The present disclosure relates generally to the field of head-worn audio devices. More particularly, the present disclosure relates to an earcup pivot for head-worn audio devices, such as headphones and headsets.
This background section is provided for the purpose of generally describing the context of the disclosure. Work of the presently named inventor(s), to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
With the proliferation of smartphones, laptop computers, and tablet devices, users are now able to consume multimedia content anywhere, anytime, and any place. As users increasingly immerse themselves in multimedia content, they turn to head-worn audio devices, such as headphones and headsets, to enhance their multimedia experiences. Designers of head-worn audio devices often need to balance the competing objectives of comfort and durability. For example, while a sturdier pair of headphones may better survive being carelessly tossed into a bag, the increased bulk of such headphones may quickly cramp the neck of a wearing user. One key location of such concern is the interface between the headband and the earcups. In particular, while it is desirable to ensure that the earcups pivot over a wide range relative to the headband (in order to accommodate many different sizes and shapes of heads), such designs often result in large gaps on the earcups, and those gaps permit the passage of debris. Even more, the earcups often house electronic assemblies such as digital-to-analog converters, Bluetooth transceivers, and batteries, and such gaps increase the susceptibility of those assemblies to electrostatic discharge from nearby electrically charged objects.
In general, in one aspect, the invention relates to a floating-cup pivot for a head-worn audio device. The head-worn audio device includes an earcup defining an inner cavity. A wall of the earcup includes an aperture. Also, the head-worn audio device includes a pivot within the inner cavity of the earcup. The pivot defines a rotational axis. Further, the head-worn audio device includes an arm having a first end and a second end. The first end of the arm is rotatably attached to the pivot. Still yet, the head-worn audio device includes a stem disposed toward the second end of the arm. The stem is configured to rotate along a path passing through the aperture of the earcup.
In general, in one aspect, the invention relates to a floating-cup pivot for a head-worn audio device. The head-worn audio device includes an earcup defining an inner cavity. A wall of the earcup includes an aperture. Also, the head-worn audio device includes a first pivot fixedly mounted within the inner cavity of the earcup, and a second pivot fixedly mounted within the inner cavity of the earcup. The first pivot and the second pivot define a rotational axis. Still yet, the head-worn audio device includes a first arm within the inner cavity of the earcup. The first arm has a first end and a second end. The first end of the first arm is rotatably attached to the first pivot. The head-worn audio device also includes a second arm within the inner cavity of the earcup. The second arm has a third end and a fourth end. The third end of the second arm is rotatably attached to the second pivot. Additionally, the head-worn audio device includes a yoke. The yoke is coupled to the second end of the first arm and the fourth end of the second arm. Moreover, the head-worn audio device includes a stem extending from outside of the earcup and through the aperture of the earcup to the inner cavity of the earcup. The stem is coupled to the yoke and rotates about the rotational axis.
The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
Specific embodiments of the invention are here described in detail, below. In the following description of embodiments of the invention, the specific details are described in order to provide a thorough understanding of the invention. However, it will be apparent to one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the instant description.
In the following description, any component described with regard to a figure, in the various embodiments of the invention, may be equivalent to one or more like-named components described with regard to any other figure. For brevity, descriptions of these components will not be repeated with regard to each figure. Thus, each and every embodiment of the components of each figure is incorporated by reference and assumed to be optionally present within every other figure having one or more like-named components. Additionally, in accordance with various embodiments of the invention, any description of the components of a figure is to be interpreted as an optional embodiment which may be implemented in addition to, in conjunction with, or in place of the embodiments described with regard to a corresponding like-named component in any other figure.
In the following description, ordinal numbers (e.g., first, second, third, etc.) may be used as an adjective for an element (i.e., any noun in the application). The use of ordinal numbers is not to imply or create any particular ordering of the elements nor to limit any element to being only a single element unless expressly disclosed, such as by the use of the terms “before”, “after”, “single”, and other such terminology. Rather, the use of ordinal numbers is to distinguish between like-named the elements. For example, a first element is distinct from a second element, and the first element may encompass more than one element and succeed (or precede) the second element in an ordering of elements.
Many head-worn audio devices that have an internal gimbal currently rely on a large earcup aperture through which a protrusion from the headband is able to move dynamically within a plane of the aperture. Although this may provide the earcup with a large range of motion relative to the headband, the gap allows for easy passage of dust, other debris, and electrostatic discharge because the gap is substantially larger than the protrusion. Consequently, additional engineering and materials are required to provide a dust seal that prevents or mitigates the harmful penetration by such elements. Further, during manufacturing, the dust seal necessitates its own assembly steps and quality verification steps. As a result, a headphone manufacturer is presented with the choice of engaging in efforts that increase device costs without improving audio performance, or selling a device that is sensitive to environmental conditions.
In general, embodiments of the invention provide a floating-cup pivot for head-worn audio devices, such as over-the-ear and on-the-ear headphones and headsets. As described herein, the floating-cup pivot enables an earcup to gimbal around one or more swing arms that are hidden on the interior of the earcup while maintaining a static and minimally sized gap. In other words, the floating-cup pivot described herein provides a seamless pivot that enables the earcup to gimbal without opening substantial gaps that would otherwise allow the passage of harmful elements to within the earcup. Accordingly, the floating-cup pivot described herein remains relatively impassible to outside debris without requiring a discrete barrier, such as a dust seal. Additionally, the floating-cup pivot described herein functions properly even within a limited earcup space. Also, the floating-cup pivot described herein provides a head-worn audio device with a differentiated floating appearance that hides and protects the typical, and potentially fragile, mechanical components necessary for articulation of a headphone earcup.
As illustrated in
In one or more embodiments, the head-worn audio device 100 comprises a set of over-the-ear (e.g., circumaural, etc.) headphones. In one or more embodiments, the head-worn audio device 100 comprises a set of on-the-ear (e.g., supraaural, etc.) headphones. Accordingly, each of the earcups 106 may house a speaker for generating audio signals that are perceptible to a user that is wearing the head-worn audio device 100. As an option, the head-worn audio device 100 may include one or more microphones for receiving the speech of the wearing user.
As shown in
Further still, each of the ear sub-assemblies 103 includes a stem 104 that protrudes through an aperture of a respective earcup 106. In particular, the left stem 104a is shown protruding through an aperture in the left earcup 106a, and the right stem 104b is shown protruding through an aperture in the right earcup 106b. As described below, each of the stems 104 is configured with a geometric profile that enables the corresponding earcup 106 to rotate freely relative to the stem 104, while preventing debris and electrostatic discharge from entering the earcup 106 without necessitating additional parts such as dust seals or covers.
As described herein, the ear cushions 108 may include any suitable interface between the earcups 106 and a wearing user's face. In one or more embodiments, the ear cushions 108 provide an acoustic seal that improves the listening experience of the user. As an option, the ear cushions 108 may include a foam (e.g., urethane foam, etc.) or gel material to ensure durability and resilience of the head-worn audio device 100, while providing comfort to the wearing user.
As illustrated in
Still referring to
In one or more embodiments, the pivot 205 is physically coupled to the earcup 206. Thus, a position of the pivot 205 may be fixed within the inner cavity 208 of the earcup 206. The pivot 205 may be coupled with the earcup 206 in any suitable manner. For example, the pivot 205 may be physically coupled to the side wall 209 of the earcup 206 and/or may be physically coupled to the back wall 211 of the earcup 206. As shown in
As illustrated in
As shown in
In one or more embodiments, the headband slider 305 may encapsulate an end portion of the resilient band 301. Moreover, the headband slider 305 may be extended away from, and retracted towards, the headband 302 by a user in order to adjust the effective size of the head-worn audio device 300. As the headband slider 305 is extended and retracted, the resilient band 301 may slidably move within the headband 302. Moreover, as the headband slider 305 is extended and retracted, an earcup included in the sub-assembly 303 may articulate about a pivot relative to the stem 304. While the adjustment mechanism of the headband 300 is shown and described to include the resilient band 301 slidably housed within the headband 302, it is contemplated that any other suitable adjustment mechanism may be incorporated into a head-worn audio device that employs the floating-cup pivot described herein.
Still referring to
The stem 304 includes an inner surface 314 and an outer surface 324. In one or more embodiments, the inner surface 314 and the outer surface 324 may be concentric about the same center point. For example, as illustrated in
In one or more embodiments, a cross-sectional profile of the stem 304 may be defined by any suitable shape, geometric or otherwise. For example, the cross-sectional profile of the stem 304 may be generally round, rectangular, or triangular. The cross-sectional profile of the stem 304 may be the same shape as a corresponding aperture in an earcup within which the stem 304 is installed, thereby minimizing any gap between the stem 304 and the earcup. Accordingly, the stem 304 may have a substantially obround cross-sectional profile for passing within the aperture 207 of the earcup 206, described in reference to
In one or more embodiments, the arm 318 extends from the stem 304 in a direction generally away from the headband 302. In one or more embodiments, the arm 318 extends from the stem 304 in a direction that is generally orthogonal to the curvature of the stem 304, and toward a center of a circle that path 214 lies upon. In other words, the arm 318 may extend from the inner surface 314 of the stem to a center of the circle 315. The arm 318 may be configured having the stem 304 disposed at a first end of the arm 318, and a connector 320 disposed at a second end of the arm 318. The connector 320 may be rotatably attached to a pivot that is fixedly positioned within a cavity of an earcup. Accordingly, the connector 320 is configured to enable the rotatable attachment of the arm 318 to a pivot of an earcup, such as the pivot 205 of the earcup 206, described in reference to
As shown in
As shown in
Specifically, the rotational axis 415 is defined by a first pivot to which an end of a first arm 418a is attached, and a second pivot to which an end of a second arm 418b is attached. More specifically, the first arm 418a is rotatably attached to a first pivot (which is occluded from view in
In one or more embodiments, the stem 404 may have relatively uniform exterior dimensions in the two directions orthogonal to its curvature. In other words, the stem 404 may have relatively uniform exterior dimensions in the two directions orthogonal to the path of the stem 404. For example, as shown in
As shown in
As described herein, the yoke 420 is relatively rigid and interconnects the arms 418 such that one of the arms 418 may not rotate about the rotational axis 415 relative to the earcup 406 without the other of the arms 418 also rotating in the same manner. In one or more embodiments, the yoke 420 may extend from an inner surface of the stem 404 towards the rotational axis 415. Similarly, the arms 418 may extend from the yoke 420 towards the rotational axis 415. Thus, both the yoke 420 and the arms 418 may extend in a direction that is generally orthogonal to the curvature of the stem 404. As an option, the first arm 418a and the second arm 418b may be co-planar.
In one or more embodiments, the stem 404, the yoke 420, and the arms 418 may be formed as a single integral part. For example, the stem 404, the yoke 420, and arms 418 may be a single plastic part manufactured in an injection molding process. In one or more embodiments, any of the stem 404, the arms 418, and the yoke 420 may be manufactured separately, and subsequently joined using, for example, an adhesive, laser welding, or ultrasonic welding.
With any rotation relative to the earcup 406 and about the rotational axis 415, the yoke 420 and arms 418 may travel substantially proximate to and parallel with the side wall 409 of the earcup 406. Consequently, the cavity of the earcup 406 is configured to include a space 450. In one or more embodiments, one or more electronic assemblies may be installed within the space 450, between the arms 418. In such embodiments, the yoke 420 and arms 418 may rotate freely within the cavity of the earcup 406 without impediment due to such electronic assemblies.
As shown in
As shown in
In one or more embodiments, the arm 518 may be directly attached to the stem 504, as described above in reference to the arm 318 and the stem 304 of
In one or more embodiments, a gap 541 may exist between the stem 504 and the edges of the earcup 506. A size of the gap 541 may be substantially constant around an outside surface of the stem 504. As an option, the gap 541 between the stem 504 and the earcup 506 may be consistently between 0.1-3 mm around the entirety of the stem 504. For example, the gap 541 between the stem 504 and the earcup 506 may be consistently about 0.5 mm around the entirety of the stem 504, about 1 mm around the entirety of the stem 504, about 2 mm around the entirety of the stem 504, etc. In other words, if the gap 541 between the inner surface 534 of the stem 504 and the earcup 506 is approximately 1 mm, then the gap 541 between the outer surface 544 of the stem 504 and the earcup 506 may also be approximately 1 mm. Thus, the aperture 507 may have only a slightly larger offset (e.g., 0.1 mm, 0.3 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 4 mm, etc.) than the exterior dimensions of the stem 504.
For at least some distance along the path 514, the stem 504 may have relatively uniform exterior dimensions in one or both directions orthogonal to the path 514. For example, the stem 504 may have a uniform first exterior dimension in a direction into the page of
Thus, as the stem 504 moves, relative to the earcup 506, in either direction along the path 514, the gap 541 between the stem 504 and the earcup 506 may remain substantially consistent. For example, with reference the
Accordingly, in one or more embodiments, the gap 541 may be minimized to prevent the entry of debris from the surrounding environment into the earcup 506. Moreover, because of the uniformity of the gap 541, regardless of the angle of the earcup 506 relative to the stem 504 (i.e., as it travels along the path 514), there is no need for a dust seal or other discrete element to be installed in cooperation with the gap 541.
In one or more embodiments, the stem 504 may be configured to have a length sufficient to allow the earcup 506 to rotate, relative to the stem 504, between 5-30 degrees. For example, the stem 504 may be configured to have a length that provides the earcup 506 with approximately 12 degrees of articulation. Accordingly, the length of the stem 504 may depend upon the distance of the stem 504 from its rotational axis or pivot(s). In other words, the length of the stem 504 may depend on the length of the arm(s) 518, and, as an option, the length of a yoke to which the arm(s) 518 are attached. By way of a more specific example, if the stem 504 is located approximately 40 mm from its rotational axis, and provides the earcup 506 with at least 12 degrees of articulation, then the stem 504 must be at least approximately 8.5 mm in length. As an option, this requirement may be met by ensuring that the outer surface 544 of the stem 504 is at least approximately 8.5 mm long, and the inner surface 534 of the stem 504 is also at least approximately 8.5 mm long. To accommodate the somewhat frustoconical conformation of the earcup 506, the inner surface 534 may be offset some distance along the path 514 relative to the outer surface 544. In other words, the inner surface 534 and the outer surface 544 may not be centered relative to each other.
In one or more embodiments, the stem 504 may include a channel 570. As described herein, the channel 570 includes a hollow passage within the stem 504 that extends from outside of the earcup 506 to the cavity of the earcup 506. For example, as depicted in
Described hereinabove are various embodiments of a floating-cup pivot for head-worn audio devices, such as a headphones and headsets. The floating-cup pivot is configured to allow articulation of the earcups of such head-worn audio devices, while maintaining a static and minimally sized exterior gap on the earcups. Thus, the floating-cup pivot described herein may prevent the passage of harmful elements to the inner cavity of the earcups, thereby ensuring that electronic components housed within such earcups are not harmed by debris and electrostatic discharge, without requiring installation of a discrete barrier, such as a dust seal.
A number of implementations have been described. Nevertheless, various modifications may be made without departing from the scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.