10 pages. |
Herrera and Bann, “Guided seismic-to-well tying based on dynamic time warping,” SEG Las Vegas 2012 Annual Meeting, Nov. 2012, 6 pages. |
Hydril “Checkguard” Kellyguard Drill Stem Valves, Catalog DSV 2003, Brochure, 9 pages. |
Keogh and Ratanamahatana, “Exact indexing of dynamic time warping,” Knowledge and Information Systems, Springer-Verlag London Ltd., 2004, 29 pages. |
Lallier et al., “3D Stochastic Stratigraphic Well Correlation of Carbonate Ramp Systems,” IPTC 14046, International Petroleum Technology Conference (IPTC), presented at the International Petroleum Technology Conference, Dec. 7-9, 2009, 5 pages. |
Lallier et al., “Management of ambiguities in magnetostratigraphic correlation,” Earth and Planetary Science Letters, Jun. 2013, 371-372: 26-36, 11 pages. |
Lallier et al., “Uncertainty assessment in the stratigraphic well correlation of a carbonate ramp: Method and application of the Beausset Basin, SE France,” C. R. Geoscience, Sep. 2016, 348: 499-509, 11 pages. |
Lineman et al., “Well to Well Log Correlation Using Knowledge-Based Systems and Dynamic Depth Warping,” SPWLA Twenty-Eighth Annual Logging Symposium, Jun. 29-Jul. 2, 1987, 25 pages. |
Nakanishi and Nakagawa, “Speaker-Independent Word Recognition by Less Cost and Stochastic Dynamic Time Warping Method,” ISCA Archive, European Conference on Speech Technology, Sep. 1987, 4 pages. |
Packardusa.com [online], “Drop-in Check Valves,” Packard International, available on or before Jul. 6, 2007, via Internet Archive: Wayback Machine URL <http://web.archive.org/web/20070706210423/http://packardusa.com/productsandservices5.asp>, retrieved on May 11, 2021, URL <www.packardusa.com/productsandservices5.asp>, 2 pages. |
Pels et al., “Automated biostratigraphic correlation of palynological records on the basis of shapes of pollen curves and evaluation of next-best solutions,” Paleogeography, Paleoclimatology, Paleoecology, Aug. 1996, 124: 17-37, 21 pages. |
Pollack et al., “Automatic Well Log Correlation,” AAPG Annual Convention and Exhibition, Apr. 3, 2017, 1 page, Abstract Only. |
Rudman and Lankston, “Stratigraphic Correlation of Well Logs by Computer Techniques,” The American Association of Petroleum Geologists, Mar. 1973, 53:3 (557-588), 12 pages. |
Sakoe and Chiba, “Dynamic Programming Algorithm Optimization for Spoken Word Recognition,” IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-26:1, Feb. 1978, 7 pages. |
Salvador and Chan, “FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space,” presented at the KDD Workshop on Mining Temporal and Sequential Data, Intelligent Data Analysis, Jan. 2004, 11:5 (70-80), 11 pages. |
Sayhi, “peakdet: Peak detection using MATLAB,” Jul. 2012, 4 pages. |
Scribd.com [online], “Milling Practices and Procedures,” retrieved from URL <https://www.scribd.com/document/358420338/Milling-Rev-2-Secured>, 80 pages. |
Silva and Koegh, “Prefix and Suffix Invariant Dynamic Time Warping,” IEEE Computer Society, presented at the IEEE 16th International Conference on Data Mining, Dec. 2016, 6 pages. |
Smith and Waterman, “New Stratigraphic Correlation Techniques,” Journal of Geology, Jul. 1980, 88: 451-457, 8 pages. |
Startzman and Kuo, “A Rule-Based System for Well Log Correlation,” SPE Formative Evaluation, Society of Petroleum Engineers (SPE), Sep. 1987, 9 pages. |
TAM International Inflatable and Swellable Packers, “TAM Scab Liner brochure,” Tam International, available on or before Nov. 15, 2016, 4 pages. |
Tomasi et al., “Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data,” Journal of Chemometrics, 2004, 18: 231-241, 11 pages. |
Uchida et al., “Non-Markovian Dynamic Time Warping,” presented at the 21st International Conference on Pattern Recognition (ICPR), Nov. 11-15, 2012, 4 pages. |
Waterman and Raymond, “The Match Game: New Stratigraphic Correlation Algorithms,” Mathematical Geology, 1987, 19:2, 19 pages. |
Weatherford, “Micro-Seal Isolation System-Bow (MSIS-B),” Weatherford Swellable Well Construction Products, Brochure, 2009-2011, 2 pages. |
Zoraster et al., “Curve Alignment for Well-to-Well Log Correlation,” SPE 90471, Society of Petroleum Engineers (SPE), presented at the SPE Annual Technical Conference and Exhibition, Sep. 26-29, 2004, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20230059642 A1 | Feb 2023 | US |