The present disclosure relates to a connector; in particular, to a floating connector and a conductive terminal thereof.
The conventional floating connector includes an inserting chamber and a plurality of conductive terminals installed in the inserting chamber. The inserting chamber is movable relative to the conductive terminals, and the conductive terminals can provide an elastic force to the inserting chamber for achieving a shockproof function. However, the structure of each conductive terminal of the conventional floating connector needs to be improved for providing a better shockproof function. Moreover, the performance of the conductive terminals of the conventional floating connector are limited due to the cooperation between the conductive terminals and the inserting chamber (e.g., each conductive terminal has an elastic segment and two fixing portions respectively arranged at two opposite sides of the elastic segment, and the two fixing portions of each conductive terminal are fixed on the inserting chamber).
The present disclosure provides a floating connector and a conductive terminal thereof to solve the drawback associated with conventional floating connectors.
The present disclosure provides a floating connector, which includes an insulating housing and a plurality of conductive terminals. The insulating housing includes an elongated inserting chamber defining a longitudinal direction. The inserting chamber includes a top wall and two opposite side walls, each of the two side walls has a plurality of fixing portions arranged on an outer surface thereof, and the fixing portions of each of the two side walls are arranged in one row parallel to the longitudinal direction and are arranged away from the top wall. The conductive terminals are respectively fastened to the fixing portions of the inserting chamber and arranged in two rows each being parallel to the longitudinal direction. Each of the conductive terminals is integrally formed as one piece and includes a contact segment, a curved segment, an elastic segment, and a fixing segment. The contact segment is inserted into the inserting chamber in a height direction. The curved segment has a first end connected to the contact segment and an opposite second end fixed on the corresponding fixing portion. The elastic segment and the fixing segment are arranged outside the inserting chamber. Two opposite ends of the elastic segment are respectively connected to the second end of the curved segment and the fixing segment. The conductive terminals are arranged in a mirror symmetry with respect to the inserting chamber, bottom surfaces of the fixing segments of the conductive terminals are substantially arranged on a plane, and the inserting chamber is spaced apart from the plane. The insulating housing is movable relative to the fixing segments, so that each of the elastic segments can be pressed to provide an elastic force to the insulating housing.
The present disclosure also provides a floating connector, which includes an inserting chamber and a plurality of conductive terminals. The inserting chamber includes a top wall and two opposite side walls. Each of the two side walls has a plurality of fixing portions. The conductive terminals are respectively fastened to the fixing portions of the inserting chamber. Each of the conductive terminals is integrally formed as one piece and includes a contact segment, a curved segment, an elastic segment, and a fixing segment. The contact segment is arranged in the inserting chamber. The curved segment has a first end connected to the contact segment and an opposite second end fixed on the corresponding fixing portion. The elastic segment and the fixing segment are arranged outside the inserting chamber. Two opposite ends of the elastic segment are respectively connected to the second end of the curved segment and the fixing segment. The inserting chamber is movable relative to the fixing segments, so that each of the elastic segments can be pressed to provide an elastic force to the inserting chamber.
The present disclosure further provides a conductive terminal of a floating connector. The conductive terminal includes a contact segment, a curved segment, an elastic segment, and a fixing segment. The curved segment is substantially a U-shape and has a first end and an opposite second end, in which the first end is connected to the contact segment. Two opposite ends of the elastic segment are respectively connected to the second end of the curved segment and the fixing segment, the elastic segment is substantially a U-shape, and a central axis of the elastic segment and a central axis of the curved segment have an acute angle. A portion of the contact segment arranged adjacent to the curved segment extends from the curved segment in a first direction, a portion of the fixing segment arranged adjacent to the elastic segment extends from the elastic segment in a second direction, and the first direction and the second direction are parallel to each other and extend in opposite directions.
In summary, the floating connector and the conductive terminal of the present disclosure can be provided with a better shockproof effect by the structural design of the conductive terminal. Moreover, the cooperation of the conductive terminals and the inserting chamber can be provided to prevent the insulating housing from limiting the performance of the conductive terminals, thereby effectively improving the shockproof effect of the floating connector.
In order to further appreciate the characteristics and technical contents of the present disclosure, references are hereunder made to the detailed descriptions and appended drawings in connection with the present disclosure. However, the appended drawings are merely shown for exemplary purposes, and should not be construed as restricting the scope of the present disclosure.
Reference is made to
As shown in
The floating connector 100 of the present embodiment includes an insulating housing 1, a plurality of conductive terminals 2 fastened to the insulating housing 1, two positioning posts 3 movably arranged in the insulating housing 1, and two end covers 4 detachably fixed on the insulating housing 1. The following description discloses the structure and connection of each component of the floating connector 100.
The conductive terminals 2 are described as being cooperated with the insulating housing 1 in the present embodiment, but the present disclosure is not limited thereto. That is to say, the conductive terminal 2 can also be applied with other components. Moreover, in other embodiments of the present disclosure, the floating connector 100 can be provided without the two positioning posts 3, the two end covers 4, and a portion of the insulating housing 1 corresponding to the two positioning posts 3 and the two end covers 4.
As shown in
The inserting chamber 11 includes a top wall 111 and two opposite side walls 112, and an inner portion of the inserting chamber 11 has a plurality of terminal slots 113 each penetratingly formed along the height direction H of the inserting chamber 11. Each of the terminal slots 113 has an insertion opening 1131 formed in the top wall 111, and the insertion openings 1131 of the terminal slots 113 are arranged in two rows each parallel to the longitudinal direction L. In other words, the terminal slots 113 are arranged in two rows each parallel to the longitudinal direction L.
Each of the two side walls 112 has a plurality of fixing portions 1121 arranged on an outer surface thereof, and the fixing portions 1121 of each of the two side walls 112 are arranged in one row parallel to the longitudinal direction L and are arranged away from the top wall 111. In the present embodiment, the outer surface of each of the two side walls 112 has an elongated rib parallel to the longitudinal direction L and arranged away from the top wall 111. Each of the ribs has a plurality of notches recessed from a lower side to an upper side thereof, and each of the notches is defined as a fixing portion 1121, but the structure of each fixing portion 1121 is not limited thereto.
Moreover, each of the two side walls 112 has a plurality of grooves 1122 (as shown in
The two positioning chambers 12 respectively and integrally extend from two opposite short ends of the inserting chamber 11, and each of the two positioning chambers 12 has a limiting slot 121 penetratingly formed in the height direction H. The limiting slot 121 of each of the two positioning chambers 12 has a big opening 1211 and a small opening 1212 respectively arranged on two opposite sides thereof (i.e., the top side of the positioning chamber 12 as shown in
As shown in
As the conductive terminals 2 in the present embodiment are of the same structure, the following description only discloses the structure of one of the conductive terminals 2 and a corresponding portion of the inserting chamber 11 (i.e., the corresponding terminal slot 113 and the corresponding fixing portion 1121) for the sake of brevity. However, in other embodiments of the present disclosure, the conductive terminals 2 can be formed in different structures.
As shown in
Specifically, the contact segment 21 is inserted into the corresponding terminal slot 113 of the inserting chamber 11 in the height direction H. The conductive terminal 2 includes an extending sheet 21 having an elongated flat shape and two clamping sheets 22 respectively and extending curvedly from two opposite side edges of the extending sheet 21. The extending sheet 21 is flatly abutted against the inner surface of the corresponding side wall 112, and a bottom portion of each clamping sheet 22 preferably pierces into the inner surface of the corresponding terminal slot 113. Moreover, the extending sheet 211 and free ends of the two clamping sheets 212 of the conductive terminal 2 are preferably arranged outside a projecting space defined by orthogonally projecting the corresponding insertion opening 1131 toward the terminal slot 113 in the height direction H (as shown in
The curved segment 22 includes an internal portion 221 connected to the contact segment 21, an external portion 222 connected to the elastic segment 23, and a C-shaped portion 223 having two ends respectively connected to the internal portion 221 and the external portion 222. The internal portion 221 and the external portion 222 of the curved segment 22 in the present embodiment are two elongated structures substantially parallel to each other, so that the curved segment 22 is substantially a U-shape straddling a part of the corresponding side wall 112, but the present disclosure is not limited thereto.
Specifically, the internal portion 221 is arranged in the corresponding terminal slot 113 of the inserting chamber 11, and the internal portion 221 faces the groove 1122 of the corresponding terminal slot 113, so that the internal portion 221 is spaced apart from the corresponding side wall 112. The external portion 222 and the C-shaped portion 223 are arranged outside the inserting chamber 11, and the external portion 222 (i.e., the second end) is fastened to the corresponding fixing portion 1121 and abutted against the outer surface of the corresponding side wall 112.
It should be noted that the external portion 222 in the present embodiment is wedged into the corresponding fixing portion 1121, but the connection of the external portion 222 and the corresponding fixing portion 1121 in the present disclosure can be changed according to practical requirements and is not limited to the present embodiment.
The elastic segment 23 is arranged outside the inserting chamber 11, and a width of the elastic segment 23 in the present embodiment is the minimum width of the conductive terminal 2. In the present embodiment, the elastic segment 23 is substantially a U-shape, and a central axis C23 of the elastic segment 23 and a central axis C22 of the curved segment 22 (or the height direction H) have an acute angle α within a range of 30-60 degrees.
Moreover, a corner formed by the elastic segment 23 and the curved segment 22 has a first angle α1 within a range of 120-150 degrees, a corner formed by the elastic segment 23 and the fixing segment 24 has a second angle α2, and a difference between the first angle α1 and the second angle α2 is smaller than or equal to 5 degrees. In the present embodiment, the first angle α1 is substantially equal to the second angle α2, but the present disclosure is not limited thereto.
The fixing segment 24 is arranged outside the inserting chamber 11, and the fixing segment 24 in the present embodiment is an L-shape suitable for the surface mounting technology (SMT), but the present disclosure is not limited thereto. For example, in other embodiments of the present disclosure, the fixing segment 24 can be a structure suitable for inserting into and being soldered on an object (e.g., a circuit board).
In addition, a portion of the contact segment 21 (i.e., the bottom portion of the extending sheet 211 as shown in
The structure of the single conductive terminal 2 has been disclosed in the above description, and the following description discloses the connection between the conductive terminals 2 and other components. As shown in
Accordingly, the insulating housing 1 (or the inserting chamber 11) is movable relative to the fixing segments 24, so that each of the elastic segments 23 can be pressed for providing an elastic force to the insulating housing 1 (or the inserting chamber 11). Specifically, the external portion 222 of each of the conductive terminals 2 and the corresponding fixing portion 1121 are cooperated with each other to form a fulcrum, so that when the insulating housing 1 and the portion of each conductive terminal 2 arranged in the insulating housing 1 are moved, the elastic segment 23 of each conductive terminal 2 can provide the elastic force to maintain the connection of the contact segment 21 of each conductive terminal 2 and the corresponding terminal of the mating connector.
Moreover, in each of the conductive terminals 2, a projecting region, which is defined by orthogonally projecting a corner of the elastic segment 23 arranged away from the inserting chamber 11 onto the circuit board 200 in the height direction H, is arranged outside the fixing segment 24.
As shown in
Specifically, in each of the two positioning posts 3 and the corresponding positioning chamber 12 of the present embodiment, the positioning post 3 includes a limiting portion 31 and a supporting portion 32 connected to the limiting portion 31. Moreover, a cross section of the limiting portion 31 perpendicular to the height direction H is larger than a cross section of the supporting portion 32 perpendicular to the height direction H. The cross section of the limiting portion 31 is larger than the small opening 1212 and is smaller than the big opening 1211, and the cross section of the supporting portion 32 is smaller than the small opening 1212.
Thus, in each positioning post 3 and the corresponding positioning chamber 12 of the present embodiment, an upper part of the supporting portion 32 is arranged in the lower half space of the positioning chamber 12, a lower part of the supporting portion 32 passes through the small opening 1212, and the limiting portion 31 is arranged in the upper half space of the positioning chamber 12 and is limited in the positioning chamber 12.
Specifically, when the insulating housing 1 of the floating connector 100 is not moved, the limiting portion 31 of each positioning post 3 is spaced apart from an inner surface of the corresponding positioning chamber 12. When the floating connector 100 is moved relative to the mating connector, the moving range of the insulating housing 1 is limited to the limiting portion 31 of each positioning post 3. In other words, when the insulating housing 1 is moved too far, the inner surface of each positioning chamber 12 (i.e., the limiting step surface 1213) will abut against the limiting portion 31 of the corresponding positioning post 3, so that the insulating housing 1 cannot be further moved.
The two end covers 4 are respectively and detachably fastened to the two positioning chambers 12 of the insulating housing 1 so as to respectively shield the two big openings 1211, thereby preventing the two positioning posts 3 from falling outside the range of the two positioning chambers 12 through the two big openings 1211. Moreover, the outer surface of each end cover 4 is preferably flush with the adjacent surface of the insulating housing 1, but the present disclosure is not limited thereto.
In addition, in other embodiments of the present disclosure, the insulating housing 1 can be further formed with a projective case extending outwardly from the inserting chamber 11, and the elastic segments 23 of the conductive terminals 2 can be substantially arranged in the projective case and not in contact with the projective case, so that the conductive terminals 2 can be protected by the projective case.
[The Effects of the Present Embodiments]
In summary, the floating connector and the conductive terminal of the present disclosure can be provided with a better shockproof effect by the structural design of the conductive terminal. Moreover, the cooperation of the conductive terminals and the inserting chamber (e.g., a part of each conductive terminal fastened to the inserting chamber is only located at one side of the elastic segment, and the elastic segments of the conductive terminals are arranged outside the inserting chamber) can be provided to prevent the insulating housing from limiting the performance of the conductive terminals, thereby effectively improving the shockproof effect of the floating connector.
The descriptions illustrated supra set forth simply the preferred embodiments of the present disclosure; however, the characteristics of the present disclosure are by no means restricted thereto. All changes, alterations, or modifications conveniently considered by those skilled in the art are deemed to be encompassed within the scope of the present disclosure delineated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6773283 | Yoshimatsu | Aug 2004 | B2 |
7040904 | Kajimoto | May 2006 | B2 |
7125260 | Orita | Oct 2006 | B2 |
7862345 | Fukazawa | Jan 2011 | B2 |
9178326 | Funayama | Nov 2015 | B2 |
9887484 | Hu | Feb 2018 | B1 |
20170170588 | Doi | Jun 2017 | A1 |