The invention relates to a floating cryogenic hydrocarbon storage structure having a hull with a center line extending in a length direction and two longitudinal side walls, the structure comprising at least three spherical storage tanks. The invention in particular relates to a floating cryogenic hydrocarbon storage structure with a double side shell hull and having a row of Moss type storage tanks on either side of the center line.
Such a floating cryogenic hydrocarbon storage structure is known from WO2013/156623 in which a twin-hull cryogenic LNG Floating Production Storage and Offloading structure (a so-called LNG FPSO) is described that is constructed from two interconnected converted LNG carriers. The LNG carriers each comprise a row of spherical Moss tanks in which liquefied natural gas is stored at temperatures of −163° C. at ambient pressure. A number of LNG tanks has been removed so that a flat topside is formed on which the processing equipment for hydrocarbon processing and for liquefaction is placed. The hulls are interconnected by a relatively wide interconnecting beans structure and the two rows of tanks on each side of the longitudinal center line are separated by a relatively large distance.
The known structure comprises six Moss type tanks and has a capacity of 150.000 m3 LNG. It is based on existing retrofitted LNG carriers and is of relatively wide dimensions. The twin hull construction is less suitable for new built floating structures.
From WO2010/059059 a cryogenic carrier is known comprising a single row of Moss type tanks and sponsons for supporting processing equipment.
It is an object of the invention to provide a floating cryogenic hydrocarbon storage and processing structure that is of compact design and that utilizes reduced amounts of steel. It is also an object to provide a floating cryogenic storage structure based on Moss-type storage tanks with ample space for liquefied gas processing equipment that can be produced at reduced costs.
Hereto the floating structure according to the invention has two spherical tanks situated with their midpoints on spaced apart longitudinal positions along a first line extending in the length direction at a first side of the center line. A third tank is situated with its midpoint on a longitudinal position on a second line extending in the length direction at a second side of the center line. A transverse distance between the first and second lines is not larger than a diameter of the tanks and the longitudinal position of the midpoint of the third tank is situated between the longitudinal positions of the midpoints of the first and second tanks.
By placing the spherical tanks side by side in a stepped configuration, the width of the hull can be reduced by between 10% and 15% compared to the known arrangement in which the midpoints of the two rows of tanks are at opposed positions on each side of the center line. For a hull of a length of 250 m, a width of 60 m and a height of 40 m, a 6% weight reduction can be achieved corresponding to about 3000 tons of steel.
The midpoints of the two rows of tanks may be spaced in the transverse direction at a distance corresponding to the diameter of the spherical tanks or at smaller distances, so that the footprint of the two rows of tanks can be smaller than twice the tank diameter.
In one embodiment of a floating cryogenic storage structure according to the invention, the first and second lines are spaced at a predetermined transverse distance from a respective nearest sidewalk a predetermined minimal clearance being provided between third tank and. the first and second tanks, wherein a transverse distance between the longitudinal side walls of the hull is smaller by at least 5% compared to the transverse distance for the arrangement in which the midpoints of the first and third tanks are on the same transverse line at a corresponding minimal clearance and at a corresponding transverse distance of the lines from the side walls.
By the stepped configuration, the spherical tanks are placed within a compact footprint with a sufficient clearance between the tanks for access and maintenance.
Preferably, at least two tanks are situated along the first and second lines respectively, preferably at least three tanks being situated along at least one of the lines. The liquefied gas FPSO may comprise two rows of five tanks each and may have a width of 78 m and a length of 340 m.
In another embodiment of a floating cryogenic storage structure according to the invention, on a first side of the longitudinal center line a first non-spherical tank is provided adjacent the rearmost spherical tank and on the second side of the longitudinal center line a second non-spherical tank is provided adjacent the front most spherical tank.
In the rectangular tanks, which may be membrane tanks or SPB-type tanks, the different types of hydrocarbon fluid that are separated from the gaseous hydrocarbon feed gas may be stored. The hydrocarbon fluid tanks can be situated in the space at the start and at the end of the two stepped rows of spherical tanks, so that the overall length of the FPSO is not increased.
A bulkhead may extend vertically from a bottom of the vessel towards the deck, the bulkhead extending in the length direction in an undulating manner at a substantially uniform distance from the tanks. In this way, the bulkhead provides a longitudinal reinforcement of the hull structure while accommodating the stepped tank configuration.
In a further embodiment, each tank is surrounded by bulkhead sections arranged in a hexagonal pattern. In this manner, the tanks are thermally insulated from each other, and maintenance or inspection may be carried on an empty tank while the bulkheads provide for proper separation from the surrounding parts of the hull.
In another embodiment, the sidewalk extend from a bottom to an upper deck level. The spherical tanks extend below deck level. A longitudinal beam extends along the center line of the hull between the two rows of spherical tanks. The deck space can be utilized for supporting process equipment over the tanks, the tops of which may located just below, at or above deck level. The longitudinal beam reinforces the overhead deck and fits in the top open space between the adjacent spherical tanks.
Some embodiments of a floating cryogenic storage and processing structure according to the invention, will by way of non-limiting example be described in detail with reference to the accompanying drawings. In the drawings:
On board of the vessel 1, spherical Moss type tanks 3, 3′ are arranged in two parallel rows 4, 5. Process equipment for gas treatment and for liquefaction of the treated natural gas is situated on deck of the vessel 1 on topside 6 (see
The tanks 3, 3′ have their upper ends or “domes” 15 situated near deck level 17, so that the tanks can be easily filled and emptied from the deck 17. At the bottom 14, the tanks 3, 3′ are supported by a tank support structure or skirt 16 resting on the double bottom 14. and fixing the spherical tanks in place.
All embodiments shown in
The distance Wt between the lines L1, L2 is at least equal to the diameter D of the tanks. In the embodiment of
By the stepped pattern of the spherical tanks according to the invention, the width Ws of the cargo section of the FPSO 20 can be reduced by between 10% and 15% compared to the prior art configuration shown in
In
In an embodiment, bulkhead mid sections 53,53′, 53″ of the central bulkhead may be omitted to allow for different sizes of storage tanks. When re-using tanks from existing LNG carriers, the storage tanks may not all be of the same size and can be accommodated in the stepped arrangement according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
16206668.2 | Dec 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/083870 | 12/20/2017 | WO | 00 |