The present invention relates generally to the production of concrete wall blocks with equal material distribution throughout the mold cavity of the block to produce structurally durable, strong and sound blocks. More particularly the invention relates to producing wall blocks with the use of a floating cut-off bar that is separated but movably coupled to a feed drawer for more equal distribution of the mix material dispersed to all parts of the mold cavity of the block being produced and can distribute an excess amount of material to areas of the mold as desired to achieve greater uniform density of material for the block thus making the blocks stronger and more durable.
Numerous methods and materials exist for the construction of retaining walls and landscaping walls. Such methods include the use of natural stone, poured in place concrete, masonry, and landscape timbers or railroad ties. Segmental concrete retaining wall blocks which are dry stacked (i.e., built without the use of mortar) have become a widely accepted product for the construction of retaining walls. Such products have gained popularity because they are mass produced, and thus relatively inexpensive. They are structurally sound, easy and relatively inexpensive to install, and couple the durability of concrete with the attractiveness of various architectural finishes.
These wall blocks are generally produced in a mold assembly which usually consists of a mold box consisting of side frame and end frame walls forming an enclosed cavity, which rests on a production pallet or plate. The mold box assembly may contain one or multiple mold cavities which are configured to provide the block with a desired size and shape and thus may include the use of wall liners, cores and core bars, division plates, etc., as known in the art. A mixture or fill, generally of concrete material, is then poured or loaded into the mold cavities by a feed drawer that has received said material from a batching hopper. The feed drawer moves the fill over the top of the mold box assembly and dispenses the mixture into the mold cavities. As the fill is dispensed, a vibration system may be employed to shake the mold box assembly, thus providing compaction of the loose fill material to form a solid mold block. This vibration system functions to consolidate the concrete material within the mold cavities to produce a more homogeneous concrete product.
After the concrete is dispensed into the mold cavities, the feed drawer retracts rearward from over the top of the mold box assembly. Rigidly coupled on the front of the feedbox is generally a cut-off bar that strikes off and levels the mixture in the mold prior to compaction by the vibration function and stripper shoe compression head assembly producing a generally horizontal level surface. Since the cut-off bar is rigidly coupled to the feed drawer it must follow the generally horizontal path of the feed drawer. Blocks formed from the mold cavities have varying shapes and angles which may require the mix material to be distributed in different proportions from one mold cavity to another, so there is no weakening or compromising of the structural integrity and/or strength of the block from under-filling or over-filling of certain portions of the mold cavities. Since the cut-off bar follows the horizontal path of the feed drawer there is not a suitable means for distributing and leaving additional material in one portion of the mold cavity or less material in another portion of the mold cavity as may be necessary/optimal depending upon the shape and size of the block being produced. There is a need in the art for a cut-off bar that is not rigidly attached to the feed drawer and which can remove and/or redistribute varying amounts of material as necessary to all portions of the mold box cavity. This is most significant where the mold layout requires this varying distribution of material when critical elements, such as the moveable sideliners, are oriented perpendicular to the direction of travel of the feed drawer. If the mold cavities and moveable sideliners are aligned in parallel with the path of travel, then the rigid cut-off bar can be shaped to deposit the correct proportion of material over the area of need, but when the cavities are perpendicular to the feed drawer, there is currently no effective means to accomplish the correct distribution. Currently the methods used in the manufacturing process to aide in material distribution in the mold is to use an agitator grid (an element that sits over the mold box, but under the feed drawer, which functions to create general distribution of the mix material) or to isolate portions of the mold cavities from receiving a percentage of the mix material by use of blank-out plates added to the agitator grid. The blank-out plates are meant to starve some areas of the mold from receiving their full allotment of mix material, while allowing the other areas to receive the full amount. This currently is the known method of distributing material in a mold box.
Generally, after the cut-off bar and feed drawer have returned to their initial starting positions, the vibration cycle begins prior to the stripper shoe compression head, being lowered onto the consolidated material in the mold unit cavities of the mold box assembly. The stripper shoe assembly has plates or stripper shoes mounted to it having the same general plan view shape as the cavities in the mold. The plates may be set in a horizontal or angled orientation, depending on the desired shape for the top plane or surface of the block being made. The plates finalize the compression of the concrete material in the mold prior to pushing or stripping the block unit out of the mold in a downward motion. The stripper shoes are traditionally oriented parallel to the top plane of the mold (generally level or flat), but with some products they may be angled, or patterned in order to add a defined shape to the top surface of the block facing the stripper shoe plates.
The mold box assembly may be agitated to assist in compression of the mix material. Once the vibration cycle is complete, the production pallet is automatically lowered vertically away from the bottom of the mold frame during the de-molding or stripping cycle, and the newly molded block/blocks are pushed downward through the mold so that they remain on the manufacturing pallet in preparation of the next cycle of the manufacturing process were the blocks are sent to a kiln for a curing cycle. Accordingly, the desired shaped blocks can be readily removed from mold cavities.
In commonly assigned U.S. patent application Ser. No. 12/252,837, entitled “RETAINING WALL BLOCK”, the entirety of which is incorporated herein by reference, a mold assembly for use in producing retaining wall blocks has a horizontal planar bottom member, a stripper shoe compression head (also referred to herein as a stripper shoe head assembly), a mold box having a plurality of side walls that define a plurality of mold cavities having open mold cavity tops and open mold cavity bottoms, the horizontal planar member enclosing the open mold cavity bottoms of the plurality of mold cavities and the stripper shoe head assembly enclosing the open mold cavity tops of the plurality of mold cavities during a block forming process. Each of the plurality of mold cavities can be shaped to form a single retaining wall block. Each of the plurality of mold cavities can be oriented such that the first side surface is formed at the bottom of the mold cavity and the second side surface is formed at the top of the mold cavity. One of the side walls of each of the plurality of mold cavities can be moveable from an inward block forming position to a retracted discharge position, the moveable sidewall having a three dimensional surface texture or pattern that imparts to the front face of the retaining wall block the three dimensional surface texture or pattern during the block forming process. The sidewalls of each of the plurality of mold cavities can include a forming channel to shape or form an extending flange or lip element which can be used as a means of connecting courses of the block in a retaining wall assembly, if the blocks are oriented with the flange in a downward position (extending downward past the bottom plane of the retaining wall block). The mold assembly further includes a core forming member which extends vertically into at least one of the plurality of mold cavities to provide the retaining wall block formed therein with a core extending from the first side surface to the second side surface, or can be partially formed from the first surface, but not all the way to the second surface. The core forming member can be configured to form a plurality of cores extending from the first side surface to the second side surface of the retaining wall block and the core or cores can have a variety of shapes, typically selected from round, oval, rectangular and square.
The stripper shoe head assembly includes a lower surface which encloses the open mold cavity tops as the stripping cycle is activated. The lower surface can be angled at an angle α with respect to horizontal such that the second side surface of the retaining wall block formed in each of the plurality of mold cavities during the block forming process forms angle α with respect to the front face of the retaining wall block, and wherein angle α is optimal between about 5° to 20°, or between about 7½° to 15°. Further, the sidewalls of each of the plurality of mold cavities can be shaped to form a vertically extending ridge that provides the retaining wall block with a flange receiving channel formed into a rear portion of the top surface and an upper portion of the rear face of the retaining wall block.
With current feed drawer and cut-off bar distribution techniques, the feed drawer generally distributes the same amount of material to the entirety of each mold cavity. The cut-off bar, which is rigidly coupled to the front of the feed drawer flows over the mold cavity in a horizontal path, with the feed drawer dropping and distributing the mix material as it travels. Once the feed drawer has reached its furthest forward motion point, it retracts along its original path where the cut-off bar now functions to screed or cut-off any excess material that was deposited over the open cavities of the mold, producing a generally level horizontal surface. Typically the mix material is screeded to allow an extra 0.375″ to 1.0″ of extra material over the block mold cavities. This material is the thickness calculated to compress during the vibration and compression cycle, such that the block will be formed in its consolidated state to a pre-determined height in the forming cavity. The stripper shoe head assembly with angled lower surfaces, descends and encloses the open mold cavities as it finalizes the compression of the material. As the stripper shoe head assembly with angled surfaces lowers to compress the material in the mold cavities, the density of the material is more compressed where the angled surface extends the furthest into the mold cavity and the density of the material is less compressed where the stripper shoe extends into the mold cavity the least. The result is that the block is stronger and denser where the material has been compressed more and is weaker and less dense where the material has been compressed less. This produces an uneven range of density along the gradient where the material was compressed by the stripper shoe head assembly, thus the structural integrity and strength of the block may be compromised which could additionally compromise the structural integrity and strength of any structure made from the blocks. In addition, where the block is over compressed, the material may expand (rebound) when released from the mold cavity and the planer surfaces may tear as a function of this rebound effect. Oppositely, areas in the mold cavity that have not received enough material may be less compressed and have unfilled, broken and crumbling surface areas or edge conditions.
Current feed drawer and cut-off bar distribution techniques do not allow for additional material to be distributed to an area of the mold cavity that may require additional material during compression. This situation arises, for example, in applications where a three-dimensional texture is being imparted onto a surface of the block in the mold cavity. Additional material to fill all crevices and structures of the texture being imprinted may be necessary during compression to ensure that the texture is compacted properly onto the moveable liner which creates the surface of the block being produced. The additional material that is needed where the three-dimensional texture is being imprinted is not needed for the rest of the area of the mold cavity and a material distribution technique that could distribute varying amounts of material throughout a mold cavity would save on material costs while ensuring that the block produced is structurally sound, stronger and more aesthetically pleasing to the eye upon proper imprinting of the texture.
Accordingly, there is a need in the art to correct deficiencies in the distribution of material in a mold box cavity and the amounts of compression within a mold box cavity and to achieve greater overall uniform density of material of the block thus making the blocks stronger and more durable as well as any structure built from the blocks.
The invention comprises a cut-off bar that is not rigidly attached to the feed drawer and that can remove and/or redistribute varying amounts of mix material as necessary to all portions of the mold box cavity for more precise and accurate control to enhance the structural strength and integrity of the block being produced and thus the structure being built with the block.
In one embodiment the invention is a cut-off bar that follows a preselected path of travel over a mold box during a block production cycle. The selected path of travel results in the distribution of desired and varying amounts of mix material in the mold cavity. The cut-off bar may be moveably attached to a feed drawer. The mold box may be provided with a member defining the selected path of travel. The member may comprise rails which define the selected path. The cut-off bar follows the angle or contour of the rails to distribute the desired and varying amounts of mix material in the mold cavity.
In another embodiment the invention is a block manufacturing assembly including a mold box having a member shaped to define a path of travel of a cut-off bar which moves over the mold box during a block production cycle to screed and distribute mix material in at least one mold cavity. The invention may include a feed drawer to which the cut-off bar may be moveably attached. The member which defines the path of travel of the cut-off bar may be a rail having an angled or contoured surface which defines the path of travel.
In a further embodiment the invention comprises a feed drawer having a cut-off bar moveably connected thereto. The invention may include a mold box and wherein the cut-off bar is configured to move over the mold box at varying heights during a block production cycle to screed or redistribute mix material in at least one mold cavity at depths which vary depending on the height of the cut-off bar above the mold box.
In another embodiment the invention is a method of manufacturing a block with the floating cut-off bar described herein.
In another embodiment the invention is a mold assembly for producing wall blocks that has a production pallet; a stripper shoe; and a mold box. The mold box has opposing side walls and opposing end walls which together form a perimeter of the mold box, the mold box also has an open top and an open bottom. The production pallet of the mold assembly encloses the open bottom of the mold box during a block forming process. The mold box also includes a spill pan that has first and second side walls and an end wall; the first and second side walls of the spill pan also have a control member. The mold assembly has a feed drawer configured to move during the block forming process from a first position vertically offset from the mold box to a second position above the mold box and back to the first position and to discharge block forming material into the mold box during the block forming process. The mold box assembly includes a material distribution element moveably connected to the feed drawer and configured to remove excess block forming material from the mold box or redistribute block forming material in the mold box as the feed drawer moves from the second position to the first position during the block forming process. The control member of the mold assembly is configured to control a path of travel of the material distribution element over the mold box as the feed drawer moves from the second position to the first position during the block forming process, with a height of the material distribution element above the production pallet changing as the material distribution element moves along the path of travel during the block forming process.
Additionally, the distribution element of the mold assembly may be a cut-off bar and the control member may have a first side rail mounted on the first side wall of the spill pan and a second side rail mounted on the second side wall of the spill pan. The control member also may have a non-linear top surface of both the first and second side walls of the spill pan, the non-linear top surfaces defining the path of travel of the material distribution element.
Further, the material removal element may have portions which abut the non-linear top surfaces of the first and second side walls of the spill pan as the material distribution element moves along the path of travel. The portions of the material removal element may also have first and second roller bearings. The material removal element may also include portions which abut the first and second side rails as the material distribution element moves along the path of travel and the portions may be first and second roller bearings. The material distribution element may be connected to be moveable with respect to the feed drawer from a downward position to an upward position, the material distribution element being biased to the downward position. The material distribution element may further be oriented parallel to the end walls of the mold box.
The end walls of the mold assembly may include first and second end walls and the path of travel of the material distribution element over the mold box may be from the first end wall to the second end wall. The stripper shoe of the mold assembly may have a lower surface configured to compress block forming material in the mold box during the block forming process, the lower surface being angled from horizontal at an angle α, and the angle α may be in the range of about 5° to 20°.
In a further embodiment the invention is a method of producing wall blocks in a mold assembly which includes a production pallet, a mold box having an open top and an open bottom, a feed drawer and a stripper shoe. The method includes
positioning the production pallet beneath the mold box to enclose the bottom of the mold box; moving the feed drawer from a first position which is vertically offset from the mold box to a second position above the mold box; and providing a spill pan having first and second side walls, the first and second side walls including a control member. The method also includes depositing block forming material from the feed drawer into the mold box; and moving the feed drawer from the second position back to the first position. The method further includes that after the block forming material has been deposited in the mold box and the block forming material has been redistributed within the mold box such that a height of block forming material above the production pallet in a first portion of the mold box is greater than a height of block forming material above the production pallet in a second portion of the mold box, and the first and second portions of the mold box has a location such that a line which intersects both the first and second portions is parallel with a direction of travel of the feed drawer as it moves from the second position back to the first position, then the stripper shoe is lowered to enclose the open top of the mold box and to compress the block forming material within the mold box and the block forming material is removed from the mold box.
The method of producing blocks in a mold assembly may further include that the step of redistributing the block forming material in the mold box is performed by moving a material distribution element over the mold box along a path of travel defined by the control member from a first end of the mold box to a second end of the mold box, a height of the material distribution element above the production pallet over the first portion of the mold box being greater than a height of the material distribution element above the production pallet over the second portion of the mold box. The method may also include that the material distribution element is moveably connected to the feed drawer and wherein the redistributing step is performed when the feed drawer is moved from the second position back to the first position.
Additionally the method may include that the control member is configured to control the height of the material distribution element above the production pallet as the material distribution element moves along the path of travel and that the control member may have a first side rail mounted on the first side wall of the spill pan and a second side rail mounted on the second side wall of the spill pan.
The control member may also have a non-linear top surface of both the first and second side walls of the spill pan, the non-linear top surfaces defining the path of travel of the material distribution element.
Further, the method of producing blocks in a mold assembly may include that the material removal element has portions which abut the non-linear top surfaces of the first and second side walls of the spill pan as the material distribution element moves along the path of travel and that the portions of the material removal element may have first and second roller bearings. Additionally, the material removal element may have portions which abut the first and second side rails as the material distribution element moves along the path of travel and the portions of the material removal element may include first and second roller bearings.
The invention is described with reference to the following drawings. It should be noted that for purposes of clarity and to better show features of the invention certain parts or portions of structure have been removed in various drawing figures.
The blocks produced from this invention may be made of a rugged, weather resistant material, such as concrete. Other suitable materials include plastic, fiberglass, composite materials, steel, other metals and any other materials suitable for use in molding wall blocks. The surface of the blocks may be smooth or may have a roughened appearance, such as that of natural stone. The blocks are formed in a mold and various textures can be formed on the surface, as is known in the art. It should be appreciated that the invention is equally applicable to blocks of all sizes including those whose faces are either larger or smaller than the ones referenced herein
In accordance with an embodiment of the present invention retaining wall blocks are formed in mold box assemblies as described below. The mold box assemblies have multiple mold cavities and the blocks are formed with a first side surface resting on the production pallet and the second side surface oriented at the top of the open mold cavity. This orientation of the blocks takes up less space on the production pallet than if the blocks were oriented in a mold with their top surface on the production pallet. Thus, the number of mold cavities in the mold box can be increased so that a greater number of blocks can be made in a production cycle on a production pallet. It should be noted that the present invention is applicable to any mold box and the block or blocks formed therein may have any block shape and may have any surface shape or contour oriented to the top of the mold cavity.
Mold box 50 generally includes spill pan side walls 80 and 82 and spill pan end wall 84. Mold box 50 also includes opposing first and second side frame walls 56 and 58 and opposing first and second end frame walls 60 and 62.
Mold cavities 52 (eight cavities in mold box 50 as shown in
Mold cavities 72 (two cavities in mold box 50 as shown in
Spill pan side wall 80 has track or side rail 90 mounted thereto and spill pan side wall 82 has side rail 92 mounted thereto. Side rails 90 and 92 can be made of any appropriate material which is strong and durable and can withstand the pressures and wear to which the rails will be subjected during repetitive block production cycles. Side rails 90 and 92 can be fastened to the side walls through welding, bolting, screwing, etc. Side rails 90 and 92 have a predetermined and precise contoured path along the length of both spill pan side walls 80 and 82. The angular pattern of side rails 90 and 92 form a precise and controlled material distribution pattern that a floating cut-off bar will follow as a feed drawer advances and retracts over the mold box during material distribution. The angular pattern of side rail 90 (which is the mirror image of side rail 92) can be seen in
Each of the mold cavities have a vertical flange forming channel 34 formed by the division plate in the cavities that produce the side walls extending from the top of the mold box to the bottom and which form a flange on each block. Blocks may be formed with cores. The cores are produced by typically hollow forms 87 used to create vertical voids or cavities in the blocks and which are attached to the core bars 86, which span the side frame walls and support the core forms in the blocks produced in the mold cavities. This is done in accordance with known techniques. Mold box 50 also includes moveable side liner mechanisms 68 which are attached to movable side liners 70. During the block production cycle the movable side liners are positioned in a first inward or block forming position when the mold cavities are filled with moldable material. The side liners 70 may be created with any desired three dimensional texture or pattern and impart to the front face 12 of the retaining wall blocks any desired three dimensional texture or pattern when in this first position. When the blocks have been formed and are ready to be discharged from the mold cavities, moveable side liners 70 are moved to a second retracted or discharge position. In the retracted position the side liners are spaced from the front face of the blocks far enough to allow the blocks to be discharged from the mold cavities without interference from the side liners. It should be understood that the mold box is not limiting and variations and alternate embodiments may be used as desired. It should be further understood that a plurality, but not all, of the mold cavities may have moveable side liner mechanisms or none of the mold cavities may contain the movable side liner mechanisms.
Feed drawer 202 has end panel 230 which is rigidly connected to feed drawer 202 by fasteners 232 which may consist of bolts or the like. Brush 240 is also attached to end panel 230 and may be adjusted for height depending upon the application. Brush 240 cleans off waste material lodged or stuck to stripper shoes coupled to a head plate assembly by means of connecting plungers as known in the art. The cleaning occurs as the brush, as attached to the feed drawer passes back and forth under the stripper shoe head assembly while the material is distributed to the mold cavities of the mold box assembly. The brush engages the bottom surfaces of the stripper shoes and dislodges and sweeps any waste material that may have been left from previous production cycles. End panel 230 also contains bolt mounting points 250 and 252 which can be used to mount a floating cutoff bar to the feedbox assembly 202 as discussed further below. Bolts 260 secured to nuts 262, attach screed plate 265 to the back surface of end panel 230 as shown in
As floating cut-off bar 300 retracts from the second extended position after material has been distributed to the mold cavities along the path of side rails 90 and 92, tabs 308 descend into mold cavities 52 of mold box 50 a predetermined distance and screed excess material back into feed drawer 202 or redistribute material to areas that do not contain the sufficient amount of material. Slots 309 allow the cut-off bar to have a vertical range of motion that will not be interfered with or hindered by nuts 262 and bolts 260 of screed plate 265. Bolts 311 secured to mounting points 250 and 252 of end panel 230 of feed drawer 202 protrude through mounting slots 312 and 314 of floating cut-off bar 300 and are coupled to mounting bracket 310. Because mounting bracket 310 is directly coupled to end panel 230 and because floating cut-off bar 300 is housed and loosely connected but not fixedly attached between the mounting bracket and the end panel by bolts 311, mounting slots 312 and 314 allow a predetermined range of vertical movement as the feed drawer follows the path of side rails 90 and 92 when the feed drawer extends and retracts during the production cycle. Mounting bracket 310 is shown attached to end panel 230 in
Screed plate 265 is placed in a specified location on end panel 230 of feed drawer 202 to allow the screeding of mix material to a certain predetermined depth of mold cavities 72 of mold box 50. Screed plate 265 ensures that the pre-determined number of the blocks formed in the mold cavities 72 of mold box 50 have level and horizontal surfaces as the screed plate travels the path of the feed drawer. Floating cut-off bar 300 allows a predetermined number of blocks formed in the mold cavities 52 of the mold box to have an angular surface as the floating cut-off bar travels the path of the feed drawer as dictated by the design of the side rails of the spill pan. The combination of floating cut-off bar and screed plate attached to the feed drawer allows for the production of two different types/styles/shapes of blocks in a mold box production cycle. It should be noted that the combination and relative sizes of the floating cut-off bar with screed plate is not limiting and differing sizes of cut-off bar and screed plate may be employed. It should be further noted that a single floating cut-off bar could be used along the entire length of the end panel of the feed drawer to encompass all mold cavities in a mold box.
The surfaces of the stripper shoes 106a/b which contact the moldable material at the open top of the mold cavity forming the second side surface of the block may be textured or patterned to impart on the second side surface any desired three dimensional texture or pattern. Mold box 50 such as shown in
The angle or contour of side rails 90 and 92 and hence the path of the floating cut-off bar is set to specifically deposit a greater amount of mix material in areas of the mold which typically require more material. For example, it is desirable to deposit additional material in close proximity to movable liner 70 of the mold box cavity so as to allow for excess material to be compacted into the 3-dimensional texture imprint of the movable side liners 70. Thus, the angle or contour of the side rails need not be the actual angle of the side of the block being produced. The side rails could also be given a stepped contour or any necessary shaped contour as needed by the specific shape and size of the block being produced in the mold cavity. Two non-limiting examples of such shapes or contours are shown in greater detail in
Excess filling of mix material in a mold cavity for more precise control of a products uniform density may be referred to as over cover. This over cover is exemplified by angle A which is the slope of the contoured path of side rails 90 and 92 and angle B which is the slope of the finished product and is the same slope as the angular stripper shoes. Angle A of the division plate is larger than that of the finished products angle B and signifies the amount of compression that applies to the product as compaction occurs. The stripper shoes 106a of the stripper shoe head 100 then push the block 10 out of the mold box, at which point the production pallet with the final product moves downward and out from under the mold box. It then proceeds to move laterally along a conveyor line to make available the space for the next production pallet to move in under the mold box and up into position contacting the bottom of the mold for the next production cycle.
The top surface of spill pan side rails 80a and 82a may optionally be provided with a rail cap 85 which may be made out of steel of another suitable material and is attached by welding or other suitable attachment means to the top surface of the determined distribution pattern cut into the spill pan side walls 80a and 82a. Roller cap 85 caps the top surface of the spill pan side wall and has roller guard 86 which protrudes a predetermined distance past the top surface of the spill pan side wall out over the mold box 50a as shown in better detail in
As floating cut-off bar 500 retracts from the second extended position after material has been distributed to the mold cavities along the path of spill pan side walls 80a and 82a, tabs 508 descend into the mold cavities of mold box 50a a predetermined distance and screed excess material back into the feed drawer or redistribute material to areas that do not contain the sufficient amount of material. Bolts 511 secured to mounting points of end panel 230 of the feed drawer are coupled to mounting bracket 510. Side rollers 560, 562 are attached to bracket 561 and side rollers 570 and 572 are attached to bracket 571 by bolts or other suitable means of attachment. Brackets 561 and 571 are coupled to the floating cut-off bar through welding or other attachment means. Side rollers 560 and 570 extend a further distance away from the floating cut-off bar then side rollers 562 and 572. As the feed drawer drive mechanism extends the feed drawer and floating cut-off bar from the resting position to an expanded material distributing position the side rollers 560 and 570 of the floating cut-off bar ride above the spill pan side walls 80a and 82a on top of roller cap 85 of mold box 50a and side rollers 562 and 572 of the floating cut-off bar ride below roller guard 86 of mold box 50a. Side roller 562 and 572 help prevent the floating cut-off bar from slippage and disengagement from the roller cap 85 as the floating cut-off bar 500 extends and retracts. The predetermined contoured path the side rollers follow on the spill pan side walls allows the floating cut-off bar to vertically move up and down as the feed drawer is extended forward and material is distributed to the mold box due to the vertical mobility granted to the floating cut-off bar. Once the material has been distributed by the feed drawer, the feed drawer retracts and the floating cut-off bar and the side rollers of the floating cut-off bar follow the same path of the spill pan side walls back over roller cap 85 to the original or resting position. The distribution pattern of the spill pan side walls allows for maximum control of the produced block's structural strength and integrity, and thus a structure's structural strength and integrity produced from such a block. It should be noted that the contoured path of the spill pan side walls that the floating cut-off bar follows is provided as an example and is not limiting and could have any contoured shape as differing block specifications require.
Although particular embodiments have been disclosed herein in detail, this has been done for purposes of illustration only, and is not intended to be limiting with respect to the scope of the following appended claims. In particular, it is contemplated by the inventor that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. For instance, the choices of materials or variations in shapes are believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments disclosed herein. Further, although the invention has been described in connection with blocks having inconsistent heights, densities and surface deformities it should be understood that these inventive concepts and embodiments are also applicable to assist in height control, correct distribution of density and aesthetic improvement to block surface conditions caused by any reason.
This application claims the benefit of U.S. Provisional Application No. 61/183,721, filed Jun. 3, 2009, entitled “Floating Cut-Off Bar for a Mold Box”, the contents of which are hereby incorporated by reference herein. The contents of U.S. Provisional Application No. 61/183,611, filed Jun. 3, 2009, entitled “Floating Cut-Off Bar and Method of Use Thereof”, and U.S. application Ser. No. 12/580,368, filed Oct. 16, 2009, entitled “Floating Cut-Off Bar and Method of Use Thereof”, are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1905975 | Thomas | Apr 1933 | A |
2652613 | Warren | Sep 1953 | A |
2821005 | Davis | Jan 1958 | A |
2839810 | Kovach | Jun 1958 | A |
2948043 | Gory | Aug 1960 | A |
3213511 | Petruzzi | Oct 1965 | A |
3277551 | Hidco | Oct 1966 | A |
3397435 | Jelesiewicz | Aug 1968 | A |
3655318 | Schneider et al. | Apr 1972 | A |
3833331 | Springs | Sep 1974 | A |
3879156 | Buhrer et al. | Apr 1975 | A |
3885900 | Kanta | May 1975 | A |
3942923 | Binion | Mar 1976 | A |
4019848 | Balhorn | Apr 1977 | A |
4035124 | Balhorn | Jul 1977 | A |
4131670 | Abate | Dec 1978 | A |
4260352 | Balhorn | Apr 1981 | A |
4272230 | Abate | Jun 1981 | A |
4936763 | Thomas | Jun 1990 | A |
5503546 | Aaseth et al. | Apr 1996 | A |
5634344 | Yamauchi | Jun 1997 | A |
5934343 | Gaylo et al. | Aug 1999 | A |
6213754 | Doty et al. | Apr 2001 | B1 |
6352236 | Aaseth et al. | Mar 2002 | B1 |
6387307 | Bossetti | May 2002 | B1 |
6998075 | Sandqvist | Feb 2006 | B2 |
7470121 | Ness et al. | Dec 2008 | B2 |
7635261 | High et al. | Dec 2009 | B2 |
7687005 | Skidmore et al. | Mar 2010 | B2 |
8002536 | Ness et al. | Aug 2011 | B2 |
20010052654 | Saddler et al. | Dec 2001 | A1 |
20030006521 | Rivola | Jan 2003 | A1 |
20030160347 | Saddler et al. | Aug 2003 | A1 |
20100007051 | Ness et al. | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
102 17 199 | Sep 2003 | DE |
0 547 305 | Jun 1993 | EP |
0 659 526 | Jun 1995 | EP |
0 685 350 | Dec 1995 | EP |
588 856 | Jun 1947 | GB |
53 061618 | Jun 1978 | JP |
WO 9823424 | Jun 1998 | WO |
Entry |
---|
International Search Report and Written Opinion for application PCT/US2009/050259, mailed Nov. 6, 2009 (9 pages). |
Abstract for DE 102 17 199 C1 (1 page), Sep. 4, 2003 |
Oct. 14, 2010 International Search Report and Written Opinion for PCT Application No. PCT/US2010/037238 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20100308502 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61183721 | Jun 2009 | US | |
61183611 | Jun 2009 | US |