The present invention relates to a floating body connection-type flap gate which is installed at an opening in a seawall to prevent a rising water from flowing into a public space fat a time of rising water, by using the pressure of the water which is trying to flow in and the buoyancy of a door body to raise the door body, so as to block the opening.
There are cases in which a floating body flap gate which blocks an opening is installed at an opening of a seawall to prevent the rising water from flowing into a public space at the time of rising water (e.g., Patent Reference 1 and Patent Reference 2).
This type of floating body flap gate has a door body with a single large floating body, and the door body is raised by using the pressure of the water which is trying to flow in from an opening in a seawall and a buoyancy of the door body itself, to block the opening.
However, the door body of a conventional floating body flap gate was formed as a single unit in a vertical direction. Consequently, as shown in
When water first starts to flow into the opening, since the door does not rise in response to the influx of the water and starts to rise after the influx of water, there is a problem that the water infiltrates from the opening during the period in which the rising of the door is delayed.
Moreover, if water flows in with a high hydrodynamic force (a swift current or a rapids) while the door rises, there is also a problem that the door body is subjected to a massive shock when it completes the rising movement, which damages the door body.
The problem which the present invention aims to solve is that when the water level reaches a certain height, in the conventional floating body flap gate which was disposed to block an opening in a seawall, the entire door body rises at once, which resulted in there being a problem of a high risk of a significant shaking of the door body. There was also a problem of water leaking when water first starts to flow into the opening, because the door starts to rise after the influx of water. Moreover, if water flows in with a high hydrodynamic force while the door rises, there is a problem of damage to the door body.
Means for Solving this Problem
The floating body connection-type flap gate according to the present invention is a floating body flap gate which comprises a door body disposed on a roadway surface in an opening and rises to block the opening, when water is trying to flow in from the opening, by using a water pressure of the water which is trying to flow in and a buoyancy of the door body. In order to prevent the door body from shaking significantly, the door body formed with two or more door body blocks which are separated in the vertical direction. These door body blocks which are separated in the vertical direction are connected by a rotation mechanism for rotation at a specified angle within a vertical plane in a direction in which the water is trying to flow in from the opening.
According to the present invention, the door body as a whole does not shake significantly, regardless of the water level, because the door body blocks which are separated in the vertical direction rotatively rise sequentially in an order starting from the roadway surface side.
In the present invention, a door body block at the forward end in the vertical direction is configured to rotate at a specified angle in a direction opposite to the direction in which water is trying to flow in from the opening. With the configuration, the door body block at the forward end rises ahead of the influx of water. In this case, the water that flows in from the opening is directed to the lower side of the door body block which is in a lowered state, and causes the water pressure to be utilized in a diagonal direction at the lower side of the door body. Accordingly, the operation of raising the door body block increases in speed when the water starts to flow into the opening, thereby making it possible to prevent the influx of water from the opening, and making it possible to prevent water from leaking.
In addition, in the present invention, the range of the angle of rotation of the rotation mechanism provided between the door body blocks which are separated in the vertical direction is smaller than the range of the angle of rotation of the rotation mechanism provided between a base end door body block and the roadway surface. If constructed in this manner, the upper door body blocks are set to be raised immediately before the base end door body block has finished rising. Therefore, when the door body stops rising, the shock imparted to the base end door body block is mitigated, with the result that there is no damage to the door body, even if there is an influx of water with a high hydrodynamic force while the door body is rising.
According to the present invention, the door body blocks which are separated in the vertical direction from the roadway surface rotatively rise sequentially from the roadway surface side in an order starting from the roadway surface side, so that the door body is not subject to significant shaking, regardless of the water level at which the water tries to flow in from the opening.
a) and 3(b) are drawings illustrating the circled portion a in
a), 4(b) and 4(c) are drawings illustrating the circled portion b in
a) and 5(b) are drawings illustrating the circled portion c in
According to the present invention, the object of preventing the door body from shaking significantly when it rises is achieved by means of two or more door body blocks separated in the vertical direction so as to be rotatable for a specified angle within a vertical plane in a direction in which water is trying to flow in from the opening.
An example of the present invention is described in detail below using
In
The manner in which the floating body connection-type flap gate 1 is disposed on the roadway surface s at the opening d in a seawall may be one of two types, namely a buried type shown in
The type which is buried in the roadway surface has a concave surface s1 (a buried pit) formed in the roadway surface s at the opening d, and is constructed at a position lower than the roadway surface, and the concave surface sl houses the floating body connection-type flap gate 1 (in a lowered state). In this roadway surface-buried type, a drainage channel is provided for draining water from the concave surface sl to the sea (or to a river).
On the other hand, the type which is mounted on the roadway surface has the floating body connection-type flap gate 1 (in a lowered state) mounted on the roadway surface at the opening, and is constructed at a position on the same level as the roadway surface.
According to the present invention, the door body 2 which forms the floating body connection-type flap gate 1 has a structure which is separated into three door body blocks 2a-2c in the vertical direction, which are hollow steel structures, for example. In the following description, these three door body blocks 2a-2c are referred to as a front end door body block 2a, a second door body block 2b, and a base end door body block 2c, that is, starting from the upper portion in the vertical direction.
The door body blocks 2a-2c which are separated in the vertical direction, and the base end door body block 2c and the roadway surface s, are connected by a rotation mechanism for rotation at a specified angle within a vertical plane in a direction in which the water w is trying to flow in from the opening d.
A rotation mechanism which connects the front end door body block 2a and the second door body block 2b is referred to as a first rotation mechanism 3a. A rotating mechanism which connects the second door body block 2b and the base end door body block 2c is referred to as a second rotation mechanism 3b. A rotation mechanism which connects the base end door body block 2c and the roadway surface s is referred to as a third rotation mechanism 3c.
These rotation mechanisms 3a-3c are formed, for example, with a structure described as follows.
The first rotation mechanism 3a is provided, for example, with two arc-shaped guide slots 3aa and 3ab formed at different radial positions in the end portion of the second door body block 2b adjacent to the front end door body block 2a. At the same time, moving pins 3ac and 3ad which are guided within these guide slots 3aa and 3ab are provided at the same radial positions as the arc-shaped guide slots 3aa and 3ab in the end portion of the front end door body block 2a adjacent to the second door body block 2b.
Likewise, the second rotation mechanism 3b is provided with, for example, two arc-shaped guide slots 3ba and 3bb formed at different radial positions in the end portion of the base end door body block 2c adjacent to the second door body block 2b. At the same time, moving pins 3bc and 3bd which are guided within these guide slots 3ba and 3bb are provided at the same radial positions as the arc-shaped guide slots 3ba and 3bb in the end portion of the second door body block 2b adjacent to the base end door body block 2c.
The third rotation mechanism 3c is provided with, for example, two arc-shaped guide slots 3ca and 3cb formed at different radial positions on the roadway surface s adjacent to the base end door body block 2c. At the same time, moving pins 3cc and 3cd which are guided within these guide slots 3ca and 3cb are provided at the same radial positions as the arc-shaped guide slots 3ca and 3cb in the end portion of the base end door body block 2c adjacent to the roadway surface s.
In such rotation mechanisms 3a-3c, the door body blocks 2a and 2b, the door body blocks 2b and 2c, and the roadway surface s and the door body block 2c rotate relative to each other with the radial centers of the arc-shaped guide slots 3aa, 3ab, 3ba, 3bb, 3ca, and 3cb serving as centers of rotation.
According to the present invention having the above construction, when the water w flows in from the opening d, the separated door body blocks 2c, 2b, and 2a rotatively rise in sequence from the roadway surface s, as shown in
When this operation occurs, the rotational angles between the door body blocks 2a and 2b, between the door body blocks 2b and 2c, and between the roadway surface s and the door body block 2c are set by determining the optimal length of the arc shape of the arc-shaped guide slots 3aa, 3ab, 3ba, 3bb, 3ca, and 3cb.
For example, the lengths of the arc shape of the arc-shaped guide slots 3aa, 3ab, 3ba, and 3bb are determined so that the first and second rotation mechanisms 3a and 3b rotate at 70° in the direction in which the water w is trying to flow in from the opening d. The lengths of the arc shape of the arc-shaped guide slots 3ca and 3cb are determined so that the third rotation mechanism 3c rotates at 75° in the direction in which the water w is trying to flow in from the opening d.
If the range of the rotation angle of the first and second rotation mechanisms 3a and 3b and the third rotation mechanism 3c is determined in the above-described manner, when the rotation angle of the base end door body block 2c exceeds 70°, the hydrodynamic force to which the base end door body block 2c is subjected raises the second door body block 2b from the surface of the water by pulling it up from the water surface.
Accordingly, the speed at which the base end door body block 2c rises is reduced immediately before the door body block has finished rising, so that the force of impact is mitigated, with the result that there is no damage to the door body, even if the water w flows in with a high hydrodynamic force while the door body is rising.
In addition to restricting the arc length of the guide slots 3aa, 3ab, 3ba, 3bb, 3ca, and 3cb as described above, the total bending angle of all of the rotation mechanisms 3a-3c is also restricted by means of a wire rope 6 which extends from the roadway surface s to the door body block 2a, passing through the door body block 2c and the door body block 2b. Such a construction makes it possible to prevent the door body blocks 2a-2c which are separated into three from being wound when the floating body connection-type flap gate 1 moves to a lowered position.
Moreover, the length of the arc shape of the arc-shaped slots 3aa and 3ab is determined so that a first rotation mechanism 3a rotates an angle of 15°, for example, in a direction opposite to the direction in which the water w is trying to flow in from the opening d.
In the case of such a construction, the front end door body block 2a rises ahead of the influx of the water w, as shown in
In the floating body connection-type flap gate 1 according to the present invention, it is advantageous to attach a water-tight member 4 in the vicinity of the center of rotation of the first to the third rotation mechanisms 3a-3c, as shown in
If the water-tight member 4 is attached in such a position, then the water-tight member 4 can be prevented from stretching when the rotation mechanisms 3a-3c rotate, thereby making it possible to prevent damage to the water-tight member 4, even in cases where the door body 2 is repeatedly raised and lowered.
It should be noted that in cases where the water-tight member 4 is not attached in the vicinity of the center of rotation of the first to the third rotation mechanisms 3a-3c, a simple structure may be employed which utilizes shafts disposed in the center of rotation as the rotation mechanisms 3a-3c of the door bodies 2a-2c.
Reference Numeral 5 in
It should be noted that a water-tight rubber member (not shown in the drawings) is attached to both sides of the door body blocks 2a-2c, to facilitate a close sliding of the sliding surfaces attached to both side walls of the opening d, so as to prevent water from leaking.
With reference to
The floating body connection-type flap gate 1 according to the present invention, which has a door body 2 in which the three door body blocks 2a-2c are connected, rises from a lowered state in which there is no rising water as shown in
a) shows a situation in which no flooding or the like has occurred. In this case, the floating body connection-type flap gate 1 is housed in the concave surface s1 which is formed on the roadway surface s at the opening d.
In the lowered state shown in
As the water continues to rise above the level shown in
As the water continues to rise above the level shown in
Following is a description of the operation of lowering the floating body connection-type flap gate 1 according to the present invention from the raised state shown in
d) shows a state prior to contending with a flood or the like. In this case, all of the door body blocks 2a-2c of the floating body connection-type flap gate 1 are in a raised state.
In
As the water continues to drop below the level shown in
As the water continues to drop below the level shown in
The present invention is not limited to the above-described example, and the preferred embodiment may, of course, be advantageously modified within the scope of the technical ideas recited in the claims.
For example, a cover may be attached to an inner surface of the rotation mechanisms 3a-3c, in order to prevent debris from getting caught in the rotation mechanisms 3a-3c.
Moreover, the door body 2 can be prevented from being wound up when the water level is low, because the total bending angle of all of the door body blocks 2a-2c is restricted by adjusting the length of the wire rope 6 which passes through the door body blocks 2a-2c.
In addition, the floating body connection-type flap gate 1 according to the present invention may be without the double-folding rod 5. Also, the floating body connection-type flap gate 1 may be mounted on the roadway surface, rather than buried therein. In cases such as these, the operations of raising and lowering the floating body connection-type flap gate 1 are essentially the same as in the example of the present invention described above.
1 Floating body connection-type flap gate
2 Door body
2
a-2c Door body blocks
3
a-3c Rotating mechanisms
3
aa, 3ab, 3ba, 3bb, 3ca, 3cb Guide slots
3
ac, 3ad, 3bc, 3bd, 3cc, 3cd Pins
4 Water-tight member
6 Wire rope
Number | Date | Country | Kind |
---|---|---|---|
2010-015823 | Jan 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/067463 | 10/5/2010 | WO | 00 | 7/18/2012 |